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Abstract: Mangrove wetlands play a crucial role in maintaining species diversity. However, they face 
threats from habitat degradation, deforestation, pollution, and climate change. Detecting changes in 
mangrove wetlands is essential for understanding their ecological implications, but it remains a 
challenging task. In this study, we propose a semantic segmentation model for mangroves based on 
Deeplabv3+ with Swin Transformer, abbreviated as SSMM-DS. Using Deeplabv3+ as the basic 
framework, we first constructed a data concatenation module to improve the contrast between 
mangroves and other vegetation or water. We then employed Swin Transformer as the backbone 
network, enhancing the capability of global information learning and detail feature extraction. Finally, 
we optimized the loss function by combining cross-entropy loss and dice loss, addressing the issue of 
sampling imbalance caused by the small areas of mangroves. Using GF-1 and GF-6 images, taking 
mean precision (mPrecision), mean intersection over union (mIoU), floating-point operations (FLOPs), 
and the number of parameters (Params) as evaluation metrics, we evaluate SSMM-DS against state-
of-the-art models, including FCN, PSPNet, OCRNet, uPerNet, and SegFormer. The results 
demonstrate SSMM-DS’s superiority in terms of mIoU, mPrecision, and parameter efficiency. SSMM-
DS achieves a higher mIoU (95.11%) and mPrecision (97.79%) while using fewer parameters (17.48M) 
compared to others. Although its FLOPs are slightly higher than SegFormer’s (15.11G vs. 9.9G), 
SSMM-DS offers a balance between performance and efficiency. Experimental results highlight 
SSMM-DS’s effectiveness in extracting mangrove features, making it a valuable tool for monitoring 
and managing these critical ecosystems. 
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1. Introduction 

Mangroves are of great ecological significance in shoreline stabilization, reduction of coastal 
erosion, sediment and nutrient retention, storm protection, flood and flow control, carbon sequestration, 
and water quality maintenance [1]. However, mangroves are disappearing at an alarming rate each year 
due to frequent human activities and climate change. The deforestation of mangroves has seriously 
undermined their capacity for sustained economic value and resource creation for ecology [2]. 
Monitoring and protecting mangroves is a crucial means of mitigating their disappearance over the 
years [3]. Due to the wide distribution of mangroves and scattered areas of intensive habitat [4], remote 
sensing technology has become the primary technical means of observing mangroves. This is attributed 
to its low cost, high frequency, and ability to provide synchronized observations over large areas [5]. 
Remote sensing allows for the efficient monitoring of these critical ecosystems, enabling timely 
interventions and informed decision-making to safeguard mangroves and their ecological functions. 

Mangrove monitoring using multi-source remote sensing data has been extensively studied. 
Vidhya et al. [6] demonstrated the effectiveness of hyperspectral data, support vector machine (SVM) 
classification, and soil adjusted vegetation Indices (SAVI) for accurately mapping mangrove health and 
area. Pham et al. [7] explored the potential of Advanced Land Observing Satellite (ALOS） Phased 
Array L-band Synthetic Aperture Radar (PALSAR) imagery, geographic information system (GIS) data, 
and logistic model tree (LMT) for monitoring mangrove species in tropical ecosystems. Li et al. [8] 
analyzed mangrove reserves using the land type transfer matrix, centroid variation, and landscape 
index to investigate the diffusion characteristics and patterns of Spartina alterniflora in mangrove 
wetlands. Cao et al. [9] proposed a mangrove classification method integrating UAV hyperspectral 
imagery, LiDAR data, and the rotation forest (RoF) ensemble learning algorithm, enabling high-
resolution monitoring and supporting mangrove restoration and management efforts. The rapid 
proliferation of remote sensing data has presented a significant challenge to traditional algorithms. 
Their limitations in processing large-scale data and extracting information quickly are becoming 
increasingly apparent. Consequently, high-precision calculation models have emerged as crucial 
elements in the transformation of remote sensing observations from data to information. 

