
ERA, 32(1): 486–504. 
DOI: 10.3934/era.2024024 
Received: 15 November 2023 
Revised: 18 December 2023 
Accepted: 22 December 2023 
Published: 02 January 2024 

http://www.aimspress.com/journal/ERA 
 

Research article 

Learning user preferences from Multi-Contextual Sequence influences 

for next POI recommendation 

Jing Chen1, Weiyu Ye2,* and Shaowei Kang2 

1 Economic and Trade Department, Chongzuo Preschool Education College, Chongzuo 532200, China 
2 School of Electronic Engineering and Intelligence, Guangxi Vocational Institute of Technology, 

Chongzuo 532200, China 

* Correspondence: Email: yeweiyuchj@sina.com. 

Abstract: The recommendation of the next Point of Interest (POI) has attracted significant attention 
within the domain of POI recommendations in recent years. Existing methods for next POI 
recommendation are built on the original check-in sequences of users. Despite effectiveness, the 
original check-in sequences mix the influences of different contextual factors, which inevitably 
weakens the model ability of learning user preferences from the complex contextual information. To 
overcome this issue, we propose a novel Multi-Contextual Sequence-based Attention Network 
(MCSAN) for next POI recommendations. MCSAN first develops a new con-textual influence-based 
sampling strategy, which can transform the original check-in sequences into a series of contextual 
information-aware subsequences. Moreover, the constructed subsequences meticulously capture the 
impacts of various contextual information from the original check-in sequences. Then, MCSAN 
leverage the attention-based neural network to learn the representations of POIs from the generated 
subsequences. Finally, MCSAN develops a new feature fusion method that extracts user preferences 
from the learned POI presentations adaptively. Extensive experiments conducted on real-world 
datasets indicate the effectiveness of our proposed MCSAN for the next POI recommendation task, 
compared to recent representative methods. 
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1. Introduction  

The development of smartphones and global positioning systems has greatly improved the 
accuracy of location positioning. As a result, location-based social network (LBSN) [1–3] services like 
Gowalla, Yelp and Facebook, have gained immense popularity. LBSN offers a distinctive advantage 
over traditional social networks by allowing users to share their check-in information, such as visits to 
gyms and coffee shops, with their friends. Additionally, LBSN’s Points of Interest (POI) 
recommendation [4,5] assists users in discovering relevant information from the extensive dataset of 
location-based social networks, enabling them to explore new places and enrich their daily experiences. 
Hence, the primary goal of the POI recommendation task is to suggest intriguing venues for users to 
explore next. 

In this paper, we address the crucial task of next POI recommendations, which plays a vital role 
in the field of POI recommendation. The goal is to predict the user’s next POI visit based on their 
recent check-in sequence, catering to their daily needs and preferences. The check-in sequence 
constructed from the user’s recent history of check-in records. Extracting user check-in patterns from 
sequential information and multiple contextual factors, including geographical and temporal data, 
poses a major challenge in next POI recommendation. 

In contrast to traditional POI recommendation task, the next POI recommendation scenario 
requires the recommendation model to generate a list of recommendations based on the recent user’s 
check-in sequences. Hence, the next POI recommendation model is required to learn user preferences 
by the recent check-in sequences. Classic techniques for sequence analysis, such as Markov chain-
based methods, recurrent neural network-based methods and graph neural network-based methods, are 
developed to extract the user preference from the check-in sequences. 

Markov chain-based methods attempt to estimate the transition matrix that characterizes users’ 
check-in patterns. However, the above methods encounter challenges due to the high data sparsity 
problem. The sparsity issue results in a significantly sparse transition matrix, subsequently impacting 
the overall performance of the model. Another category of existing methods for next POI 
recommendation is based on advanced deep learning techniques. These methods treat the check-in 
sequences of users as the input sequence from other domains, such as sentences in natural language 
processing, and further leverage the ability of recurrent neural networks to capture the inductive bias 
between the elements in the input sequence. Hence, these methods can effectively extract the user’s 
check-in patterns from the POI check-in sequences. On the other hand, graph neural network-based 
methods utilize graph representation learning method for acquiring the representations of both POIs 
and users. Unlike previous methods extract the user preference from the check-in sequences, graph 
neural network-based methods begin by transforming the users’ check-in sequences into graph 
structures. In this way, the relationship between POIs and users can be accurately preserved through 
the edges in the constructed graphs. Subsequently, graph neural network-based neural network blocks 
are developed to learn the representations of POIs and users from these generated graphs. 

