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Abstract: The factors that affect the severity of crashes must be identified for pedestrian and traffic 
safety in urban roads. Specifically, in the case of urban road crashes, these crashes occur due to the 
complex interaction of various factors. Therefore, it is necessary to collect high-quality data that can 
derive these various factors. Accordingly, this study collected crash data, which included detailed crash 
factor data on the huge urban and mid-level roads. Using this, various crash factors including driver, 
vehicle, road, environment, and crash characteristics are constructed to develop a crash severity 
prediction model. Through this, this study identified more detailed factors affecting the severity of 
urban road crashes. The crash severity model was developed using both machine learning and 
statistical models because the insights that can be obtained from the latest technology and traditional 
methods are different. Therefore, the binary logit model, a support vector machine, and extreme 
gradient boosting were developed using key variables derived from the multiple correspondence 
analysis and Boruta-SHapley Additive exPlanations. The main result of this study shows that the crash 
severity decreased at four-street intersections and when traffic segregation facilities were installed. The 
findings of this study can be used to establish a traffic safety management strategy to reduce the 
severity of crashes on urban roads. 

Keywords: crash severity model; in-vehicle dashcam video data; crash data; traffic safety; machine 
learning; urban road traffic management 

 



585 

Electronic Research Archive  Volume 32, Issue 1, 584-607. 

1. Introduction  

According to statistical reports from the Organization for Economic Cooperation and 
Development (OECD), the severity of crashes urban areas showed a gradual decrease until 2020. 
However, the number of deaths has seen a rapid increase after 2020. Consequently, a traffic safety 
strategy to reduce both the frequency and severity of crashes is required to achieve Vision Zero, which 
is the goal to reduce deaths and injuries resulting from traffic crashes to zero. On urban roads, there 
are many complex factors, including diverse road facilities, transportations, and signalized 
intersections, thereby affecting the occurrence of road crashes. Therefore, special attention must be 
paid to traffic safety on urban roads. One strategy for improving traffic safety in urban areas involves 
identifying contributing factors to crash severity and either implementing improvements or eliminating 
those factors. Previous studies predicted crash severity for traffic safety management on urban roads; 
based on severity prediction, they have sought to determine the main factors that contribute to crash 
severity [1–6]. Among these studies, there have been studies employed statistical models [1–3], and 
recently, studies have been conducted using machine learning models exhibiting remarkable predictive 
power [4,5]. Because both methodologies have different strengths and weaknesses in terms of data 
interpretability and model performance, efforts should be made to interpret the results of severity 
models using methodologies from both fields. A review study of various crash severity model 
development investigations based on methodologies has been conducted in one of the existing studies [6]. 

The existing national urban traffic crash database (DB) provided by the Korean National Police 
Agency can be subjective, as its data is collected by field personnel. Additionally, unlike highway crash 
data that provides detailed crash information, urban road crash data lacks detailed information except 
for a few categories. Thus, there are limitations in deriving the main factors that affect crash occurrence 
and severity in detail. Therefore, recently, studies have been conducted to capture the warning signs of 
crashes, develop crash severity models, and derive the main factors using the video data. Reportedly, 
these studies could afford new insights that could not be gained through approaches using existing 
crash data [7–11]. In this study, we aimed to derive the main factors that affect crash severity on urban 
roads and construct a model with high explanatory power using the video data of crashes from the 
dashcams installed in individual vehicles. 

The crash DB was constructed by investigating dashcam video data collected for four months 
from January to April 2021; data from 381 crashes was collected, excluding those crashes wherein the 
personal information could not be collected. In this process, an information collection checklist was 
prepared to collect crash information manually and objectively. The crash information contains crash 
types, the personal information of offenders and victims, weather and road conditions at the time the 
crash occurred, and various geometries. Furthermore, information regarding the presence of road 
traffic facilities, detailed vehicle types, and whether the vehicles exceeded the speed limit at the time 
of the crash were collected. In this study, numerous variables were devised to develop crash severity 
prediction models. 

However, an appropriate number of variables must be selected because too many variables may 
cause estimation errors in the regression model or machine learning (ML) development during the 
development of the crash severity model, thereby yielding incorrect results due to high correlations 
among the variables. Several recent studies have entailed feature selection based on various ML 
techniques. This study used two methodologies for deriving key variables: multiple correspondence 
analysis (MCA) and Boruta-SHapley Additive exPlanations (Boruta-SHAP). The key variables that 
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determined the characteristics of the dimensions within similar crash severities were derived through 
dimensional reduction and Boruta-SHAP; the additional key variables used for modeling were selected 
based on the variable importance that could be derived via ensemble techniques during modeling.  

In previous studies, classification models for crash severity were constructed using statistical 
methods to identify crash severity-influencing factors. However, with current improvements in 
machine learning technology, the machine learning models can be interpreted through explainable 
artificial intelligence (XAI) techniques. Therefore, this study developed three crash severity models 
based on both statistics-based and ML-based models, including the binary logit model, a support vector 
machine (SVM) and extreme gradient boosting (XGBoost). By integrating the advantages of both 
statistical and ML-based models, this paper’s approach aims to derive factors that effectively influence 
urban road crash severity. 

The main contributions of this study are outlined as follows. First, in contrast to previous studies 
utilizing historical data that was collected after the crash occurred, this study applied in-vehicle 
dashcam data to capture detailed factors present at the crash scene. Through this approach, it was 
possible to examine the vehicle and road conditions at the precise time of the incident. Second, the 
study derived new insights and identified contributing factors to crash severity by analyzing the 
elements influencing crash severity through both statistical models and ML-based models. 

The remaining chapters of this study are as follows. In Section 2, a literature review on the in-
vehicle dashcam data used in traffic safety analysis and on the developing crash severity prediction 
model is provided. In Section 3, data and variables used in this study are described. The methodology 
for variable selection and modeling are introduced in Section 4. The results and discussion are 
summarized in Section 5. Finally, conclusions are summarized in Section 6. 

2. Literature review 

2.1. Research on traffic safety using in-vehicle dashcam data 

Studies utilizing in-vehicle dashcam videos mainly aim to either obtain information or identify 
the precursors of crashes before they occur by reconstructing traffic crashes. 