The rapid advancement of machine learning and deep learning technology has revolutionized 
remote sensing image interpretation. These technologies have achieved remarkable results in tasks 
such as regression, image generation, object detection, and image segmentation. Numerous scholars 
have successfully applied them in the field of remote sensing [10–12]. Convolutional neural 
networks (CNNs), with their powerful feature extraction capabilities, have demonstrated exceptional 
performance in remote sensing image classification [13]. The transformer model, with its ability to 
model long-distance dependencies, has also opened new opportunities for remote sensing 
applications [14]. In the specific domain of mangrove monitoring, deep learning methods have shown 
promising potential. Wan et al. [15] introduced a small patch-based CNN to address the limitations of 
fixed, large inputs, expanding CNN’s applicability to fringe mangroves and achieving superior 
classification accuracy. Moreno et al. [16] considered spatial, temporal, and polarization dimensions, 
proposing a method suitable for long-term monitoring of mangrove growth status through time series 
composition with varying image numbers and sliding window strides. Fan et al. [17] developed a 
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domain adaptation-based remote sensing image segmentation method for mangroves, incorporating a 
self-attention mechanism to focus on important image channels and combining remote sensing spectral 
indices to mitigate potential edge information loss. Xu et al. [18] proposed MSNet, a semantic 
segmentation model that fuses multi-scale features for mangroves. MSNet can simultaneously extract 
high-level semantic features and learn high-resolution image details, improving segmentation accuracy 
through the mutual fusion of different scale features. 

While deep learning has advanced mangrove segmentation, challenges remain. Mangroves 
exhibit a high degree of spectral similarity with surrounding vegetation, particularly Spartina 
alterniflora, making them difficult to distinguish in remote sensing imagery. This spectral similarity 
poses a significant challenge for segmentation models. Additionally, the scattered distribution and 
small size of mangroves lead to a highly imbalanced dataset, complicating model training. The 
multispectral nature of remote sensing imagery, the multi-scale characteristics of mangroves, and the 
interference of noise further exacerbate the complexity of segmentation tasks. To address these issues, 
this paper proposes a semantic segmentation model tailored for mangrove segmentation in remote 
sensing images, building upon the DeepLabv3+ framework. 

2. Semantic segmentation model 

High-resolution remote sensing images offer rich detail but pose computational challenges for 
mangrove segmentation. DeepLabV3+, with its ASPP module and dilated convolutions, is well-suited 
for complex, multi-scale data due to its ability to handle intricate features. However, its Xception 
backbone is computationally expensive for the relatively simpler task of mangrove segmentation. To 
address these limitations, we propose a modified DeepLabV3+ architecture incorporating a Swin 
transformer backbone and a data concatenation module (DCM), as shown in Figure 1. 
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Figure 1. Architecture of the proposed SSMM-DS model. (A) DCM; B) Swin transformer 
backbone. 
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• DCM: To better utilize multispectral information and enhance the contrast between mangroves 
and other vegetation or water, we introduce a DCM (Figure 1(A)). This module expands the 
dataset and aids in differentiating mangroves from their surroundings. 

• Swin transformer backbone: We replace the computationally expensive Xception backbone 
with a Swin transformer. This efficient vision model preserves global context while processing 
image patches, improving the model’s ability to learn global information and extract detailed 
features essential for mangrove segmentation (Figure 1(B)). 

Furthermore, we employ a combined cross-entropy and Dice loss function to address the sampling 
imbalance caused by the small areas of mangroves relative to the entire image. 

2.1. DCM 

Mangroves are unique ecosystems comprised primarily of trees and shrubs. In optical remote 
sensing images, mangroves can be identified by their distinctive spatial distribution, crown and leaf 
texture, and spectral characteristics [19]. First, mangroves grow in the intertidal zones of tropical and 
subtropical coastal environments, forming bands along the coastline [20]. This creates clear boundaries 
in the image that contrast sharply with inland vegetation and water bodies. Second, as specialized 
coastal plants, mangroves exhibit unique crown and leaf textures and spectral characteristics that 
differentiate them from terrestrial forests. These features are crucial for remote sensing identification 
and monitoring of mangrove forests. 

Mangrove exhibits high reflectance in the near-infrared band. Additionally, the reflectivity 
sharply increases during the transition from red to near-infrared wavelengths [21]. However, since 
mangroves grow in the intertidal zone, water’s influence on the spectrum cannot be ignored. Water 
strongly absorbs blue light, resulting in low mangrove reflectivity in the blue band. Consequently, 
the input module of the segmentation model selected three channels from spectral bands near-
infrared (NIR), red (R), and green (G) of remote sensing images. 