While recurrent neural network-based methods and graph neural network-based methods have 
proven effective, they rely solely on the original check-in sequence to learn user preferences. As a 
result, they overlook the impact of various contextual factors present in the check-in sequences, 
ultimately leading to suboptimal model performance. Intuitively, the original check-in sequence of a 
user may be too lengthy to accurately capture their unique preferences. 

To address the aforementioned limitations, we present a novel method called the Multi-Contextual 
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Sequence-based Attention Network (MCSAN), which contains three key steps. In the first step, 
MCSAN develops a novel contextual influence-based sampling strategy, which can transform the 
original check-in sequences into a series of contextual information-aware subsequences. Therefore, 
our proposed method, MCSAN, is able to effectively preserve the influences of various contextual 
factors present in the lengthy check-in sequence. In the next step, MCSAN employs an attention-based 
neural network block to learn POI representations from different subsequences. Finally, MCSAN 
introduces a novel adaptive representation fusion method to dynamically learn the final user 
representations based on the extracted POI representations.  

Compared to existing GNN- and recurrent neural network-based methods, MCSAN exhibits two 
major advantages: 1) MCSAN transforms the complex contextual information into separated contextual-
based sequences, which are beneficial to learning representations from different context. 2) MCSAN 
develops a tailored Transformer-based neural network backbone with a learnable fusion layer, which 
enables the model to adaptively learn the final representations from the complex contextual information.  

To evaluate the performance of our method for the next POI recommendation task, we conducted 
experiments using real-world datasets. Extensive experimental results have shown the effectiveness of 
MCSAN compared to other representative re-cent methods for next POI recommendation. 

We summarize the major contributions of this paper as follows: 
•We propose MCSAN, a novel method that can learn the representations of POIs and users from 

different contextual factors. 
•We propose a new contextual influence-based sampling method that transform the original 

check-in sequences into a series of contextual information-aware subsequences, which exhibits 
significant differences with existing methods. 

•We develop a novel adaptive representation fusion method, which allows for the adaptive 
learning of the ultimate representations based on the extracted POI representations for user. 

•We conducted comprehensive experiments comparing MCSAN to recent representative methods 
for next POI recommendation to validate the effectiveness of our proposed method. 

2. Related work 

In the section, we provide a brief summary of recent studies of POI recommendation from two 
perspectives: General POI recommendation and next POI recommendation. 

2.1. General POI recommendation 

The aim of POI recommendation is to generate a list of POIs that the user may find interesting 
based on their history of check-in records. Recent years, many techniques have been adopted and 
developed for this task, such as topic model-based methods [4–6], graph representation learning-based 
methods [7–10] and advanced neural net-work-based methods [11–13]. Ji et al. [4] propose a 
probabilistic generative model known as STARec. This model introduces the concept of distinguishing 
users’ social preferences using the individual interests and combines them with individual activity 
preferences. By incorporating these factors, STARec aims to promote the accuracy for POI 
recommendations. Li et al. [14] propose the CTLM model, which addresses the issue of ill-matching. 
The model achieves this by separating city-specific features from common features shared using all 
cities. This approach enables users’ interests in one city to be transferred to another, improving the 
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recommendation accuracy across different cities. Guo et al. [15] propose Deep-PR, a deep distributed-
learning-based method for POI recommendation. Deep-PR abstracts hidden feature components from 
both local and global subspaces, iteratively reoptimizes expressions of the feature space through 
propagation operations, and fine-tunes the feature spaces to achieve improved accuracy. Gan et al. [16] 
present a novel POI recommendation method that incorporates the spatio-temporal factor by 
constructing a unique hypersphere interest model for each user, which captures and depicts their 
preferences in a more accurate manner, enhancing the recommendation process. Hossain et al. [17] 
introduce Context-Aware Recency based Attention Network (CARAN), a recommendation method 
that incorporates weather information along with spatio-temporal context. CARAN focuses on recently 
visited places using attention mechanisms and enables interaction between non-adjacent check-ins 
through spatiotemporal matrices. Additionally, CARAN employs linear interpolation to ensure smooth 
representation of spatial distance in the recommendation process. Chen et al. [18] present a novel POI 
recommendation system that effectively captures and learns complex sequential transitions, which is 
achieved by incorporating time and distance irregularity, while dynamically weighting the decay 
values during the model learning process. Han et al. [19] propose AUC-MF, which focuses on two 
levels of geographic information: local similarity and global similarity. They further introduce 
innovative techniques to incorporate geographical information into AUC-MF, which includes sampling 
strategies to accelerate convergence and refining recommendations independently of model training. 

