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Abstract: The current public transportation systems predominantly rely on rigid schedules and service 

patterns, leading to suboptimal resource allocation that impacts both passengers and transit operators. 

This inefficiency results in the wastage of resources and dissatisfaction among users. The 

unsatisfactory passenger experience significantly contributes to the declining ridership, thereby 

diminishing revenue for transit operators. To specifically address these challenges encountered by 

Lhasa’s public transportation system, we propose a multi-objective model for bus departure timetables. 

The model aims to synchronize the costs of passenger waiting time and bus operation costs 

concurrently, accounting for diverse constraints such as actual travel times, operational bus numbers, 

bus capacity limits, and arrival time distributions. In this research, we establish a multi-objective 

optimization model with the primary goal of maximizing passenger satisfaction while concurrently 

optimizing the revenue of the transit company. Implemented in Lhasa, China, we use the Non-

Dominated Sorting Genetic Algorithm-II to derive Pareto fronts relevant for analysis. The research 

findings demonstrate a reduction in the frequency of departures by one bus within a one-hour 

timeframe. Additionally, a substantial 37% decrease is observed in both the count of buses not arriving 

at stations and the number of passengers waiting at these stations compared to previous timetables. 

These results suggest promising potential for significant benefits to both the transit company and 

passengers within the public transportation system. 

Keywords: bus timetable; multi-objective optimization; Pareto frontier; Non-Dominated Sorting 

Genetic Algorithm 
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1. Introduction  

Urban transit vehicles play a vital role in urban public transportation, and implementing 

systematic service standards for bus operations is essential to enhance their attractiveness. Among 

these, the effectiveness of bus operation services is predominantly dependent upon bus network 

planning. However, there is considerable complexity in this global planning issue, and it is typically 

broken down into a series of subproblems to address, including route planning, timetable generation, 

vehicle scheduling, and crew scheduling [1,2]. These subproblems are often addressed sequentially [3]. 

Since the generation of timetables for bus departures is a critical phase, its solutions determine the 

quality of service and subsequent subproblems, such as vehicle and personnel scheduling. The problem 

of generating the bus departure timetable involves designing departure times for each trip on all routes 

within the bus network, with the objective of maximizing service quality. 

When decision-makers are formulating bus timetables, they must consider passenger needs, 

including the reduction of waiting times, the increase in service frequency, and the improvement of 

punctuality. These factors contribute to enhancing the passenger travel experience and increasing their 

satisfaction with the public transit system. Furthermore, a well-planned timetable can reduce buses' 

deadheading and waiting times, thereby increasing vehicle utilization. This results in decreased 

operational costs and increased profits for the transit company. By providing increased service 

frequency and ensuring punctual arrivals, the public transit system becomes more attractive, 

encouraging more people to use public transportation and reducing private car usage. One method, for 

example, is multi-objective optimization involving various vehicle types [4]. This, in turn, helps to 

mitigate traffic congestion and reduces environmental pollution. An efficient timetable aims to 

minimize the gap between buses, thereby mitigating traffic congestion and reducing delays on the 

roadways. This, enhances the overall efficiency of urban transportation. 

Appropriate headways between bus departures can assist passengers in reducing their waiting 

times, enhancing travel efficiency, and effectively planning their journeys, ultimately resulting in 

enhanced passenger satisfaction. This is crucial for the sustainable development of public 

transportation systems, as satisfied passengers are more likely to choose buses as their mode of travel. 

This choice contributes to the reduction of urban traffic congestion and the improvement of 

environmental quality. Simultaneously, public transit companies and transportation authorities must 

also take into account the efficiency and sustainability of bus operations. The calculation of appropriate 

headways plays a significant role in the optimization of bus fleet scheduling and operations, aiming to 

reduce waste and congestion resulting from excessively long or short intervals between vehicles. 

However, there are certain drawbacks to traditional bus scheduling systems, including the practice of 

setting fixed time intervals between two consecutive bus departures, typically adjusted by experienced 

staff [5]. In practice, the utilization of fixed timetables can lead to instances where buses operate 

without passengers during periods of low demand or on routes with minimal passenger volume, 

thereby resulting in the inefficient use of resources and energy. This has adverse effects on both 

the environment and operating costs. Buses operating on fixed timetables during peak hours may 

experience traffic congestion, leading to delays and unreliable services. This can impact the 

passenger travel experience. Moreover, fixed timetables are often challenging  in accommodating 

unforeseen circumstances, such as accidents or adverse weather, potentially resulting in service 

interruptions or delays. 