To fully leverage the spectral characteristics of remote sensing data and enhance the 
discrimination ability of mangroves, three indices-NDVI, RVI, and NDWI-were incorporated as 
additional channels into the segmentation model. These indices effectively highlight mangrove 
features by calculating the reflectance of light spectra in remote sensing images [22]. The normalized 
difference vegetation index (NDVI) is commonly used for vegetation assessment, contrasting red and 
near-infrared light reflectance to highlight vegetation. However, it can saturate under conditions of 
high biomass [23]. The ratio vegetation index (RVI) offers a measure of vegetation health and density, 
being sensitive to high-density green vegetation but less sensitive to biomass below 50% [24]. By 
combining NDVI and RVI, we can better utilize information on both high-density and low-density 
vegetation. The normalized difference water index (NDWI) effectively distinguishes mangroves from 
surrounding water bodies by comparing green and near-infrared light reflectance [25]. This index 
leverages the characteristic coastal distribution of mangroves. Table 1 presents the calculation formulas 
for these three indices. 
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Table 1. Three indices calculation formula. 

Name Calculation method 
NDVI (NIR − Red) / (NIR + Red) 
RVI Red / NIR 
NDWI (Green − NIR) / (Green + NIR) 

Figure 2 presents a comparative analysis of images using various spectral band combinations and 
calculated indices. Based on Figure 2(a), it is challenging to differentiate between mangroves and other 
vegetation. However, Figure 2(b) and (c) reveal distinct characteristics: mangroves appear in dark red 
or red tones, with clear boundaries, irregular shapes, and a smooth texture. Spartina, on the other hand, 
presents in red or light red tones, often with a fan-shaped or dot-like appearance and a smooth texture. 
Other terrestrial vegetation also appears in dark red or red tones but is not located near the coast. 
Analyzing Figures 2(d) and (e), we observe that water bodies appear as deep black, while mangroves 
and other vegetation are depicted in light gray and Spartina appears as dark gray. Notably, other 
vegetation tends to be slightly brighter than mangroves. Figure 2(f) further clarifies the distinctions: 
Spartina remains dark gray, while water bodies turn bright white. Both mangroves and other vegetation 
appear dark gray in this image. 

(a) (b)

(d) (e) (f)

(c)

 

Figure 2. Comparison of images using various spectral band combinations and calculated 
indices. (a) RGB composite image (spectral bands R, G, and B); (b) RGB composite image 
(spectral bands NIR, R, and G); (c) Annotated image (M: mangrove, S: Spartina, O: other 
vegetation); (d) NDVI image; (e) RVI image; (f) NDWI image. 

Superior to the raw data module of Deeplabv3+, the data concatenation module expanded the data 
channels from three (NIR, R, and G bands) to six (NIR, R, G bands, NDVI, RVI, and NDWI), thereby 
enhancing the features of mangroves (Figure 3). To ensure data consistency, all six channels were 
normalized using the Z-score method. Subsequently, the three spectral channels (NIR, R, and G bands) 
were convoluted together, while the additional indices (NDVI, RVI, and NDWI) were convoluted 
separately. The results of these convolutions were then concatenated and fed into the encoder of the 
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SSMM-DS model. The data concatenation module improved the model’s ability to distinguish 
mangroves by leveraging the enriched spectral and index information, ultimately leading to more 
accurate segmentation results. 

NIR+R+G
[224×224×3]

NDWI
[224×224×1]

Original 
Image

[224×224×4]

RVI
[224×224×1]

NDVI
[224×224×1]

Concat

NIR
[224×224×1]

R
[224×224×1]

G
[224×224×1]

3x3 Conv

3x3 Conv

+ + =

 

Figure 3. Structure of DCM. 

2.2. Swin transformer backbone 

The Swin transformer, a computationally efficient vision model, effectively captures multi-scale 
features within mangroves, from large-scale structures to smaller details. Its hierarchical architecture and 
shifted window-based self-attention mechanism contribute to its ability to handle high-resolution images. 