2.2. Next POI recommendation 

In contrast to general POI recommendation methods, the objective of next POI recommendation 
is to predict the next POI that users are likely to check in based on their previous check-in records. 
Hence, the sequential influence is a vital factor to understanding users’ behaviors. Classic methods for 
modeling sequential factors, such as Markov chain [20–23] and recurrent neural network [24–27], have 
been introduced into the next POI recommendation task. 

Wang et al. [28] utilizes graph embedding techniques to explicitly model complex geographical 
influences. Fang et al. [29] propose URPI-GRU, which consists of a short-term module and a long-
term module. In the short-term module, the GRU model is utilized to learn the user’s periodic and 
current preferences. In the long-term module, the user’s long-term preference is extracted by 
considering K-nearest neighbor sequences. Zheng et al. [30] propose a memory augmented 
hierarchical attention network that integrates both short-term check-in sequences and long-term 
memories, which aims to capture complex spatiotemporal patterns of user movements by leveraging 
the combination of these two sources of information. Huang et al. [31] propose DAN-SNR, which 
addresses this gap by utilizing the self-attention mechanism to model both sequential and social 
influences within a unified framework. Lai et al. [32] propose the Multi-View Spatial-Temporal 
Enhanced Hypergraph Network, which simultaneously learns representations from both local and 
global perspectives. In the local view, they design a spatial-temporal enhanced graph neural network 
to capture and propagate spatial-temporal correlations based on user-POI interactions in an asymmetric 
manner. Lan et al. [33] propose a combination of the position-extended algorithm and the gated-deep 
network. They utilize a gated-deep network to capture long-term behavioral dependencies by 
generating auxiliary binary gates. Additionally, the position-extended algorithm is employed to 
enhance contextual interaction in recurrent neural networks. 

Different from previous studies that consider only to extract the user preferences from the whole 
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check-in sequence, our proposed MCSAN leverages a fine-grained manner by transforming the whole 
check-in sequence into contextual-aware subsequences. In this way, the proposed MCSAN can 
carefully preserve the influence of different context factors on the user preferences. 

2.3. Transformer related researches  

Transformer [34] has been the most successful deep learning [35] architecture in recent years. 
Due to its powerful modeling capacity, many researchers have applied this architecture in different 
domains, such as computer version [36,37], natural language processing [38,39] and graph mining [40,41]. 
For instance, Liu et al. [36] introduces a hierarchical design that divides the input image into non-
overlapping patches at different scales. These patches are processed in a hierarchical manner, allowing 
the model to capture both local and global features effectively. Moreover, the proposed Swin 
Transformer demonstrates competitive performance on various computer vision tasks, including image 
classification and object detection. Due to the excellent performance of the transformer, in this paper, 
we introduce this architecture as the basic neural network backbone of our proposed method. 

3. Background 

In the section, we provide the preliminary knowledge of this paper, including key definitions and 
notations that are essential for understanding the subsequent content. 

Definition 1 (Users and POIs). The user and the POI are two vital elements of LBSNs. Let 𝑈 ={𝑢 , ⋯ , 𝑢 } denote the user set and 𝑛  is the total number of users. Let 𝑃 = {𝑝 , ⋯ , 𝑝 } denote 

the POI set and 𝑛  is the total number of POIs. Each POI 𝑝 is associated with additional information, 
such as geographical information 𝑙   and category information 𝑐  . In this paper, we partition the 
entire geographical space into multiple blocks based on urban administrative divisions, yielding a set 

of distinct locations blocks 𝐿 = 𝑙 , ⋯ , 𝑙 , where 𝑛  denotes the number of location blocks. We 

also utilize 𝐶 = 𝑐 , ⋯ , 𝑐  to represent the set of categories and 𝑛  is the number of categories. 