Giovannini et al. [12] analyzed dashcam videos in order to reconstruct traffic injury information. 
Taccari et al. [13] developed a model that classified crashes and crash risk events by using computer 
vision and convolutional neural networks. Paradana [14] developed an algorithm that predicted crash 
risks from a first-person perspective using in-vehicle dashcam video data. Moreover, the developed 
algorithm predicted the risk of traffic crashes by recognizing objects (e.g., vehicles, pedestrians, and 
obstacles) from videos and calculating the safety distance between them. Hairi and Fradi [15] identified 
crash risks based on vision transformer and artificial intelligence (AI) techniques. They converted 
video data into images for analysis and used the dashcam accident dataset (DAD) as video data. 

2.2. Research on crash severity model development using video data 

In-vehicle dashcam video data are also referred to as vehicle black-box data, dashcam videos, and 
in-vehicle videos. These data can aid in the development of crash severity models because they contain 
useful data such as images and each vehicle’s velocity profiles. 

Song et al. [7] used the video images and speed profile information extracted from in-vehicle 



587 

Electronic Research Archive  Volume 32, Issue 1, 584-607. 

dashcams for their study and derived the key factors that affected pedestrian crash severity in the event 
of a taxi–pedestrian accident on urban arterial roads. Chung [8] used vehicle black-box data and crash 
DB provided by the Korean National Police Agency to analyze the severity of taxi-pedestrian crashes. 
An ordered probit model was constructed using crash severity as a dependent variable; the model 
construction results were examined based on the average marginal probability effects. In a similar 
study, Chung [9] developed a crash severity model for taxis and two-wheelers by using vehicle black-
box data and crash data from the Korean National Police Agency. Using the model, the key factors that 
contributed to an increase in the severity of crashes between taxis and two-wheelers were derived. 
Their results indicated that an increase in the collision speed contributed to more serious crashes. Cho 
et al. [10] collected personal information and information on traffic conditions and crash situations 
from the dashcam video data at the time of traffic crashes collected from highways. Using the collected 
crash data, they developed crash severity prediction models based on a cluster analysis and a binary 
logit model. Loo et al. [11] conducted research to predict the bus crash frequency at various crash 
severity levels using dashcam video data and GPS data collected from buses. They extracted distance 
and behavioral factors from bus dashcam videos across the city by using a deep learning-based 
computer vision methodology for the analysis. 

Table 1. Previous studies in crash severity analysis using black box video data. 

Author Data Variable Methodology 

Song et al. 

[7] 

black box video 

data 

pedestrian, crash, and driver characteristics 

(4 severity levels) 

multiple indicator and 

multiple cause 

(MIMIC) model 

Chung [8] vehicle black-box 

(VBB) data and 

crash DB 

time, time to collision (TTC), speed, location, 

and crash characteristics collected from the 

VBB, vehicle, pedestrian, environmental, 

road, and crash characteristics collected from 

the crash DB (4 severity levels) 

ordered probit model 

Chung [9] in-vehicle video 

recording (IVVR) 

taxi, two-wheeled vehicle, environmental, 

road, two-wheeled vehicle rider, and crash 

characteristics including taxi speed, helmet 

wearing, etc. (3 severity levels) 

ordered probit model 

Cho et al. 

[10] 

black box video 

data 

road, crash, and driver characteristics latent class analysis and 

binary logit model 

Loo et al. 

[11] 

bus dashcam 

video and GPS 

data 

demographic data, risk factors, pedestrian 

exposure coefficient, pedestrian jaywalking 

index, bus stop congestion, sidewalk railings, 

and etc. 

negative binomial 

model, random forest, 

and XGBoost 

The use of dashcam video data is suitable for analyzing factors that contribute to crash severity 
in remarkable detail, as it facilitates the collection and utilization of more accurate information at the 
time of crash as well as the collection of various data, such as speed profiles, in contrast to the traffic 
crash DB provided by public agencies. However, in previous studies, additional information, such as 
detailed offender and victim vehicle type, was not collected and used for detailed crash severity 
analyses. In regard to the methodology, statistical methods were previously used; recent studies have 
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employed various latest ML techniques to improve the explanatory power and accuracy of crash 
severity analyses. Additionally, no study thus far has focused on urban roads. Table 1 summarizes 
studies on crash severity that used dashcam video data. 

2.3. Research on deriving influencing factors for urban crash severity based on ML 

In this study, a traditional statistical technique, such as the binary logit model, and ML techniques, 
such as SVM and XGBoost, were used to develop crash severity models with a high accuracy and 
explanatory power and derive factors that affect the severity. Such ML techniques have been used in 
previous studies on factors that affected the crash severity.  

Table 2. Previous studies on the developing crash severity model using ML techniques. 

Author Data Variable Methodology 

Mussone et 

al. [16] 

detector, traffic crash, and 

weather data collected every 5 

minutes (total of 1838 crashes)

vehicle, driver, and 

environmental characteristics 

back-propagation neural 

network, generalized linear 

mixed model 

Iranitalab et 

al. [17] 

vehicle-to-vehicle crash data (4 

years, total of 68,448 crashes) 

road, driver, vehicle, land use, 

crash, and environment 

characteristics 

Multinomial Logit (MNL), 

Nearest Neighbor 

Classification (NNC), SVM 

and RF 

Mafi et al. 

[18] 

crash data (5 years, total of 

32,730 crashes) 

driver, road, traffic, 

environmental, vehicle, and 

crash characteristics 

C4.5 algorithm, RF, nearest-

neighbor instance-based 

Liu [19] crash data (6 years) various variables including 

traffic control, weather, lighting, 

road characteristics etc. 

XGBoost, AdaBoost, RF, 

Gradient Boost Decision 

Tree, SVM, KNN 

Islam et al. 

[20] 

crash data (4 years, total of 

4093 crashes) 

faulty tires, shock moving veh, 

not giving way, etc. 

RF, XGBoost, GIS spatial 

autocorrelation analysis 

Yan et al. 