To enhance performance, we modified the Swin transformer backbone by excluding the original 
Swin-T Stage 4 component, reducing parameters and computational complexity. Raw data is first 
processed by the DCM, followed by patch partition and linear embedding. Two Swin-transformer 
blocks are then applied, yielding low-level features with dimensions reduced to 1/4. These features are 
further processed through Patch Merging and additional Swin-transformer blocks, resulting in high-
level features with dimensions reduced to 1/16, which are fed into the ASPP module. Figure 4 shows 
the architecture of Swin transformer backbone 
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Figure 4. Architecture of Swin transformer backbone. 



5621 

Electronic Research Archive  Volume 32, Issue 10, 5615–5632. 

(1) Patch merging structure 
To obtain feature maps at different scales and improve model performance, we incorporated a patch 

merging structure. This structure divides feature maps into patches, merges them, and down samples 
them, resulting in feature maps at different resolutions, similar to ResNet [26]. Figure 5 shows the 
process of patch meagering, where feature maps are divided into four independent sub-maps, 
concatenates them, and adjusts their dimensions through a 1x1 convolution and down sampling.  

2
2 2
H W
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2 2
H W
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Figure 5. Patch merging structure. 

(2) Swin transformer block 
The Swin transformer’s hierarchical architecture and shifted window-based self-attention 

mechanism contribute to its computational efficiency and ability to handle high-resolution images. The 
hierarchical architecture progressively reduces resolution, increasing the receptive field while 
decreasing computational load. The shifted window-based self-attention mechanism computes 
attention locally within non-overlapping windows and periodically shifts them to capture global 
information. 

(3) Computational complexity and feature extraction 
While multi-head self-attention (MSA) can improve feature extraction [27], its global-based 

approach is computationally expensive for large images. Swin transformer addresses this by using 
window-based MSA (W-MSA), which restricts attention to segmented feature windows. However, W-
MSA can limit feature extraction by focusing on local information. To address this, shifted window-
based self-attention (SW-MSA) is implemented to connect cross-window features. 

The computational complexity of the global-based MSA module and W-MSA are  

 𝛺𝛺(𝑀𝑀𝑀𝑀𝑀𝑀) = 4𝐻𝐻𝐻𝐻𝐶𝐶2 + 2(𝐻𝐻𝐻𝐻)2𝐶𝐶  (1) 

 𝛺𝛺(𝑊𝑊 −𝑀𝑀𝑀𝑀𝑀𝑀) = 4𝐻𝐻𝐻𝐻𝐶𝐶2 + 2𝑀𝑀2𝐻𝐻𝐻𝐻𝐻𝐻  (2) 

2.3. Loss function 

The loss function of the SSMM-DS model consists of the cross-entropy loss function and the dice 
loss function, defined as: 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∝ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶 + (1−∝)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  (3) 

where ∝ is a weight parameter that balances the contributions of the two loss functions. 
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The cross-entropy loss function is a combination of logarithmic function and softmax function, 
which can prevent the model from overfitting. Additionally, it has lower time complexity in gradient 
descent algorithms compared to other loss functions. Therefore, the cross-entropy loss function is often 
used in semantic segmentation tasks to measure the difference between each predicted pixel value and 
the true time value. It is defined as 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶 = − 1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦�𝑖𝑖𝑁𝑁
𝐼𝐼=1   (4) 

where N is the total number of pixels in the image, 𝑦𝑦𝑖𝑖is the true value of the ith pixel point and 𝑦𝑦�𝑖𝑖 is 
the predicted value from the segmentation model. 

However, when using the cross-entropy loss function, the gradient becomes very small when the 
predicted result 𝑦𝑦�𝑖𝑖  is very close to 1 or 0, significantly impacting the model’s learning speed.  
Additionally, this loss function only focuses on the difference between the predicted value and the true 
value, failing to consider the distinctions between intermediate states and not achieving the optimal 
error rate. Furthermore, when the number of negative samples in the dataset greatly exceeds the 
number of true samples, the model tends to favor learning from the negative samples and ignores the 
true targets. Therefore, the cross-entropy loss function is not suitable for all training tasks, especially 
in datasets with imbalanced proportions of positive and negative samples. 