Definition 2 (A check-in record). A check-in record represents a check-in behavior of the target 
user, which is described by the triplet (𝑢, 𝑝, 𝑡) . 𝑢  and 𝑝  represent the target user and POI, 

respectively, and𝑡 denotes the check-in time. In this paper, we utilize 𝑇 = 𝑡 , ⋯ , 𝑡  to represent 

the set of check-in timestamps. 

Definition 3 (A check-in sequence). A check-in sequence 𝑆 = (𝑢 , 𝑝 , 𝑡 ), ⋯ , 𝑢 , 𝑝 , 𝑡  

is used to describe a series of check-in behaviors of the user 𝑢, where 𝑞  represents the sequence 
length of 𝑆 . 

Definition 4 (Next POI recommendation). Given the user’s previous check-in sequence, the 
objective of the next POI recommendation is to generate a list of POIs {𝑝 , ⋯ , 𝑝 } that the user 𝑢 may 
have an interest in visiting at the next timestamp. 𝑘 represents the length of the recommendation list. 

In the rest of the paper, we adopt uppercase to represent the sets used in the paper, and lowercase 
is adopted to represent the elements of the set. For matrices and vectors, we adopt the bold uppercase 
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and lowercase to represent them, respectively. We summarize the key notations with their descriptions 
in Table 1. 

Table 1. Summary of the key notations. 

Notation Description𝑈, 𝑢 The set of users, a user𝑃, 𝑝 The set of POIs, a POI𝐿, 𝑙 The set of location blocks, a location𝐶, 𝑐 The set of categories, a category𝑇, 𝑡 The set of location timestamps, a timestamp 𝑆  The check-in sequence of user 𝑢𝑠 ,  The semantic-aware sequence of user 𝑢 𝑠 ,  The temporal-aware sequence of user 𝑢 𝑠 ,  The geographical-aware sequence of user 𝑢 𝑯 ,  The representations of POIs from 𝑠 ,  𝑯 ,  The representations of POIs from 𝑠 ,  𝑯 ,  The representations of POIs from 𝑠 ,  𝑯  The ultimate representations of user 𝑢𝑯  The final representations of POI 𝑝 𝛿(⋅) The linear layer𝜌(⋅) The softmax function𝛼 ,  The fusion weight for 𝑯 ,  𝛼 ,  The fusion weight for 𝑯 ,  𝛼 ,  The fusion weight for 𝑯 ,  

4. Multi-Contextual Sequence-based Attention Network 

 

Figure 1. The overall framework of MCSAN. 
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In this section, we introduce our proposed Multi-Contextual Sequence-based Attention Network 
(MCSAN). Specifically, MCSAN contains three modules, contextual influence-based sampling module, 
Transformer-based neural network module and adaptive representation fusion module. Figure 1 shows 
the framework of MCSAN. 

4.1. Contextual influence-based sampling 

As mentioned before, the check-in sequence 𝑆  contains the recent check-in behaviors of the 
target user 𝑢, which is crucial for understanding the user preferences. Recent works pay attention to 
leveraging the check-in sequence to extract the user representations for the recommendation. However, 
they tend to leverage the full sequence to learn user preferences, which inevitably ignores the 
contextual information involved in the previous check-in records. Moreover, the full check-in sequence 
is too long to precisely learn the relations between visited POIs, leading to learning the suboptimal 
user representations. 

To gain a comprehensive understanding of user preferences by the check-in sequence, we 
introduce a novel strategy known as contextual influence-based sampling (CIS). The goal of CIS is to 
sample several key POIs from the full check-in sequence according to different contextual information, 
resulting in different subsequences. These subsequences convey different contextual influences, which 
reflect user preferences in different aspects of contextual factor, such as temporal factor and 
geographical factor. Compared to the full sequence, a series of subsequences is more beneficial for 
learning user preferences. 

Hence, we propose CIS to transform the full sequence into contextual influence-aware 
subsequences. In this paper, we consider three contextual factors, temporal factor, geographical factor 
and semantic factor. CIS samples different nodes to construct the subsequence for the corresponding 
contextual factor. Since CIS utilizes the same strategy to generate the subsequence for different 
contextual information, we take the semantic factor-aware subsequence generation for example to 
detail our proposed CIS. 