To address these limitations, some cities and transportation systems are exploring alternative bus 
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service models, such as on-demand bus services, real-time scheduling systems, and shared mobility 

solutions, to better cater to the ever-changing passenger demands [6]. These methods can enhance 

efficiency, mitigate congestion, and offer increased flexibility in travel options. Cheng and He [7] 

employed this method to address the issue by utilizing smart card data in public transit to identify 

distinct user profiles, thereby facilitating the creation of flexible timetables tailored to their respective 

needs. Fixed bus timetables often face challenges in accommodating diverse passenger requirements [8]. 

Therefore, through the employment of non-fixed bus headways, we can enhance our ability to 

accommodate fluctuations in demand at different times and locations. Buses, during peak and off-peak 

periods, have the capability to dynamically modify their departure times to meet the specific demands 

of passengers and maintain a sufficient supply of buses. This system can reduce congestion and waiting 

times, enhancing the overall efficiency of the public transit system. The implementation of this flexible 

departure system facilitates the reduction of passenger waiting durations and operational costs within 

the transit system. Furthermore, it assists in the minimization of resource and fuel waste, while 

optimizing vehicle utilization. Consequently, this enhances passenger satisfaction as it eliminates the 

need for extended periods for buses and enables them to easily schedule their travel based on their own 

schedules. It is worth noting that this optimization model considers the interests of both the transit 

operator and passengers, as finding a balance between these competing objectives is one of the most 

challenging aspects of model optimization. 

1.1. Literature review 

In recent decades, significant progress has been made in the research on bus scheduling 

optimization, leading to the establishment of a relatively comprehensive research framework. This 

field has evolved beyond a single-objective focus and has become more diverse, with an emphasis on 

resolving multi-objective problems. The application of these multi-objective approaches has enhanced 

the comprehensiveness of bus scheduling solutions, facilitating the simultaneous consideration of 

multiple crucial factors, such as the reduction of passenger waiting durations, enhancement of 

efficiency, cost reduction, and mitigation of adverse environmental impacts [9,10]. The primary 

advantage of these multi-objective methods resides in their ability to enhance the balance of trade-offs 

among diverse objectives, thereby increasing the adaptability of public transportation systems to the 

needs and challenges encountered in different cities [11]. Researchers can enhance their ability to meet 

the travel requirements of urban residents by considering not only temporal efficiency but also factors 

such as passenger satisfaction and economic viability [12,13]. This approach also facilitates the 

reduction of traffic congestion, the enhancement of urban sustainability, and the decrease in the 

consumption of fuel and resources, leading to a reduction in negative environmental impacts [14]. 

Moreover, the application of multi-objective methods has encouraged the advancement of 

innovative optimization algorithms, such as genetic algorithms (GAs), particle swarm optimization, 

simulated annealing, and others. These algorithms are better at handling complex multi-objective 

optimization problems [15,16]. This advancement further drives research and applications in the field 

of bus scheduling optimization, contributing to enhanced efficiency and sustainability in urban 

transportation planning. 

In summary, multi-objective bus scheduling optimization methods have become integral to 

modern urban public transportation planning. They provide urban residents with a more convenient, 

comfortable, and environmentally friendly mode of travel [17]. 
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An important emphasis and challenge in the investigation of multimodal bus scheduling is the 

effective integration and coordination of diverse types of public transportation services to provide a 

more comprehensive, efficient, and convenient public transit system. This includes considering various 

modes such as traditional public bus services, light rail, subway, trams, taxis, and shared mobility 

solutions [18]. In a multimodal environment, passengers are required to perform intermodal transfers 

between different transportation modes. Research should address how to minimize waiting and transfer 

times to enhance the user experience [19], ensuring that schedules for different modes are coordinated 

to reduce passenger wait times and improve connectivity. To do so, the comprehensive consideration 

of multiple schedules and frequencies is needed [20–22]. Furthermore, information sharing is critical 

in multimodal bus scheduling research because the coordination and integration of various public 

transportation modes necessitates real-time, accurate information flow. Several scholars have 

investigated the information sharing aspects related to bus scheduling [23–25]. 