The dice loss function effectively addresses class imbalance [28], as every pixel in the image is 
evaluated and considered. This makes it a better solution for the negative impact caused by the 
imbalance between the number of target pixels and background pixels in the image. It is commonly 
used to evaluate the similarity between the number of pixels in a binary image classified as positive classes 
and the number of pixels that are actually positive. The dice loss function is derived from the Dice 
coefficient, a metric frequently used in medical imaging to calculate the similarity between two samples. 

The dice coefficient is defined as 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2|𝑋𝑋∩𝑌𝑌|
|𝑋𝑋|+|𝑌𝑌|

  (5) 

where X and Y are the set of labeled values and the set of model predictions, respectively. A higher 
Dice coefficient indicates a greater similarity between the model’s predictions and the true results. The 
dice loss function is defined as 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1 −  2|𝑋𝑋∩𝑌𝑌|
|𝑋𝑋|+|𝑌𝑌|

  (6) 

2.4. Atrous spatial pyramid pooling (ASPP) 

In the SSMM-DS model, we integrated the ASPP module [29] to extract multi-scale mangrove 
features. ASPP is a widely used deep learning module that combines 1 × 1 convolutions, dilated 
convolutions with rates of 6, 12, and 18, and global pooling. Figure 6 illustrates the difference between 
standard and dilated convolutions. Compared to standard convolutions, dilated convolutions can 
capture a larger receptive field. For instance, with a 3 × 3 convolution, the receptive field of a standard 
convolution is 3 × 3, while a dilated convolution with a rate of 2 expands this to 5 × 5. 

By utilizing dilated convolutions with varying dilation rates, ASPP effectively captures features 
across different receptive fields. Additionally, global pooling is used to capture global context, 
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followed by 1 × 1 convolutions. These features are then combined to enhance the model’s ability to 
represent complex patterns. 

 

Figure 6. The comparison of Standard convolution and dilated convolution. 

3. Experiment data and setup 

3.1. Experimental dataset 

The image dataset was acquired from GF-1 and GF-6 satellites and collected over Gaoqiao 
Mangrove Reserve and Shankou Mangrove Ecological Nature Reserve, located along the coast of 
Lianjiang City in Guangdong Province and Beihai City in Guangxi Province, China. The data was 
gathered between 2018 and 2021. Figure 7 presents a sample image from the data cube, showcasing 
spectral bands NIR, R, and G of a GF-6 remote sensing image. 

 

 

Figure 7. RGB composite image of GF-6 remote sensing imagery (spectral bands NIR, R, 
and G). 

The GF-1 satellite is equipped with two cameras: a 2-meter resolution panchromatic camera and 
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an 8-meter resolution multispectral camera. This configuration combines high spatial resolution, 
multispectral capabilities, and high temporal resolution, breaking new ground in optical remote sensing 
technology. Additionally, multi-payload image stitching and fusion techniques are employed. The 
details of the sensor specifications for GF-1 PMS images are presented in Table 2 below.  

Table 2. Characteristics of GF-1 PMS images. 

Band Wavelength (nm) Spatial resolution (m) 
Temporal resolution 
(Days) 

Swath width (km) 

B1(Blue) 450–520 

8 4 60 
B2(Green) 520–590 
B3(Red) 630–690 
B4(Near 
infrared) 

770–890 

GF-6 offers advantages such as high resolution, wide coverage, and rapid high-quality imaging. 
This significantly enhances the quality and timeliness of remote sensing image acquisition. Its 
payloads are comparable to those of GF-1. With the network operation of GF-6 and GF-1 satellites, 
the temporal resolution of remote sensing data acquisition has been reduced from 4 days to 2 days. 
The details of the sensor specifications for GF-6 PMS images are presented in Table 3. 

Table 3. Characteristics of GF-6 PMS images. 