In this paper, we leverage the category information to capture the semantic information of 
POIs. Given the check-in sequence Su of the user u, we first transform it into the semantic aware 
subsequence 𝑠 : 

 𝑠 = 𝜙(𝑠 ) (1) 

where 𝜙(⋅)  is the transformation function. 𝑠 = {𝑐 , ⋯ , 𝑐| |}  denotes the transformed semantic 

aware subsequence and 𝑐 ∈ 𝑠  denotes the category information of the visited POI. The operation of 𝜙(⋅) is to merge the adjacent POIs that belong to the same category in the check-in sequence and 
replace them with the category information, resulting the semantic aware check-in subsequence. Hence, 

we can also obtain the category-POI matrix 𝑴 ∈ ℝ| |×| |  to describe the relations between 

categories and merged POIs according to the check-in records of user 𝑢. In practice, we adopt the 
contextual-aware sampling strategy according to the check-in timestamps, location or category 
information. We select POIs belong to similar check-in timestamps, locations or categories to construct 
the semantic-aware subsequences. Then, we utilize the weighted sampling method to construct the 
semantic aware check-in sequences of POIs. Since each element in the sequence could contains several 
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POIs, we need to define a sampling strategy to construct the POI sequence. In this paper, we adopt the 
weighted sampling described as follows:  

 𝑃𝑟𝑜 = ∑∈  (2) 

where dp denotes the frequency of POI p appearing in the check-in sequence su. Intuitively, higher 
frequency represents higher interest. Hence, such POIs should be more suitable to be sampled for 
learning user preferences. After the sampling process, we can obtain the set of subsequences 
involved corresponding POIs 𝑠 ,  . Compared to the original check-in sequence su, 𝑠 ,   is more 
precisely to represent the user preferences from the perspective of the semantic contextual information. 

Followed the same strategy, we can obtain the temporal subsequences 𝑠 ,   and the geographical 

subsequences 𝑠 , .  

4.2. Transformer-based neural network 

The constructed subsequences 𝑠 , , 𝑠 ,  and 𝑠 ,  describe the check-in patterns of the user 𝑢 

from the perspective of different contextual information. Next, we need to extract the presentations of 
POIs from the generated subsequences. MCSAN develops an attention-based neural network block 
to learn the hidden representations of POIs. Specifically, the self-attention mechanism of the 
Transformer architecture [34] is adopted for the feature learning process. To facilitate the explanation 
of the attention-based neural network block, we illustrate the processing of semantic-aware 
subsequences as an example.  

For the input feature matrix 𝑯 , ∈ ℝ
, × , where 𝑠 ,  is the length of the input sequence 

and d denotes the dimension of the input feature, we first leverage the projection layer to transform the 
original input features into hidden features: 

 𝑯 , = 𝛿(𝑯 , ) (3) 

where 𝛿(⋅)  denotes the linear layer. Next, we employ the self-attention mechanism to learn the 
inductive biases between POIs in the sequence: 

 𝑯 , = 𝜌 𝑸 𝑲 ⋅ 𝑽  (4) 

where 𝜌(⋅)  denotes the softmax function. 𝑸  , 𝑲   and 𝑽   are transformed feature matrices which 
are calculated as follows: 

 𝑸 = 𝑯 , ⋅ 𝑾 , , 𝑲 = 𝑯 , ⋅ 𝑾 , , 𝑽 = 𝑯 , ⋅ 𝑾 ,  (5) 

where 𝑾 , , 𝑾 ,  and 𝑾 ,  are learnable parameter matrices of the i-th neural network layer. While 
we also introduce the feedforward neural network-based block [34] to enhance the representation 
learning of the self-attention layer.  

Through several Transformer layers, we can obtain the POI representations 𝑯 ,  extracted from 
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the semantic-aware sequence. Following the same neural network architecture, we can obtain 𝑯 ,  

and 𝑯 ,  from the temporal-aware sequence and geographical-aware sequence, respectively. 