Information sharing is critical in research on multi-modal public transit scheduling because the 

coordination and integration of different modes of public transportation require real-time and accurate 

information flow. Information sharing can involve multiple levels [26]. First, passengers need to access 

information about different transportation modes, including schedules, routes, fares, transfer guides, 

and more [27–29]. This can be achieved through mobile applications, websites, signage, and 

announcements [30]. To plan their journeys more effectively, passengers should be able to easily access 

and comprehend this information [31]. Second, the real-time monitoring of vehicle locations across 

various transportation modes is imperative for both passengers and operators. This information can be 

obtained through GPS and IoT technology and subsequently exhibited on applications and screens at 

stations and vehicles to provide real-time vehicle location information [32–35]. Furthermore, operators 

must share operational data to enhance the coordination of schedules and allocation of resources for 

various transportation modes. This includes sharing traffic flow data, vehicle dispatch information, site 

load data, and other relevant data sources [36]. In the event of emergencies or traffic issues, sharing of 

critical information in real-time is essential among different transportation modes to aid passengers 

and operators in resolving the issues. 

The optimization problem of bus departure scheduling is a multi-objective optimization problem 

with inherent complexity, characterized by conflicting objectives. Table 1 presents the optimization 

objectives associated with the multi-objective bus departure scheduling optimization problem and the 

methods utilized by scholars. 

In Table 1, the prevailing approach often involves amalgamating multiple objectives into a 

singular objective through weighted combinations, followed by employing single-objective 

optimization methods to solve the problem. However, assigning appropriate weights to each objective 

is often intricate and lacks a straightforward methodology [37]. Consequently, researchers have 

increasingly turned to heuristic algorithms as a means of addressing multi-objective problems. 

Renowned algorithms in this realm include GAs, tabu search, simulated annealing, and particle swarm 

optimization. Heuristic algorithms, equipped with global search capabilities, have exhibited prowess 

in achieving a trade-off between solution quality and computation time, particularly in intricate 

optimization scenarios. 
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Table 1. Descriptive summary of the most relevant and recent research on using different 

algorithms to solve bus timetable problems with different objectives. 

Author Title Main characteristics & results 

Yan et al. [38] 

Inter-city bus routing and 

timetable setting under 

stochastic demands 

A stochastic demand scheduling model is established 

considering the random perturbations of passengers’ daily 

demands in actual operations. Two heuristic algorithms 

were developed to solve the model by applying simulation 

techniques and combining link-based and path-based 

routing strategies. 

Sun et al. [39] 

Timetable optimization for 

single bus line based on 

hybrid vehicle size model 

A method for optimizing a flexible timetable was, utilizing 

a hybrid vehicle size model. A heuristic algorithm was 

designed to solve this problem. 

Wihartiko et al. [40] 

Integer programming model 

for optimizing bus timetable 

using genetic algorithm 

A model for integer programming and an improved genetic 

algorithm were developed to solve the bus timetable 

problem. 

Parbo et al. [41] 

User perspectives on public 

transport timetable 

optimization 

An approach was proposed to address timetable 

optimization with the aim of minimizing passenger waiting 

times during bus transfers. This problem was solved by 

applying a Tabu Search algorithm. 

Gkiotsalitis et al. [42] 

Robust timetable optimization 

for bus lines subject to 

resource and regulatory 

constraints 

Combining travel time and passenger demand 

uncertainties to generate robust timetables, a genetic 

algorithm was used to solve the resulting minimax 

problem. 

Yan et al. [43] 

Distributed Multiagent Deep 

Reinforcement Learning for 

Multiline Dynamic Bus 

Timetable Optimization 

The multi-line dynamic bus timetable optimization 

problem was treated as a Markov decision process model, 

and a distributed reinforcement learning algorithm was 

employed to solve this problem. 

Ma et al. [44] 

Single bus line timetable 

optimization with big data: A 

case study in Beijing 

A timetable optimization model was developed, 

considering passenger demand between stations and travel 

times. A model reduction method was proposed to solve 

medium-scale problems. 

1.2. Objectives and contributions 

The literature review suggests a limited number of studies focusing on multi-objective 

optimization models specifically addressing the optimization challenges associated with bus 

scheduling. Limited studies delve into the intricacies of scheduling concerning this context, which 

inherently poses an optimization challenge. Hence, our study aims to address three primary objectives. 