[21] 

crash data (4 years, total of 

30,426 crashes) 

traffic. temporal, weather 

characteristics, and points of 

interest (POI, crosswalk, etc.) 

hybrid model integrating RF 

and Bayesian Optimization 

Afshar et 

al. [22] 

rural road crash data (5 years) traffic, vehicle, land use, 

temporal, environmental 

characteristics 

Extremely Randomized Tree

Alrumaidhi 

et al. [23] 

elderly driver accident data (8 

years) 

crash, traffic signal, weather, 

road, construction, etc. 

logistic regression, linear 

discriminant analysis, RF 

Astarita et 

al. [24] 

crash data (2 years, total of 202 

crashes) 

traffic, road, driver, 

environmental, crash 

characteristics 

artificial neural network 

(ANN), hybrid grey wolf 

optimization-based ANN 

Mussone et al. [16] analyzed factors that affected crash severity in urban intersections by using 
the vehicle detection system data, traffic crash data, and weather data. They developed crash severity 
models by utilizing neural networks (NN) and generalized linear mixed models. Iranitalab et al. [17] 
developed a crash severity model by using vehicle-to-vehicle crash data and compared four statistical 
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and ML methodologies for crash severity prediction. Particularly, they investigated the effects of 
unsupervised learning-based clustering methodologies on the performance of a crash severity 
prediction model. Mafi et al. [18] analyzed crash severity according to age and gender in terms of 
accident cost by using various ML methodologies, including random forest (RF) and NN techniques. 
Liu [19] utilized ensemble techniques, such as XGBoost and Adaptive Boosting tree (AdaBoost), and 
ML models, such as SVM and K-Nearest Neighbors (KNN), to predict the severity of large truck 
crashes. They found that the gradient boost decision tree methodology yielded the highest performance 
in predicting crash severity. Islam et al. [20] derived factors that affected crash severity on urban roads 
by using RF and XGBoost. Additionally, they conducted research on identifying crash hotspots through 
a spatial autocorrelation analysis. Yan et al. [21] developed an urban road crash severity model using 
a hybrid model that combined RF and Bayesian optimization and identified the important factors that 
affected crash severity. Afsher et al. [22] analyzed the crash severity in rural areas by using extremely 
randomized trees and analyzed models based on a feature importance analysis, partial dependence 
plots, and individual conditional expectations. Alrumaidhi et al. [23] utilized ML models to predict the 
severity of elderly driver crashes. Astarita et al. [24] developed an urban road traffic crash severity 
model using AI techniques and conducted a sensitivity analysis to determine the most important 
variables that affected the road crash severity level. 

Crash severity models have been developed using ML techniques for various road and crash types, 
and studies have been conducted to derive the main factors that affect crash severity. Most research 
results showed that ML-based methodologies improved the predictive performance of models. Table 2 
summarizes previous studies on the development of crash severity models using ML techniques. 

2.4. Summary of the literature review 

This study reviewed research on traffic safety using in-vehicle dashcam data, research on the 
crash severity model development using video data, and research deriving the influencing factors of 
urban crash severity based on ML. 

Previous studies mainly utilized dashcam data to reconstruct crash situations; since possibilities 
for data collection have increased, recent efforts have emerged to derive crash severity factors from 
dashcam data. However, these studies have limitations since they focus on either highways or specific 
vehicles such as taxis and buses; thus, they do not generally consider crashes that occur in urban areas. 
With the advancement of technology, ML techniques have recently been widely applied to crash 
severity analyses, and in most cases, only limited variables were utilized from the historical crash data. 
Additionally, previous studies do not devote much effort in identifying key variables that influence 
crash severity on urban roads among the large number of variables. 

In this study, dashcam video data were collected for crashes that occurred on urban huge-level 
and mid-level roads, and numerous variables including detailed vehicle type information were devised 
to encompass information that may affect the severity, such as car body types. Furthermore, various 
ML techniques were applied to variable selection, model development, and model interpretation to 
develop crash severity prediction models with a high accuracy and explanatory power compared to 
traditional statistical models and to derive key factors that affect crash severity. The results were 
comparatively analyzed to derive the main factors that affect crash severity on urban roads and identify 
the models that are suitable for crash severity model development and exhibit high predictive performance. 
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3. Data description 

In this study, video data before the crash occurrence and at the time of the crash were collected 
through the in-vehicle dashcam. Then, detailed contents on crash situations were collected by 
preparing a checklist for the driving environment, road conditions, and driving situation (Figure 1). 
For instance, researchers collected data by reviewing a single dashcam video and checked crash-related 
road, traffic, environmental, and crash information from the video against the items on a checklist. 
However, personal information such as “age”, “gender” and “vehicle type” was collected using data 
provided by the insurance companies that manage dashcam video data. 

 

Figure 1. Dashcam video data collection process. 

The temporal range of the collection was from January to April 2021, and the spatial range was 
set to urban huge-level and mid-level roads across the country. The spatial range of this study is shown 
in Figure 2. Overall, data from 417 crashes were collected. Among them, data without basic 
information were excluded (e.g., time and information). Finally, although the offender’s and victim’s 
vehicle speed information were utilized as independent variables, the traffic flow was not considered 
in this study. Thus, it will be possible to estimate the traffic on the offender. Consequently, data from 
381 crashes were used for modeling. The duration of each dashcam video data ranged from 30 seconds 
to 1 minute, thus encompassing the period from immediately before the crash occurrence until the 
actual crash. The crash severity ranged from 1 to 16, as supplied by an insurance company. Injuries 
were classified into grades 1 to 14, with 15 denoting a death at the crash location and 16 indicating a 
death during treatment. For the injury level (1 to 14), a lower number indicates a high severity. In the 
crash data collected for this study, since the severity levels range only includes 1 to 14, the levels were 
categorized into two groups: 1 to 13 were classified as serious crashes, while level 14 was categorized 
as relatively less serious crashes. 
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Figure 2. Huge-level roads and mid-level roads. 

The data used in this study include unreported traffic crashes that are not included in the existing 
police traffic crash data. It was possible to collect relatively accurate and objective crash scene 
information compared to the crash DB of the Korean National Police Agency by examining the video 
data. Collected crash scene information included the following: the driving behavior of the offenders 
and victims immediately before crashes, alongside whether the speed limit was exceeded and whether 
there was a turn; environmental conditions that included the weather at the time of the crash; road 
alignment information (e.g., horizontal alignment and vertical alignment); road characteristics, such 
as types of intersections, special roads (e.g., school zones, crosswalks, tunnels and underground roads), 
road surface condition, and one-way traffic; and road facility information, such as sidewalks, 
centerlines, on-road parking areas, facilities for pedestrian-vehicle segregation, safety facilities and 
other facilities. 

Table 3. Variable description. 