Band Wavelength (nm) 
Spatial resolution 
(m) 

Temporal resolution 
(Days) 

Swath width (km) 

B1(Blue) 450–520 

8 4 60 
B2(Green) 520–590 
B3(Red) 630–690 
B4(Near infrared) 770–890 

The metadata was pre-processed with atmospheric correction, maintaining a spatial resolution of 
8-meters and including four bands: blue, green, red, and near-infrared. The images were then 
selectively cropped to a size of 224 × 224 pixels. A total of 843 images were cropped from the 28 
remote sensing images and labeled. To enhance the model’s generalization ability, we expanded the 
labeled dataset of 843 images by four times. We achieved this by applying horizontal inversion, rotation, 
and vertical inversion to the original images, resulting in a total of 3372 labeled remote sensing images. 
These data augmentation techniques effectively simulate image changes from different angles and 
directions, improving the model’s adaptability to diverse and complex scenarios [30]. Of these images, 80% 
were randomly selected as the training set, 10% as the validation set, and 10% as the test set. 

Since the input GF-1/GF-6 PMS images are in the 16-bit TIFF file format, normalization by dividing 
by 255 is not applicable. Therefore, Z-score normalization was employed to preprocess the input data, 
aiming to enhance the convergence speed and stability of the optimization model by standardizing the data 
distribution. This process standardizes the data to have a mean of 0 and a standard deviation of 1, making 
it suitable for comparison and analysis across different scales and distributions. 
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The Z-score can be computed as follows:  

 Z = 𝑋𝑋−𝜇𝜇
𝜎𝜎

  (7) 

where Z is the pixel value of the output image, 𝑋𝑋 is the raw pixel value to be calculated, 𝜇𝜇 is the 
mean value of the pixels in the input image, 𝜎𝜎 is the standard deviation of the input image. 

3.2. Evaluation metrics 

Four metrics were calculated to evaluate the performance of the proposed SSMM-DS, including 
mPrecision, mIoU, FLOPs and Params. 

mPrecision is the mean values of precision, where precision indicates the proportion of correctly 
segmented pixels (i.e., positive segmented pixels). mPrecision and precision are defined by 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)𝐶𝐶
𝑘𝑘=1

𝐶𝐶
  (8) 

 Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (9) 

where 𝑇𝑇𝑇𝑇, 𝐹𝐹𝐹𝐹, and 𝐹𝐹𝐹𝐹 denote the number of the true positive pixels, false positive pixels, and false 
negative pixels respectively. C denotes the number of pixels in the dataset.  

mIoU is a mean value of IoU values, where IoU represents the intersection between the 
segmentation results and the ground truth. mIoU is defined by 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
∑ �𝐴𝐴𝑖𝑖∩𝐵𝐵𝑖𝑖�

�𝐴𝐴𝑖𝑖∪𝐵𝐵𝑖𝑖�
𝐾𝐾+1
𝑖𝑖=1

𝐾𝐾+1
  (10) 

where A and B represent the ground truth and segmentation results, respectively, and K denotes the 
number of classification categories. 

FLOPs and Params are indicative metrics that reveal a model’s level of complexity and the 
computational demands it places on execution resources. 

FLOPs measure the total number of floating-point operations required to process an input through 
the model. This metric is crucial for understanding the computational cost and efficiency of the model, 
especially when deployed on hardware with limited computational resources. A lower number of 
FLOPs indicates a more computationally efficient model. 

Params refer to the total number of trainable parameters within the model. This metric is an 
indicator of the model’s capacity and complexity. Models with a higher number of parameters 
generally have a greater capacity to learn from data, but they also require more memory and 
computational power to train and infer. Managing the number of parameters is essential to balance the 
trade-off between model performance and resource utilization. 

3.3. Experiment setup 

The hardware and software configurations used for this study are as follows: an Intel(R) Core(TM) 
i7-11700 CPU processor and an NVIDIA GeForce RTX 3060 graphics card. The operating system was 64-
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bit Windows 11. For deep learning tasks, the PyTorch framework was utilized, and the Matplotlib library 
was used for visualization. 

The parameter settings of the models are as follows: stochastic gradient descent (SGD) with a 
momentum of 0.9 was selected as the optimization algorithm. The initial learning rate was set to 0.001, 
the batch size was configured to 4, and the training was conducted for 100 epochs. 

4. Results 

To evaluate the segmentation performance of the SSMM-DS model, two comparative 
experiments were conducted. The first experiment was an ablation study, comparing the SSMM-DS 
model with DeeplabV3+ under different settings. The second experiment was a comparative study, 
where the segmentation performance of the SSMM-DS model was compared against other models, 
including FCN [31], PSPNet [32], OCRNet [33], uPerNet [34] and SegFormer [35]. 