First, we construct a multi-objective model aimed at synchronizing passenger waiting time costs and 

bus operational expenses, factoring in various constraints such as actual travel durations, bus route 

numbers, capacity limitations, and arrival time distributions. This model aims to leverage the Non-

Dominated Sorting Genetic Algorithm-II (NSGA-II) to obtain the Pareto front. Second, we have 

developed a resolution methodology to filter out, from the Pareto front obtained through the NSGA-II 

algorithm, a solution that simultaneously considers the costs associated with passenger waiting time 
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and bus operational expenses. Subsequently, we execute numerical experiments and perform 

sensitivity analyses to evaluate both the efficacy and efficiency of the proposed model. This enables 

us to scrutinize the repercussions of parameter variations. The theoretical and pragmatic contributions 

stemming from our investigation are delineated hereunder. 

Theoretical Contribution: There is a scarcity of multi-objective optimization models for 

optimizing bus scheduling timetables. Our dual-objective integer programming model minimizes 

passenger waiting time and bus operation costs simultaneously while considering various constraints 

such as actual travel times, operational bus numbers, bus capacity limits, and arrival time distributions. 

We employ the NSGA-II algorithm to solve our proposed model. Numerical experiments demonstrate 

the effectiveness of the proposed model and solution approach in devising an efficient bus departure 

timetable considering passenger waiting time and bus operation costs while minimizing the number of 

bus departures. 

Practical Contribution: In Lhasa, the current fixed bus departure schedules and service 

patterns result in inefficiencies, leading to resource wastage and user dissatisfaction. Our research 

not only minimizes passenger waiting times but also aims to reduce the overall operational costs 

of the bus company. 

The rest of this paper is organized as follows: Section 2 provides a detailed description of the 

problem. Section 3 presents the model and solution approach to address this issue. Section 4 describes 

numerical experiments that were conducted to validate the effectiveness and applicability of the 

proposed methods. The conclusion is presented in Section 5. 

2. Problem description 

To facilitate the simulation of the train timetable problem considered in this study, the relevant 

sets, indices, parameters, and decision variables are outlined in Table 2. 

Consider an individual bus route with bus stops represented as 𝑖 ∈ 𝐼. Typically, each bus service 

operates in two opposing directions. This situation can be regarded as the optimization of two 

independent bus routes, as the passenger volumes for the two directions are uncorrelated within the 

same time frame. The optimization objective of this paper is now focused on a single route. 

Buses receive service scheduling instructions from the control center and depart from the 

originating station (𝑖 = 1) towards the terminating station (𝑖 = 𝑆). All service details, such as departure 

times 𝐷𝑖𝑛 and scheduled arrival times 𝑡𝑖𝑛, can only be confirmed when the bus commences its service. 

In the context of a data survey, the manual collection of passenger arrival times at different bus 

stations for a group of passengers is a significant and complex task. It should be noted that the 

calculation method for passenger waiting durations varies based on the type of arrival time distribution. 

To simplify this problem, it is assumed that the arrival times of passengers adhere to an identical 

distribution across various bus stations. Passenger arrival at bus stations and waiting for buses can be 

modeled as a queuing problem, and queueing theory can estimate the time distribution of passenger 

arrivals. In practical applications, the probability distribution of customer arrival times often 

encompasses a Poisson distribution, exponential distribution, and Erlang distribution [38]. Assuming 

the events are independent, a Poisson distribution is a widely used model for representing passenger arrival 

patterns. In our application, it is assumed that passenger arrival times approximately adhere to a Poisson 

distribution, given the smooth, independent, and general nature of passenger flows to each station. 
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Table 2. Notations. 

Sets 

𝐼 Set of bus stations 

𝑁 Set of buses 

𝑇 Set of time periods 

Parameters 

𝑖 Bus station index,𝑖 ∈ 𝐼 

𝑛 Bus index,𝑛 ∈ 𝑁 

𝑡 Index of times,𝑡 ∈ 𝑇 

𝜆𝑖 Passenger Arrival Rate at Station i 

𝐷𝑖𝑛 Departure time of the 𝑛th vehicle at station 𝑖 

𝑡𝑖𝑛 Time of arrival of the 𝑛th vehicle at station 𝑖 

𝑑𝑖𝑗 Distance from station 𝑖 to station 𝑗 

𝐿 The total length of the selected bus route 

𝑣 Average speed 

𝛽 Boarding and alighting time 

𝜇𝑖 Passenger Alighting Rate at Station 𝑖 

𝑄𝑖𝑛 The number of passengers on board when the 𝑛th vehicle departs from station 𝑖 