Category Variable Descriptions 

Driver characteristic   

Offender driver   

Offender gender Male, Female 1 if the offender driver is a male 

Offender age Youth (< 19), Younger (19–29), Middle-aged (30–

49), Older (50–64), Others (> 64) 

Categories 1 to 5 from Youth to 

Others 

Offender vehicle type Sedan, SUV, Hatchback, Two wheel, Truck, 

Wagon, Coupe, Bus, Others 

1 if offender vehicle type is each 

vehicles (Sedan, SUV, …) 

Victim driver   

Victim gender Male, Female 1 if the victim driver is a male 

Victim age Youth (< 19), Younger (19–29), Middle-aged (30–

49), Older (50–64), Others (> 64) 

Categories 1 to 5 from Youth to 

Others 

Victim vehicle type Sedan, SUV, Hatchback, Two wheel, Truck, 

Coupe, Bus, Bicycle, Others 

1 if victim vehicle type is each 

vehicles (Sedan, SUV, …) 

Crash information   

Time Dawn (0:00–6:59), Morning peak (7:00–8:59), 

Daytime (9:00–16:59), Afternoon (17:00–19:59), 

Night time (20:00–23:59) 

 

Week Weekday, Weekend 1 if the crash occurred at weekday 

  Continued on next page
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Category Variable Descriptions 

Region Seoul_Gyeonggi, Gangwon, Chungcheong, 

Jeolla, Gyeongsang, Jeju 

1 if crash occurred at each region 

(Seoul_Gyeonggi, Gangwon, …) 

Road type Wide road, Middle road 1 if the crash occurred at wide road 

Crash type Side collision, Head-on collision, Others 1 if the crash type is each type 

Multiple crash Multiple crash, Non-multiple crash 1 if the multiple crash 

Offender vehicle 

behavior 

  

Vehicle driving 

behaviour 

straight, back, lane change, left turn, right turn, 

parking, u-turn, others 

1 if the vehicle driving behaviour is 

each type 

Speed Unclassified, Low, Middle, High speed  Categories 0 to 4 

Turn signal No, Yes, Unclassified Offender turn signal (yes = 1, no = 0)

Victim vehicle behavior   

Vehicle driving 

behaviour 

straight, back, lane change, left turn, right turn, 

parking, u-turn, crossing, others 

1 if the vehicle driving behaviour is 

each type 

Speed Unclassified, Low, Middle, High speed  Categories 0 to 4 

Turn signal No, Yes, Unclassified Victim turn signal (yes = 1, no = 0) 

Road characteristic   

Road surface Dry, Wet, Frost/Freezing, Snow, Unclassified Road surface state (yes = 1, no = 0) 

Intersection Three-legged, Four-legged, Five-or-more-legged, 

Roundabout, Other intersection, Segment 

Intersection type (yes = 1, no = 0) 

Special road type children's zone, school zone, crosswalk, tunnel, 

underpass, silver zone, Others 

Special road type (yes = 1, no = 0) 

Horizontal curve Straight section, Right curve section, Left curve 

section, Others 

Horizontal curve type (yes = 1, no = 0)

Vertical curve Flat road, Uphill road (low), Uphill road (high), 

Downhill road (low), Downhill road (high), 

Others 

Vertical curve type (yes = 1, no = 0) 

Number of lane (1–12)  Number of lane 

Existence of the  

outside lane 

No, Yes, Unclassified - 

Existence of the  

one-way lane 

No, Yes, Unclassified - 

Existence of the 

 illegal parking 

No, Yes, Unclassified - 

Existence of the  

on-street parking 

No, Yes, Unclassified - 

Road facility   

Traffic lights Normal traffic light, Flashing yellow, Flashing 

red, Flashing yellow and red, Others 

Traffic lights state 

Existence of the sidewalk No, Yes, Unclassified - 

Width of the sidewalk Unclassified, Less than 2m, More than 2m Sidewalk width 

  Continued on next page



593 

Electronic Research Archive  Volume 32, Issue 1, 584-607. 

   

Category Variable Descriptions 

Existence of the center 

line 

No, Yes, Unclassified - 

Pedestrian-vehicle 

segregation 

Curb only, Fence only, Mark only, Tree only, 

Curb and fence, Curb and tree, Curb and marking, 

Curb & fence & tree, Curb & fence & marking, 

Curb & fence & mark & tree, No 

Pedestrian-vehicle segregation type 

in crash occurred location 

Center segregation Flowerbed, Median strip, Road sign, No, 

Unclassified 

Center segregation type in crash 

occurred location 

Safety facility CCTV only, Marking only, Speed sign only, 

CCTV and Marking, Marking and Speed bump, 

CCTV and Speed sign, Marking and Speed sign, 

No 

Safety facility type in crash occurred 

location 

Traffic characteristic   

Speed limit Others, 30, 40, 50, 60, 70, > 70 Categories 0 to 6 

Environment characteristic  

Weather Sunny, Cloudy , Rainy, Snowy, Unclassified 1 if the crash occurred in each weather

Additionally, variables were also set for traffic conditions (e.g., speed limit) and personal 
information (e.g., ages and genders of victims and offenders). Moreover, information on the vehicle 
type of the victims and offenders was collected because the crash severity may vary depending on the 
vehicle size and shape. The vehicle type was classified into seven categories (sedan, SUV, hatchback, 
two-wheel, truck, wagon and coupe) to be reflected in the analysis. The variables used in this study 
were constructed as either categorical or continuous variables according to the characteristics of the data. 
Table 3 shows the variables and their description. 

4. Methodology 

In this study, various road, traffic, environmental, and human factor variables for the crash 
severity prediction were constructed using dashcam video data to develop crash severity models on 
each urban huge-level and mid-level roads to analyze factors that affected the severity. Additionally, 
key variables for the development of a severity prediction model were selected through ML and statistics-
based feature selection.   

In previous studies, various methods were employed for feature selection. Among these, 
researchers sought to identify key variables that effectively explained the data using dimensionality 
reduction methods [25]. Some studies utilized ensemble techniques among ML techniques to assess 
the importance of variables in the model learning process. Results of variable importance were 
calculated and applied for variable selection [26,27]. 

In this study, we incorporated both methodologies for key variable selection to bring the 
advantages of each and mitigate bias in the variable selection process. To develop models with a high 
accuracy and explanatory power, prediction models based on SVM and XGBoost were developed 
along with binary logistic models, which are commonly used for binary classification [17–21,23]. The 
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ML-based prediction model development results were analyzed through an XAI technique. Figure 3 
shows the overall research flow of this study. 