4.3. Adaptive representation fusion module 

Based on the Transformer layer-based neural network block, we extract the POI representations 
from different contextual information. Finally, we have to estimate the user preferences according the 
POI representations. The naïve strategy is to directly sum or concat the representations of POIs. 
However, this simple strategy ignores the unique user preference. The influences of different 
contextual factors vary for different users. This phenomenon motivates us to develop an adaptive 
representation fusion module to estimate the user representations. 

Specifically, we utilize the following the strategy to adaptively calculate the fusion weights: 

 𝛼 , = 𝑯 , 𝑯 , ⊤

𝑯 , 𝑯 , 𝑯 , 𝑯 , 𝑯 , 𝑯 , ⊤
 (6) 

where 𝛼 ,   is the fusion weight for 𝑯 ,  . Following the same strategy, we can obtain the fusion 

weights 𝛼 ,  and 𝛼 ,  for 𝑯 ,  and 𝑯 , . Finally, the preference of user 𝑢 is estimated as follows: 

 𝐇 = (α , ⋅ , ∑ 𝐇 ,∈ , ) + (α , ⋅ , ∑ 𝐇 ,∈ , ) +  (α , ⋅ , ∑ 𝐇 ,∈ , ) (7) 

Additionally, for the representations of POI p, we fuse the representations from different 
contextual factors to obtain the final representation 𝑯 . 

The computational complexity of MCSAN is mainly from the calculation of the Transformer 
layers. Suppose each contextual sequence has the same length 𝑛 , and the complexity of MCSAN 
could be roughly represented in 𝑂((𝑛 ) 𝑙𝑑) where l represents the layers of Transformer backbone 
and d denotes the dimension of hidden representations. 

4.4. Parameter estimation 

Following prior studies [32,42], we utilize the cross-entropy loss function to train the model 
parameters. Specifically, we compute the recommendation scores between user u and the unvisited 
POIs using the following approach: 

 𝒀′ = 𝜏 𝑯 ⋅ 𝑯 ⊤  (8) 

where 𝐻  denotes the feature matrix of the unvisited POIs and 𝜏(⋅) denotes the softmax function. 
Moreover, 𝒀′  denotes the matrix of recommendation scores for each unvisited POI. 

The objective function of MCSAN is as follows: 
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 𝐿𝑜𝑠𝑠 = − ∑ 𝒀 𝑙𝑜𝑔𝒀′ + 𝜂 |𝜽|∈  (9) 

where 𝒀   denote the POIs that the user 𝑢  has visited, 𝜽  represents the parameters and 𝜂 
represents the regularization weight. By minimizing the objective function, we can adopt the stochastic 
gradient descent method to learn the model parameters.  

4.5. Implementation of the proposed method  

Here, we provide the implementation of MCSAN. As mentioned before, for the input check-in 
sequence of a user, MCSAN first transforms the sequence into contextual-aware subsequences via the 
proposed transformation strategy. Then, MCSAN leverages the standard Transformer layer to learn the 
representations from the constructed sequences. Finally, MCSAN adopts a learnable fusion layer to 
adaptive extract the final user representations from the various contextual-aware sequences. The 
overall learning algorithm for MCSAN is outlined in Algorithm 1. 

Algorithm 1: learning algorithm of MCSAN
Input: The check-in sequence S, the regularization weight η, the max training step 𝑇 . 
Output: Model parameters 𝜽. 

1. For each user, generate the contextual factor-aware subsequences 𝑠 ,  , 𝑠 ,   and 𝑠 ,
according to Eqs (1) and (2); 

2. for step in 𝑇  do: 
3. Calculating the hidden representations of POIs according to Eq (4); 
4. Estimating the user preferences according to Eq (7) 
5. Calculating the training loss according to Eq (9); 
6. Updating the parameters 𝜽; 
7. end for  
8. return 𝜽. 

5. Experiments 

In this section, we conduct comprehensive experiments on real-world datasets to evaluate the 
effectiveness of our proposed MCSAN. We begin by introducing the fundamental experiment settings, 
which include the datasets used, baselines considered, evaluation metrics employed and parameter 
configurations. Next, we present the experimental results comparing our model with other existing 
models on the selected datasets. Last, we perform ablation studies to show the effectiveness of our 
proposed method.  