𝐶1 Ticket fee for a passenger on a bus 

𝐶2 Unit operating costs of buses 

𝐶3 Passenger time cost 

𝐷𝑚𝑎𝑥 Maximum Departure Interval 

Decision variables 

𝑥𝑖𝑡 
Binary variable{0,1},𝑥𝑖𝑡 = 1, when bus 𝑛 departs at the end of time 𝑡; otherwise, 𝑥𝑖𝑡 =

0, where 𝑖 ∈ 𝐼 and 𝑡 ∈ 𝑇 

𝑥𝑛 
Binary variable{0,1},𝑥𝑛 = 1, when bus 𝑛 is selected for operation; otherwise, 𝑥𝑛 = 0, 

where 𝑛 ∈ 𝑁 

To facilitate the formalization of the model, the following assumptions are suggested to simplify 

the modeling procedure: 

Assumption 1. All passengers are rational travelers and will board the first available bus that 

meets their requirements. Furthermore, they will not board more than one bus. 

Assumption 2. The bus route is a continuous one-way service, and all buses have the same 

average speed. 

3. Methodology 

3.1. Objective function 

In this study, the primary focus is on establishing a framework for bus departure scheduling, 

encompassing cost models and optimization algorithms, while considering actual travel times, 

passenger arrival distributions, and vehicle capacity constraints. This section presents an optimization 

approach for the bus departure schedule problem aimed at minimizing the integrated costs incurred by 

both the bus company and passengers. The specific steps are enumerated below. 
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Step 1: Cost Model 

Step 1.1: Passenger Income Value 

Given that 𝑃(𝑡) represents the Poisson distribution probability and 𝐷(𝑡) represents the number 

of people arriving at the 𝑖-th station in the 𝑡-th minute, Eqs (1) and (2) can be constructed as follows: 

𝑃(𝑡) =
𝜆𝑖
𝑡 ⋅ 𝑒−𝜆𝑖

𝑡!
 (1) 

𝐷(𝑡) = 𝑃(𝑡) ⋅ (𝐷𝑖𝑛 − 𝑡) ⋅ 𝜆𝑖  (2) 

Equation (3) can be used to calculate the bus arrival time at the platform after waiting for 

passengers to board and alight. The departure time is given by the sum of the previous departure time, 

the travel time between stops, and the waiting time at the platform. It is assumed that the duration of 

time required for passengers to board and alight at each station remains constant. 

𝐷𝑖𝑛 = ∑𝑥𝑖𝑡𝑡

𝑡∈𝑇

+
𝑑1𝑖 + 𝐿(𝑛 − 1)

𝑣
+ 𝛽(𝑖 − 1 + 𝑆𝑚 − 𝑆) (3) 

Equation (4) calculates the number of passengers alighting at the 𝑖-th station, while Eq (5) describes the 

number of passengers boarding at the 𝑖-th station accordingly. 

𝐴𝑖𝑛 = 𝑄(𝑖−1)𝑛 ⋅ 𝜇𝑖  (4) 

𝐵𝑖𝑛 = 𝑚𝑖𝑛(𝑀 + 𝐴𝑖𝑛 − 𝑄(𝑖−1)𝑛, (𝐷𝑖𝑛 − 𝐷𝑖(𝑛−1)) ⋅ 𝜆𝑖) (5) 

Equation (6) calculates the passenger revenue value, which comprises two components: the fare paid by 

passengers for taking the bus and the cost associated with passenger waiting time. 

𝐹1 = ∑ −𝐶1𝐵𝑖𝑛
𝑖∈𝐼,𝑛∈𝑁

− 𝐶3 ∑ {∑𝐷(𝑡) ⋅ [𝐷𝑖𝑛 − 𝑡] + [(𝐷𝑖𝑛 − 𝐷𝑖(𝑛−1)) ⋅ 𝜆𝑖 − 𝐵𝑖𝑛] ⋅ 𝐷𝑖(𝑛+1)

𝑡∈𝑇

}

𝑖∈𝐼,𝑛∈𝑁

 

(6) 

Step 1.2: Bus Company Income Value 

𝐹2 = ∑ 𝐶1𝐵𝑖𝑛
𝑖∈𝐼,𝑛∈𝑁

− ∑𝐶2
𝑛∈𝑁

𝑥𝑛 (7) 

Equation (7) computes the revenue of the bus company, comprising the aggregate fare collected 

from passengers utilizing the bus and the operational costs associated with the bus service. 