 

Figure 3. Research framework. 

4.1. Feature selection 

This paper employed both the MCA and the Boruta-SHAP methodologies to extract key 
independent variables for developing the crash severity model. Through MCA, data dimensions can 
be reduced, and variables that effectively explain each dimension can be identified. In other words, 
this technique allows for the identification of variables that efficiently explain the data. The Boruta-
SHAP method is based on ensemble techniques and can select variables that significantly influence 
the prediction performance of the model. Therefore, in this study, both methodologies were adopted 
and utilized to consider both variables that can efficiently explain the data and those that have a major 
influence on predicting the crash severity. Through MCA, the top 20 variables with high R–square 
values for each dimension were extracted. Furthermore, the methodology was configured to additionally 
reflect variables deemed significant based on the Boruta-SHAP variable importance assessment. 

4.1.1. Multiple correspondence analysis (MCA) 

A principal component analysis (PCA) is a methodology used to reduce the dimensions of 
continuous data, whereas an MCA is a methodology used to reduce the dimensions of categorical data 
(nominal data). As with PCA and correspondence analyses, MCA can be considered a multivariate 
methodology that can analyze systematic variation patterns by using categorical data.  

An MCA can determine the number of dimensions through the scree plot, which is a graph that 
shows the change in the dispersion of the eigenvalue and principal components, to select the number 
of principal components. Typically, the number of dimensions is chosen up to the point where the 
graph levels off. In this study, the number of principal components was set to two for the analysis, as 
it decreases the change rate of the eigenvalue, thereby indicating that there are two significant 
dimensions, as shown in Figure 4. 
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Figure 4. Scree plot results. 

4.1.2. Boruta-SHapley additive exPlanations (Boruta-SHAP)  

The Boruta, which is a feature selection methodology for choosing key variables during model 
development, is an improved technique to derive the importance of variables that are calculated from 
RF [26,27]. In other words, Boruta is a variable selection methodology based on ensemble techniques 
(e.g., RF and XGBoost) that removes irrelevant variables through multiple iterations. Unlike RF-based 
feature selection methods, wherein the importance rankings may vary depending on the iteration, 
Boruta exhibits relatively small variations in importance rankings because the importance is 
calculated after multiple iterations. In this study, the key variables and their influence were derived 
using the Boruta-SHAP methodology that combined the Boruta technique and SHAP, which is one of 
the XAI techniques. 

4.2. Crash severity prediction 

4.2.1. Binary logit model (BLM) 

The logit model is a probability distribution model that uses a logistic distribution. In this study, 
a binary logit model was used, and fatal crash and non-fatal crash events were classified. In the logit 
model, the suitability of the model can be tested through the log-likelihood ratio test and pseudo-R2. 
It is possible to identify significant variables and their effects on model prediction by testing the 
significance probability of variables. If the logit model is expressed using an equation, the probability 
of predicting the dependent variable as 1 (i.e., a fatal crash) is given by Eqs (1) and (2), where Y refers 
to the dependent variable (crash severity) and x refers to the independent variable (traffic, road, 
environment, and crash information variables). Each 𝛽௫ are model parameters. 

𝑃ሺ𝑌 ൌ 1|𝑥ሻ ൌ
ୣ୶୮ ሺ௙ሺ௫ሻሻ

ଵାୣ୶୮ ሺ௙ሺ௫ሻሻ
                               (1) 
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𝑓ሺ𝑥ሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥 ൅ ⋯ ൅ 𝛽௡𝑥௡                                    (2) 

4.2.2. Support vector machine (SVM) 

SVM, an ML technique, is a supervised learning model that can either be used for classification 
or a regression analysis [28]. SVM classifies data by generating hyperplanes using the margin, and 
data in different categories are classified by adopting a hyperplane that maximizes the margin. Here, 
the margin is the distance between the hyperplane and support vectors. The hyperplane is a plane that 
classifies the data, and support vectors are points that are closest to the hyperplane. 

In this study, the tuned SVM hyperparameters are as follows: kernel, which is a function for 
mapping low-dimension data to high dimensions; C, which indicates the error tolerance; and the 
gamma value, which can adjust the precision of the decision boundary. In this process, considering 
that overfitting may occur, the gamma value was fixed at 0.01 and the C was fixed at 100. 

4.2.3. Extreme gradient boosting (XGBoost) 

XGBoost, an ensemble technique, is a boosting technique-based methodology that creates strong 
classifiers from weak classifiers by combining multiple decision trees, unlike RF, which is a bagging 
technique [29,30]. XGBoost, a type of gradient boost, exhibits a high speed and high prediction 
reliability because the training and estimation are performed through parallel processing. However, it 
is sensitive to the parameter setting and overfitting may occur if the number of samples is small. 
Therefore, attention must be paid to the setting of XGBoost hyperparameters. In this study, the 
maximum depth (i.e., the number of trees) was set among multiple XGBoost hyperparameters. 
Additionally, a binary logistic classification was set as a learning parameter because a binary 
classification model had to be constructed. Table 4 presents the XGBoost hyperparameters. 

Table 4. XGBoost hyperparameters. 

Road type Maximum depth The number of decision trees Objective 
mid-level roads 3 100 Binary logistic 
huge-level roads 10 100 Binary logistic 

4.2.4. Explainable artificial intelligence (XAI) 

As ML techniques are black-box models, it is not possible to determine influential variables 
within the algorithm. Ensemble techniques can derive the importance of variables because they can 
calculate the impurity during node generation; however, they cannot determine whether the variables 
have positive or negative effects. Therefore, in this study, XAI was used for interpreting ML models. 
XAI has various methodologies, such as local interpretable model-agnostic explanation (LIME) and 
SHAP. In this study, the SHAP methodology was used. The SHAP algorithm measures changes in the 
Shapley value according to the presence/absence of variables. It can identify the contribution and 
importance of variables along with their degree of influence and whether they have positive or negative 
effects based on the Shapley value [31]. 
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5. Results and discussion 

5.1. Feature selection results 

An MCA was employed to identify variables that explain the data itself, while Boruta-SHAP was 
utilized to derive variables that have a major impact on the model when modeling crash severity. In this 
study, two methodologies were used to select variables that reflect the advantages of both methodologies. 