4.1. Ablation experiment 

To evaluate the effects of the DCM, the Swin transformer backbone, and the loss function on the 
segmentation results for mangroves, the proposed SSMM-DS model was compared against the 
DeepLabV3+ model under different settings. These settings included DeepLabV3+ with the Xception 
backbone, DeepLabV3+ with the ResNet50 backbone, and DeepLabV3+ with the Swin transformer 
backbone. The Xception architecture, the primary backbone used in the original DeepLabV3+ 
implementation, was selected for its efficiency in depthwise separable convolutions, making it highly 
effective for capturing spatial hierarchies. ResNet50 was chosen due to its deep residual learning 
framework, which allows for better feature extraction in deeper networks. The Swin transformer 
backbone was used as the backbone network in this paper, aimed at leveraging long-range 
dependencies and contextual information within the image. Additionally, tests were conducted to 
assess the effectiveness of the DCM and the loss function. In validating the impact of the backbone 
network and loss function on the segmentation model, the experimental data consisted of three spectral 
bands: green, red, and NIR.  

Table 4 presents the results of our ablation studies, which systematically evaluated the impact of 
different components of the proposed SSMM-DS model. Our findings demonstrate that the Swin 
Transformer Tiny backbone network significantly improved both mPrecision and mIoU compared to 
the DeepLabv3 model with the Xception backbone. Specifically, the mIoU increased by 1.25%, and 
the mPrecision rose by 0.55%. Furthermore, the choice of loss function played a crucial role in 
segmentation performance. The SSMM-DS model, employing a combination of cross-entropy and 
Dice loss functions, outperformed models using other loss functions. This combination effectively 
addressed the class imbalance issue commonly encountered in mangrove segmentation tasks, leading 
to the highest mIoU (94.72%) and mPrecision (97.65%). To enhance feature representation, we 
incorporated two spectral vegetation indices and one water index into the original image data, creating 
multichannel input for the model. This augmentation resulted in a further improvement of 0.39% in 
mIoU and 0.14% in mPrecision compared to the model using only the original image data. Ultimately, 
the proposed SSMM-DS model achieved impressive mIoU and mPrecision values of 95.11 and 
97.79%, respectively, demonstrating the effectiveness of our approach in leveraging spectral 
information to improve mangrove segmentation accuracy. 
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Table 4. Compared results in ablation experiment. 

Model mIoU(%) mPrecision(%) 
Deeplabv3+ with (Xception + CE loss) 92.73 96.84 
Deeplabv3+ with (ResNet50 + CE loss) 93.07 96.66 
Deeplabv3+ with (Swin transformer tiny + CE loss) 93.98 97.39 
Deeplabv3+ with (Swin transformer tiny + DICE loss) 93.69 97.07 
Deeplabv3+ with (Swin transformer tiny + proposed loss) 94.72 97.65 
Deeplabv3+ with (Swin transformer tiny + proposed loss + DCM) 95.11 97.79 

4.2. Comparison experiment 

Table 5 presents a comprehensive comparison of the proposed SSMM-DS model against state-of-the-
art segmentation models, including FCN, PSPNet, OCRNet, uPerNet, and SegFormer. Our results 
demonstrate the superiority of SSMM-DS in terms of both performance and efficiency. The proposed 
model achieved the highest mIoU (95.11%) and mPrecision (97.79%) while maintaining a significantly 
lower parameter count (17.48M) compared to other models. Additionally, the SSMM-DS model’s FLOPs 
were lower than FCN, PSPNet, OCRNet, and uPerNet, and comparable to SegFormer. SSMM-DS 
consistently outperformed models using ResNet50 as the backbone, including FCN, PSPNet, and OCRNet. 
This highlights the advantages of the Swin transformer architecture in capturing complex relationships 
within the image data. Even when compared to uPerNet, which also employs the Swin transformer tiny 
backbone, SSMM-DS achieved higher mIoU and mPrecision while maintaining a significantly lower 
computational cost. This demonstrates the efficiency of our proposed model design. Finally, in comparison 
to SegFormer using MiT-B4, SSMM-DS achieved comparable performance, albeit with a slightly higher 
computational cost. This suggests that our model design effectively balances performance and efficiency. 