Step 1.3: Multi-Objective Optimization Model 

Based on the two cost models, the objective of the problem is to combine the two main factors, 

namely passenger waiting time cost and bus operational cost, to form a multi-objective optimization 

problem. A mixed optimization model is then formulated with the objective of minimizing the 

integrated cost, aiming to formulate a rational scheduling plan as depicted in Eq (8). 

max
𝑥𝑖𝑡,𝑥𝑛

𝐹 ∶= [𝐹1, 𝐹2] (8) 
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3.2. Constraints 

Assuming that the departure times for the first and last frequencies correspond to the beginning 

and end of the time period, we can establish Constraints (9) and (10). 

Constraint (11) ensures that buses depart in sequence: 

Constraint (12) represents the departure interval constraint: 

3.3. Coding rules 

The problem of double-layer programming is classified as a non-convex optimization problem. 

Simplest linear double-layer programming problems have been proven to be NP-hard. The challenge 

in double-layer optimization resides in the nested structure of the problem, wherein the upper and 

lower problems are influenced by each other's decision variables. Double-layer optimization problems 

are much more challenging than regular single-level mathematical optimization problems. The NSGA-

II algorithm can be selected as the elite strategy to solve this model. The algorithm’s implementation 

is carried out in MATLAB, following these specific steps. 

Step 1: Initialization. Randomly allocate an initial population 𝑥𝑖𝑛(𝑡)  and n  for the 

departure strategy. 

Step 2: Calculate the fitness function. For a given set of 𝑥𝑖𝑛(𝑡) and n, substitute them into the 

F1and F2 functions to obtain fitness values. 

Step 3: Non-dominated sorting. For the newly generated population, perform non-dominated 

sorting based on fitness values. If 𝑝 dominates 𝑞, then, 𝑞 ∈ 𝑆𝑞. When applying the selection operator, 

populations that are ranked lower will be eliminated first. 

Step 4: Crowding distance calculation. The crowding distance value of the maximum and 

minimum fitness values is defined as 0. For the intermediate individuals, the crowding distance is 

calculated as the absolute value of the difference between the next value and the previous value, 

divided by the difference between the maximum and minimum values, and then the absolute value is 

taken. Compute the summation of the crowding distances at the same index to obtain the total crowding 

distance of the population. 

Step 5: Forming the Pareto front: By employing the results obtained in Steps 1 to 4, generate the 

initial population for the NSGA-II algorithm, followed by executing selection, crossover, and mutation 

operations on the population. When the stopping condition is met (for example, reaching the maximum 

number of generations or a time limit), the Pareto front is formed. 

𝑥𝑖𝑛(1) = 𝐸𝑓 (9) 

𝑥𝑖𝑛(𝑆) = 𝐸𝑙 (10) 

𝑥𝑖𝑛(1) ≤ 𝑥(𝑖+1)𝑛(1) (11) 

0 ≤ 𝑥𝑖𝑛 ≤ 𝐷𝑚𝑎𝑥 (12) 
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4. Case study 

4.1. Test case description 

The data utilized in this study was obtained from Lhasa City, China. Bus route 34 was selected 

for the case study. The bus route consists of 22 bus stations, spans a total distance of 10.6 kilometers, 

and operates from 6:40 to 20:50. The distances between stations are presented in Table 3. 

Table 3. Distances between bus stations. 

1→2 2→3 3→4 4→5 5→6 6→7 7→8 

524 624 266 591 559 369 445 

8→9 9→10 10→11 11→12 12→13 13→14 14→15 

534 515 439 358 435 657 480 

15→16 16→17 17→18 18→19 19→20 20→21 21→22 

641 572 544 489 502 613 488 

The bus company has seven buses in its fleet. Upon receipt of the departure instructions, a bus 

departs from the originating station and proceeds in one direction. The case simulation had a total 

runtime of 60 minutes. The parameter values and their sources utilized in this case are presented in 

Table 4. 

Table 4. Default parameter settings. 

Parameter 
Value Parameter Value 

𝐶1 2 yuan/passenger 𝑣 30 km/h 

𝐶2 5.64 yuan/km 𝛽 2 min 

𝐶3 0.15 yuan/min 𝑃 70 passengers 

The NSGA-II algorithm is a multi-objective optimization algorithm that has been successfully 

utilized in the domain of public transportation. The optimization method proposed in this work was 

implemented using MATLAB 2021b. The experiments were conducted on a computer equipped with 

4 GB of memory, an Intel i3 3.70 GHz CPU, and the Microsoft Windows 10 operating system. 

4.2. Parameter adjustment 

As shown in Table 5, four different values are assigned to the best individual factor. The table 

indicates that when the Pareto score is 0.35, the proportion of credible Pareto optimal solutions 

obtained as a percentage of total results is the highest. Therefore, the value of 0.35 is selected as the 

best individual factor. 
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Table 5. Mean extremes of the Pareto Front across various Pareto Fractions. 