In the MCA results, the top 20 variables that contributed to each dimension were derived based 
on R-squared values, as shown in Table 5. The R-squared indicates how highly correlated a variable is 
with a given dimension. The 20 derived variables can effectively explain the dimension and crash data. 

Table 5. MCA results with R-squared. 

Dimension 1  Dimension 2  

Variable R2 Variable R2 

Width of the sidewalk 0.631 Offender behavior (Turn signal-No) 0.343

Sidewalk (No) 0.622 Offender behavior (Turn signal-Unclassified) 0.317

Sidewalk (Yes) 0.607 Victim behavior (Turn signal-Unclassified) 0.217

Pedestrian-vehicle segregation (No) 0.599 Victim behavior (Turn signal-No) 0.162

Intersection (segment) 0.345 Road surface (Dry) 0.154

Traffic lights (Others) 0.335 Offender behavior (Straight) 0.150

Traffic lights (Normal traffic light) 0.294 Number of lane 0.137

Speed limit 0.273 Speed limit 0.110

Existence of the center line (No) 0.247 Existence of the center line (Yes) 0.109

Pedestrian-vehicle segregation (Curb 

only) 
0.218 Weather (Snowy) 0.105

Intersection (Four-legged intersection) 0.213 Victim behavior (Speed) 0.102

Existence of the one-way lane (Yes) 0.200 Week 0.098

Existence of the center line (Yes) 0.193 Offender behavior (left turn) 0.094

Existence of the one-way lane (No) 0.179 Road surface (Frost/Freezing) 0.093

Number of lane 0.139 Existence of the one-way lane (Yes) 0.093

Special road type (Road tunnel) 0.100 Existence of the center line (No) 0.086

Center segregation (Unclassified) 0.082 Pedestrian-vehicle segregation (Curb & mark) 0.086

Victim behavior (Victim-left turn) 0.073 Crash type (Head-on collision) 0.084

Victim behavior (Victim-right turn) 0.070 Offender behavior (Speed) 0.081

Width of the sidewalk 0.631 Offender behavior (Turn signal-No) 0.343

Among the behaviors of the offender’s and the victim’s vehicles, variables related to turning were 
found to be able to explain the dimensionality of the data, and speed-related variables such as the 
vehicle’s driving speed and speed limit were also in the top 20 R-square values. In terms of road 
facilities and road conditions, variables such as sidewalk, pedestrian-vehicle segregation, and traffic 
lights were found to explain each dimension, and environmental variables such as road surface, 
weather, and week were also found to explain the data. 

In addition to the MCA, Boruta-SHAP was used in this study to find key variables that can be 
additionally reflected, and 500 iterations were performed. The Boruta-SHAP results are shown in 
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Figure 5. The variable of pedestrian-vehicle segregation using curb-only and the speed limit were 
accepted in Boruta-SHAP.  

In Boruta-SHAP, except for the two variables in Figure 5, the remaining variables were not deemed 
significant. However, when considering the MCA results collectively, it was found that 32 variables 
exhibited a high correlation with the data and its dimensions. These variables were utilized to develop 
a crash severity prediction model. 

 

Figure 5. Boruta-SHAP results. 

5.2. Crash severity prediction results 

For crash severity models, crash severity was predicted for urban huge-level and mid-level roads 
because road and traffic characteristics were expected to be different depending on the road type. Based 
on the confusion matrix for the crash severity prediction results, predictive performance indicators, 
such as accuracy, recall, precision, and F1 score, were calculated. The accuracy of the SVM was found 
to be 0.696 for huge-level roads, which was higher compared to the BLM and XGBoost. In addition, 
the accuracy of the SVM was found to be 0.695 and 0.696 for mid-level roads and huge-level roads, 
respectively, which were higher compared to other models. Table 6 compares the predictive performances. 

Table 6. Crash severity predictions performance results. 

Model Road type Accuracy Recall Precision F1 score 
BLM mid-level roads 0.509 0.667 0.294 0.408 
 huge-level roads 0.661 0.400 0.375 0.387 
SVM mid-level roads 0.695 0.467 0.412 0.438 
 huge-level roads 0.696 0.533 0.444 0.485 
XGBoost mid-level roads 0.644 0.313 0.333 0.323 
 huge-level roads 0.679 0.400 0.400 0.400 

Therefore, the BLM results and the SVM model results were interpreted to derive factors that 
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contributed to the severity of crashes that occurred in urban huge-level and mid-level roads by 
comparing the influencing factors derived from both statistical and ML models. As the SVM model is 
a black-box model, the contribution and effects of the variables used in the model were interpreted 
through SHAP, which is an XAI technique. 

Table 7. Crash severity prediction results with BLM. 