Figure 8 visually illustrates the segmentation results of different semantic segmentation models 
applied to mangrove images. The colored areas represent the predicted mangrove regions. Among all 
models, the SSMM-DS model demonstrated superior performance in extracting mangrove features. Its 
ability to accurately identify and delineate fine-grained structures within the mangrove ecosystem 
underscores its potential for practical applications in environmental monitoring and management. 

As shown in Table 5 and Figure 8, our proposed SSMM-DS model exhibits exceptional performance 
in semantic segmentation tasks. It achieved the highest mIoU and mPrecision scores while maintaining a 
relatively small model size. These results demonstrate that our model can achieve high accuracy while 
maintaining computational efficiency, making it more suitable for deployment on resource-constrained 
devices and offering broad application prospects. 

Table 5. Performance comparison of different methods. 

Model Backbone mIoU(%) mPrecision(%) FLOPs(G) Params(M) 
FCN ResNet50 92.08 95.99 37.87 47.12 
PSPNet ResNet50 92.15 95.92 34.23 46.60 
OCRNet ResNet50 91.52 96.11 29.30 36.51 
uPerNet Swin Transformer Tiny 93.08 96.47 44.79 58.94 
SegFormer MiT-B4 94.00 96.95 9.90 61.37 
Ours Swin Transformer Tiny 95.11 97.79 15.11 17.48 
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Figure 8. Segmentation results by different models. 
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5. Conclusions and discussion 

Mangrove ecosystems are under severe threat from climate change and human activities. High-
resolution remote sensing satellites offer a valuable data source for mangrove monitoring. This paper 
proposed a novel semantic segmentation model specifically designed for mangroves. To enhance the 
differentiation between mangroves and other vegetation and water bodies, we constructed 
multichannel input data by fusing two vegetation spectral indices and one water index from the original 
data. We employed the Swin transformer as the backbone network to improve the utilization of global 
features for the segmentation model. To further boost segmentation accuracy for small mangrove areas, 
we incorporated weighting coefficients into the loss function. Compared to FCN, PSPNet, OCRNet, 
uPerNet, and SegFormer, our proposed model achieved the highest segmentation accuracy, with mIoU 
reaching 95.11% and mPrecision attaining 97.79%. 

The proposed segmentation model significantly enhances the accuracy of mangrove segmentation. 
This paper presents a deep learning segmentation model for mangrove segmentation based on GF 
satellite remote sensing imagery, substantially improving both accuracy and efficiency. However, 
several areas require further improvement: 

(1) Multi-source data fusion: Leveraging multi-source data from satellites like Sentinel, Gaofen, 
and unmanned aerial vehicles can provide richer information for mangrove monitoring. Future 
research should focus on systematically fusing these data to enable quasi-real-time, multi-scale 
monitoring and change detection analysis. 

(2) Optimization of high-performance algorithms: The current model faces computational efficiency 
limitations, hindering its application in large-scale mangrove monitoring. Lightweight network design, 
model compression, and incorporating prior knowledge of mangrove ecology and geography can 
effectively improve inference speed and enable real-time monitoring of large-scale mangroves. 

(3) Sample imbalance problem: The scarcity of mangrove samples and their similarity to other 
vegetation can limit the model’s generalization ability. Active learning, semi-supervised learning, and 
transfer learning can help address the insufficient sample problem and improve model robustness. 

(4) Intelligent monitoring: High-precision and real-time mangrove monitoring is crucial for coastal 
zone management and ecological protection. Future research should focus on model interpretability to 
understand the decision-making process and guide model optimization. Additionally, building an 
intelligent mangrove monitoring platform can enable real-time monitoring and early warning of 
mangrove dynamic changes. 

By harnessing remote sensing technology and advanced algorithms like deep learning, we can 
obtain real-time and comprehensive monitoring data of mangroves. This empowers us to analyze 
massive datasets, monitor mangrove growth dynamics, detect potential threats, and predict future 
trends. These technologies provide valuable decision support for mangrove conservation and 
management, facilitating the development of more effective conservation strategies. 
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