Pareto Fraction Used times(s) 
Total number of 

results 

Number of results on the 

Pareto front 
Proportions 

0.25 353.5 26 26 59% 

0.35 325.6 35 35 62% 

0.45 330.8 40 40 63% 

0.55 350.4 48 48 60% 

In Table 6, four different crossover rates can be examined. When the crossover rate is set to 0.85 

and 0.90, two peaks are observed in the ratio of the number of approximately correct Pareto optimal 

solutions to the total obtained results. Since the latter is larger and has a shorter runtime, the crossover 

rate is selected as 0.90. 

Table 6. Mean extremes of the Pareto Front across various Crossover Fractions. 

Crossover Fraction 
Used times(s) Total number of 

results 

Number of results on the 

Pareto front 

Proportions 

0.80 320.5 50 32 64% 

0.85 322.2 50 33 66% 

0.90 320.3 50 35 70% 

0.95 321.2 50 37 74% 

In Table 7, a sensitivity analysis was conducted on five different mutation probabilities with a 

fixed crossover probability of 0.9. Setting the mutation probability to 0.03 resulted in a limited local 

search capability. While a mutation probability of 0.07 led to a loss of solutions. Therefore, a mutation 

probability of 0.05 was chosen as it struck a balance between search capability and computational 

efficiency, providing an appropriate compromise in terms of both time consumption and solution 

search ability. 

Table 7. Mean extremes of the Pareto Front across various Mutation Fractions. 

Mutation Fraction 
Used times(s) Total number of 

results 

Number of results on the 

Pareto front 

Proportions 

0.03 319.5 50 30 60% 

0.04 323.6 50 31 62% 

0.05 324.0 50 34 68% 

0.06 324.7 50 37 74% 

0.07 325.4 49 37 75.5% 

In Table 8, a sensitivity analysis was performed concerning the impact of varying iteration 

counts while maintaining a fixed crossover probability of 0.9. Setting the iteration count to 100 

resulted in excessively slow convergence, affecting the model’s efficiency. Conversely, at an 

iteration count of 500, computational demands were noticeably high without a proportional 

improvement in convergence. After careful analysis, an iteration count of 300 was selected, 

striking a balance between convergence speed and computational efficiency. This count optimally 

balances the trade-off between the time required for convergence and the computational resources 

expended, ensuring a reasonably efficient solution-searching process. 
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Table 8. Average boundary values of the Pareto front regarding the mutation ratio. 

Generations 
Used times(s) Total number of 

results 

Number of results on the 

Pareto front 

Proportions 

100 126.6 50 29 58% 

200 265.4 50 31 62% 

300 326.8 50 34 68% 

400 605.8 50 40 80% 

500 842.5 50 45 90% 

The final parameters for the sensitivity analysis are presented in Table 9. 

Table 9. NSGA-II Algorithm Parameter Configuration. 

Parameter Value 

Population size 50 

Generations 200 

ParetoFraction 0.35 

CrossoverFraction 0.90 

MutationFraction 0.05 

4.3. Results 

Based on the provided optimal parameter settings, the program was executed to solve the 

established model. To mitigate the impact of randomness on the obtained results, due to the stochastic 

nature of the algorithm, the program was executed in a total of five independent trials. Figure 1 

illustrates the six different Pareto fronts obtained from the five independent runs, which comprise a 

total of 282 non-dominant cases. 

The results from the five different runs were integrated into a new Pareto front, exclusively 

comprising solutions that are not dominated in relation to the combined results, as shown in Figure 1. 

The integrated Pareto front comprises a total of 238 cases. 

 

Figure 1. Multi round Pareto optimal solution set. 
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As shown in Figure 1, there is a negative correlation between the revenue value of the transit 

operator and the revenue value of passengers. In this scenario, the Pareto frontier is defined as the 

optimal state in which the operator can achieve maximum revenue by implementing rational pricing 

strategies that simultaneously satisfy the needs of passengers. This implies that the operator can 

increase fares to achieve higher revenue as the value to passengers increases. However, achieving this 

ideal state is often challenging in practice because operators need to balance pricing with passenger 

satisfaction to maintain sustainable business operations. Therefore, the primary challenge in the 

Pareto frontier lies in achieving a trade-off that enables the maximization of revenue while 

maintaining passenger satisfaction. This analysis helps operators optimize fare strategies for the 

best economic outcomes. 