Mid-level roads Mid-level roads Huge-level roads 

Variable coef std error P > |z| coef std error P > |z| 

Crash type (Head-on collision) 0.43 0.26 0.10* -0.282 0.278 0.310 

Exist of the center line (No) -0.13 0.57 0.83 -2.917 - 1.000 

Exist of the center line (Yes) -0.67 0.46 0.14 -2.407 - 1.000 

Center seg (Unclassified) 0.75 0.49 0.12 -3.549 - 0.999 

Intersection (Four-legged) -0.27 0.29 0.35 0.366 0.303 0.227 

Number of lane -0.18 0.29 0.52 0.335 0.242 0.166 

Offender behavior (left turn) -0.13 0.30 0.67 0.101 0.291 0.728 

Offender (Speed) -0.01 0.29 0.97 0.372 0.264 0.159 

Offender (Straight) -0.38 0.27 0.16 -0.259 0.307 0.400 

Offender (Turn sig-No) 0.07 0.65 0.91 0.222 0.747 0.766 

Offender (Turn sig-Unclass) -0.33 0.62 0.59 0.099 0.719 0.890 

Exist of the one-way lane (No) 0.07 0.54 0.90 -11.716 - 1.000 

Exist of the one-way lane (Yes) -0.54 0.62 0.39 - - - 

Road surface (Dry) -0.99 0.49 0.04 2.812 - 1 

Road surface (Frost/Freezing) -0.35 0.40 0.38 5.492 - 1 

Special road type (tunnel) -0.89 0.38 0.02* - - - 

Pede-veh seg (Curb only) 0.60 0.31 0.05* 0.257 0.318 0.419 

Pede-veh seg (Curb & mark) -0.16 0.28 0.57 0.113 0.319 0.722 

Pede-veh (No) 0.14 0.65 0.83 -0.599 0.477 0.209 

Sidewalk (No) 0.40 1.13 0.73 0.396 - 1 

Width of the sidewalk -0.73 0.46 0.11 0.809 0.684 0.237 

Sidewalk (Yes) 0.65 0.89 0.47 -0.397 - 1 

Traffic lights (Normal) -1.30 0.58 0.03* -0.389 0.617 0.529 

Traffic lights (Others) -1.15 0.66 0.08* -0.330 0.634 0.602 

Weather (Snowy) -0.86 0.35 0.01* - - - 

Speed limit 0.25 0.25 0.33 0.383 0.347 0.269 

Victim (left turn) -0.46 0.29 0.12 0.634 0.348 0.069* 

Victim (right turn) -0.10 0.24 0.67 0.013 0.324 0.968 

Victim (Speed) -0.18 0.28 0.53 0.068 0.261 0.794 

Victim (Turn sig-No) 0.48 0.50 0.33 0.489 0.513 0.341 

Victim (Turn sig-Unclassified) 0.56 0.54 0.30 -0.025 0.458 0.957 

Week -0.14 0.27 0.61 -0.534 0.402 0.184 

Note: *: Significant variable in a significance probability of 90% 

**: Center seg = Center segregation; Pede-veh seg = Pedestrian-vehicle segregation 
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In the BLM results, the pseudo-R-squared was found to be 0.184 and 0.08 for huge-level roads 
and mid-level roads, respectively, thus indicating that the model has an explanatory power of 
approximately 10 to 20%. When significant variables were derived based on a significance probability 
of 90%, the variables ‘Crash type (Head-on collision)’, ‘Special road type (tunnel)’, ‘Pedestrian-vehicle 
segregation (Curb only)’, ‘Traffic lights (Normal)’, ‘Traffic lights (Others)’ and ‘Weather (Snowy)’ 
were significant for mid-level roads. In the huge-level roads model, only 1 variable, namely ‘Victim 
(left turn)’, was a significant variable. Table 7 shows the overall BLM coefficient estimation results. 

According to the detailed analysis results for the mid-level road model, the probability of high-
crash severity decreased in tunnel sections and snowy weather. Since the mid-level road tunnel is a 
relatively short segment with no vulnerable road users, such as pedestrians or bicycles, it can be 
inferred that the probability of a high-crash severity in this tunnel section is low. Furthermore, while 
the probability of a high-crash severity typically increases during adverse weather conditions, an 
accurate interpretation becomes challenging in this dataset. This is due to the limited occurrence of 
crashes in snowy weather, with only 10 out of 212 mid-level road crashes happening under snowy 
weather conditions. Additionally, the probability of high-crash severity was found to decrease at the 
normal traffic lights signalized intersection. Moreover, high-crash severity probability increased when 
there was only one pedestrian-vehicle segregation facility, namely the curb. This suggests that road 
markings and trees, as well as curbs, should be installed as a pedestrian-vehicle segregation facility to 
effectively reduce the probability of high-severity crashes occurring. In the detailed analysis results 
for huge-level roads, a probability of a high-crash severity was found to increase when the victim’s 
vehicle attempted a left turn. 

 

Figure 6. SHAP results in huge-level roads model. 

The results of interpreting the SVM results using SHAP and the visualization results are shown 
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in Figures 6 and 7. 

 

Figure 7. SHAP results in mid-level roads model. 

In the SHAP result graph, the blue bar graphs (Figures 6(a) and 7(a)) are presented in the order 
of variables that had a significant influence on predicting the crash severity. The magnitude of the 
SHAP value indicates the level of importance: the larger the value, the more influential the variable. 
The scatter plot graph (Figures 6(b) and 7(b)) illustrates the impact of each variable in predicting the 
crash severity, with red indicating higher values. Values distributed to the right side of the plot indicate 
a greater influence on the model prediction. For instance, in the case of the ‘Victim (Turn Signal-
Unclassified)’ variable in Figure 6(b), a larger value (i.e., indicating greater difficulty in checking the 
turn signal of the victim’s vehicle) can be interpreted as having a positive effect on predicting a higher 
crash severity. 

Table 8. Marginal effect results. 

Mid-level roads Huge-level roads 

Variable Marginal effect P > |z| Variable Marginal effect P > |z| 

Crash type(Head-on collision) 0.076 0.082 Victim (left turn) 0.097 0.057 

Special road type(tunnel) -0.158 0.012 - - - 

Pede-veh seg(Curb only) 0.105 0.043 - - - 

Traffic lights(Normal)* -0.230 0.018 - - - 

Traffic lights(Others)* -0.203 0.069 - - - 

Weather(Snowy)* -0.152 0.007 - - - 

When examining the detailed results of the mid-level model predictions, it was observed that 
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‘Traffic lights (Others)’, ‘Offender (Turn Signal-Unclassified)’, ‘Width of the sidewalk’, and ‘Offender 
(Turn sig-No)’ had negative effects on the crash severity prediction. Conversely, ‘Victim (Turn Signal-
Unclassified)’ had a positive effect on the crash severity prediction. 

For the huge-level road model, the top five variables that are important for crash severity 
classification were found to be ‘Victim (left turn)’, ‘Week’, ‘Offender (Turn sig-No)’, ‘Victim (Turn 
sig-No)’, ‘Pedestrian-vehicle segregation (Curb only)’. Using the SHAP graph, the effects of each 
variable on the crash severity classification were examined in detail. It was found that the ‘Victim (left 
turn)’ affected the predicted crash severity values with a positive correlation. Moreover, other variables 
were found to have a negative effect. 

Table 9 presents the integration of results from the BLM and SVM models, which displays the 
key variables obtained from each model and their respective impact on the crash severity, categorized 
into mid-level and huge-level roads. 

Table 9. Integrated results of crash severity models. 

Mid-level roads Huge-level roads 

Model Variable Impact on 

crash severity

Model Variable Impact on 

crash severity 

BLM Crash type (Head-on 

collision) 

(+) BLM Victim vehicle (left turn) (+) 

 Special road type (tunnel) (-)    

 Pede-veh seg (Curb only) (+)    

 Traffic lights (Normal) (-)    

 Traffic lights (Others) (-)    

 Weather (Snowy) (-)    

SVM Victim (Turn Signal-

Unclassified) 

(+) SVM Victim (left turn) (+) 

 Offender (Turn Signal-

Unclassified) 

(-)  Week (-) 

 Traffic lights (Others) (-)  Offender (Turn sig-No) (-) 

 Width of the sidewalk (-)  Victim (Turn sig-No) (-) 

 Offender (Turn sig-No) (-)  Pedestrian-vehicle 

segregation (Curb only) 

(-) 

In summary, the findings indicate that on mid-level roads, factors such as head-on collisions, 
pedestrian-vehicle segregation with curbs-only, and an inability to confirm the victim vehicle’s turn 
signal are associated with a high crash severity. Therefore, enhancing safety measures, including more 
effective vehicle separation and improved pedestrian-vehicle segregation facilities, is crucial on mid-
level roads. Additionally, there is a need to review signal configurations in locations with turning traffic. 
Furthermore, the association of wider sidewalks with a decreased severity suggests the importance of 
reviewing and potentially widening narrow sidewalks in certain road segments. 

The findings for huge-level roads showed that a high crash severity is associated with the victim's 
vehicle making a left turn, as observed in both the BLM and SVM models. Consequently, it was 
concluded that safety management at intersections with left-turn traffic is imperative. Moreover, the 
result indicating a decreased severity when both the offender and the victim’s vehicle do not use turn 



603 

Electronic Research Archive  Volume 32, Issue 1, 584-607. 

signals suggests that driving straight is comparatively safer than engaging in turning traffic. Therefore, 
similar to the results obtained for the mid-level road model, caution is advised in the safety 
management of turning traffic. However, unlike mid-level road modeling results, the variable of 
pedestrian-vehicle segregation with curbs-only is associated with a decreased severity on huge-level 
roads. This result is interpreted to be due to the large number of lanes and relatively low number of 
pedestrians jaywalking on huge-level roads. 

6. Conclusions 

In this study, the data before, after, and at the time of the traffic crashes were collected from 
dashcam videos on urban huge-level and mid-level roads, and variables were devised to identify the 
factors that contributed to crash severity. In the analysis process, critical variables for crash severity 
classification were derived from 152 variables based on an MCA-based dimensional reduction and 
Boruta-SHAP. Through this process, variables that can reflect the characteristics of the data were 
derived using the MCA-based dimensional reduction method; simultaneously, variables with a 
significant influence on the model construction in the ensemble technique were considered through 
Boruta-SHAP. With this approach, key variables, that are both meaningful for modeling and explaining 
the data, were employed to develop a crash severity model. The model construction results showed 
that the SVM exhibited the highest performance in terms of accuracy and F1 score. The BLM results 
and SVM model development results were examined to comparatively analyze the results of 
constructing statistics-based and ML-based severity prediction models. 

The primary findings of this paper are as follows: 
1) On urban roads, the study demonstrates that the severity of crashes rose in the presence of left-

turn traffic. Therefore, it is essential to reassess the design of the signal phase and the overall 
configuration of intersections. Furthermore, particular attention should be given to addressing this 
issue (left-turning traffic management) and improving road safety. 

2) On mid-level roads with a lane width of 12 to 20 m, the study indicates that crash severity is 
higher in sections where only the curb separates pedestrians and vehicles compared to tunnel sections 
where pedestrians and vehicles are separated. To mitigate the severity of crashes, there is a need for 
effective pedestrian and vehicle separation facilities. 

3) Finally, in contrast to mid-level roads, the separation of pedestrians and vehicles on huge-level 
roads was not identified as having a substantial impact on the crash severity. However, similar to 
mid-level roads, it is still crucial to formulate a safety management strategy specifically addressing 
turning traffic. 

These findings provide valuable insights for road design, safety measures, and traffic 
management on different types of roads. 

This study is significant in that it entailed the development of detailed crash severity models by 
collecting road conditions, traffic conditions, vehicle and personal information, and vehicle behavior 
at the time of the crash from dashcam video data. Notably, critical variables were selected using ML 
techniques, and models with a high accuracy and explanatory power were constructed. The findings 
of this study can be used to devise measures that reduce crash severity on urban huge-level and mid-
level roads in the future. Furthermore, highly accurate crash severity models may potentially be 
constructed using the proposed methodologies. In addition, the findings of this study provide 
transportation planners and policymakers with insights to identify crucial factors that influence crash 
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severity on urban areas, especially on mid-level and large-level roads. This information enables efforts 
to either eliminate or mitigate factors that contribute to a high crash severity. For instance, one of the 
key results of the study indicates that crashes on mid-level roads that only using a curb to separate 
pedestrians and vehicles can result in high-severity outcomes. Transportation and road operators can 
utilize these findings to review their infrastructure, update relevant manuals or instructions, and take 
actions such as adding road markings with curbs to separate pedestrians and vehicles and enhance safety. 

However, this study has some limitations. The analysis in this study was conducted using 381 
crash data points, owing to the limitation in collecting dashcam video data; however, the dataset is too 
small to be used when constructing ML and statistical models. Therefore, in future research, it is 
necessary to create datasets suitable for ML model development through data augmentation or by 
collecting additional crash data. Furthermore, to mitigate human errors in the data collection process, 
it is necessary to explore the possibility of automating the process through the utilization of AI 
technology. Additionally, in this study, crash severity levels of 1 to 14 were classified into two 
categories, and a binary classification model for classifying accidents with high severity and low 
severity was constructed. 

In the future, it is necessary to appropriately classify crash severity levels using methodologies, 
such as unsupervised learning-based clustering, and identify the factors that affect crash severity for 
each crash severity level by constructing detailed crash severity prediction models. Moreover, the 
capabilities of the proposed framework can be improved by incorporating various advanced 
optimization algorithms. Similar to existing studies utilizing advanced methodologies and integrated 
techniques [32–37], a novel and integrated methodology can be formulated to develop crash severity 
prediction models and derive key factors. 

Furthermore, this study can be reframed as categorizing huge-level and mid-level roads rather 
than building a model that classifies high and low crash severity. Through this approach, the severity of 
crashes on each type of road, including huge-level and mid-level roads, can be determined, thereby 
enabling a distinction between the degree and the characteristics of each road by interpreting each variable. 
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