Here we investigated the time period of the morning peak hours spanning from 7:00 to 8:00. The 

bus headway, as shown in Figure 2(a), initially had a frequency of 6 with a 10-minute headway. After 

optimization, it transformed into the headway schedule shown in Figure 2(b), with a reduced frequency 

of 5. Figure 3(a) shows the distribution of passengers who had not yet boarded and those waiting at 

each bus stop under the condition of a uniform headway of 10 minutes for six trips. The related slopes 

of the passenger cumulative curve in Figure 3(b) indicate that, following adjustment, there was an 

increase in passengers yet to board and waiting at the first departure. However, for subsequent 

departures, owing to the optimized timetable, it is evident that the number of passengers significantly 

decreased in comparison to the original schedule. 

(a) 

(b) 

Figure 2. (a) Initial uniform departure time. (b) Optimized departure time. 
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(a) 

 

(b) 

Figure 3. (a) Initial program three-dimensional view of the number of people not entering 

the station + waiting. (b) Optimization program three-dimensional view of the number of 

people not entering the station + waiting. 



579 

Electronic Research Archive  Volume 32, Issue 1, 565–583. 

5. Conclusions 

In this study, we considered multiple crucial factors, such as actual travel times, bus capacity 

constraints, and passenger arrival time distributions, to address the urban bus scheduling problem with 

the objective of minimizing the total costs for passengers and the transit company. The NSGA-II 

method was employed to handle complex constraints to explore the Pareto frontier using two objective 

functions. The objective was to identify bus departure timetables for various scenarios. 

1) Given the assumption that passenger arrival times follow a Poisson distribution, this study 

holds significant value in optimization urban public transit systems. This assumption, based on a 

comprehensive analysis of actual data, provides a more efficient approach and theoretical foundation 

for minimizing overall costs. By gaining a comprehensive understanding of the distribution 

characteristics of passenger arrival times, it is possible to improve the accuracy of bus route planning, 

schedule adjustments, and resource allocation in order to meet urban transportation demands and 

enhance operational efficiency. Thus, this study holds potential significance for improving the 

sustainability and effectiveness of public transportation systems. 

2) Calculating passenger waiting times must be more comprehensive and accurate when facing 

limited bus capacity. This is attributed not solely to the need of considering factors associated with the 

distribution of passenger arrival times, but also to the requirement of accounting for the carrying 

capacity of buses, thereby ensuring the prevention of overloading during operations. This integrated 

approach significantly reduces waiting times and overcrowding, which enhances the efficiency and 

service quality of urban public transit systems. Specifically, by integrating the passenger arrival time 

distribution with the bus capacity, the accuracy of determining bus departure intervals and stopping 

points can be enhanced. This effectively reduces waiting times as passengers are not required to wait 

excessively long for a bus. 

3) Ensuring that buses do not become overloaded during peak hours is essential for enhancing 

passenger comfort and safety, and has the added benefit of mitigating congestion and discomfort. This 

comprehensive approach enhances the accessibility of urban public transit systems, attracting a larger 

number of individuals to utilize public transportation, mitigating urban traffic congestion, and 

contributing to the city’s sustainable development. 

Despite the achievements of this study, certain limitations persist. First, relying on a Poisson 

distribution for passenger arrival times might necessitate more substantial empirical backing from 

datasets such as GPS trajectories, IC card records, and video data to precisely emulate real-world 

scenarios. Second, the study’s use of travel times does not account for actual road traffic conditions. 

Future research could focus on advancing scheduling optimization techniques by integrating real-

time traffic data to enhance accuracy. Moreover, we focus on buses, lacking an extensive exploration 

of integration with other forms of public transportation. Incorporating real-time traffic data could 

significantly enhance the model’s adaptability and efficiency in dynamic urban environments. 

In conclusion, we present a robust method and insights for optimizing urban public transit 

systems. However, it also highlights the need for additional actual data and refined modeling  to 

address more complex issues in future investigations. These efforts will help enhance urban 

transportation systems, improve passenger travel experience, and mitigate operating costs for 

transit companies. 
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