5.1. Datasets 

Following recent work [43], we adopt the check-in records of users of three cities collected from 
the famous LBSN Foursquare, called Phoenix, New York and Singapore. The Foursquare dataset 
typically refers to the data available through Foursquare’s API, which includes information about 
venues, user check-ins, user-generated tips and reviews and other location-related details. Each dataset 
contains check-in records from users in their respective cities. The dataset statistics are summarized in 
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Table 2. For the task setting, we adopt 8:1:1 split for all datasets according to the check-in timestamp 
for each user. While the earliest 80% is the training set, the latter 10% is the validation set and the rest 
is the test set. 

Table 2. Statistics of datasets. 

Dataset #Users #POIs #Records 
Phoenix 2946 7247 47,980 
New York 16,387 56,252 511,431 
Singapore 8648 33,712 355,337 

5.2. Baselines 

We choose the baselines from three aspects: Markov chain-based methods, recur-rent neural 
network-based methods and graph neural network-based methods. 

For Markov chain-based methods, we choose TAD-FPMC [20] which is a typical method built 
on the Markov chain to compute the transition matrix to forecast the next check-in POI for users; For 
recurrent neural network-based methods, we select NeuNext [24] and LSPL [25], which leverage the 
recurrent neural network or its variants to learn the user preferences; For graph neural network-based 
method, we select MSTHN [32] which integrates the graph neural networks to extract the 
representations of POIs and users. We introduce the detailed information of these methods as follows: 

TAD-FPMC: Decomposes the user-POI interaction tensor, which considers the timing of user 
interactions with POIs into lower-dimensional representations to extract latent user preferences.  

NeuNext: Introduces the RNN-based neural network backbone to learn the user preferences from 
the constructed check-in sequences. 

LSPL: Involves capturing historical behavior to understand long-term preferences and 
incorporating contextual information to model short-term preferences.  

MSTHN: Introduces hypergraph networks to model relationships between different entities by 
leveraging the function of hypergraphs, which offers a more expressive way to capture complex 
relationships than traditional graphs. 

5.3. Evaluation metrics 

In this paper, we utilize two widely adopted metrics, Recall and Normalized Discounted 
Cumulative Gain (NDCG), to evaluate the performance of all models for the task of next POI 
recommendation. Each evaluation metric is calculated as follows: 

 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 = | ∩ || |  (10) 

 𝑁𝐷𝐶𝐺@𝑘 = | | ∑ log( )log( ( , ) )( , )∈  (11) 

where 𝑅   denotes the test set and 𝑅   denotes the POI recommendation list with length k. opt 
denotes the optimal rank of the predicted POI which is set 1 and 𝑟𝑎𝑛𝑘(𝑢, 𝑝) denote the rank of the 
POI p in the recommendation list of user u. 
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5.4. Parameter settings 

For the chosen baseline models, we adopt their open-resource implementations and follow their 
recommended parameter settings. We also conduct the parameter tuning operation for all models 
on the datasets. Furthermore, for our proposed method, we try the hidden dimension of neural 
network in {64, 128, 256}, learning rate in {0.01, 0.005, 0.001} and the regularization coefficient 
in {0.0001, 0.00001}. In practice, we use the grid-search method to determine the optimal values 
of hyperparameters. 

5.5. Performance comparison 

We execute each method 10 times using independent random seeds and present the average 
values of each evaluation indicator to ensure a more robust comparison. The results are illustrated in 
Figures 2–7. 

 

Figure 2. The overall framework of MCSAN. 

 

Figure 3. The performance on Phoenix in terms of NDCG. 
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Figure 4. The performance on New York in terms of Recall. 

 

Figure 5. The performance on New York in terms of NDCG. 

 

Figure 6. The performance on Singapore in terms of Recall. 
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Figure 7. The performance on Singapore in terms of NDCG. 

By the experimental results across all datasets, we can obtain the following observations: Overall, 
our proposed MCSAN consistently outperforms other methods on all datasets, particularly in 
comparison to recurrent neural network-based methods that consider the entire check-in sequences of 
users as input. This suggests the effectiveness of our proposed designs, namely contextual influence-
based sampling and adaptive feature fusion. We can also observe that MCSAN achieve the lowest 
performance on the New York dataset, compared to other datasets. This is because New York dataset 
exhibits worst data sparsity problem which largely influences the model performance. In general, graph 
neural network-based methods tend to exhibit better performance compared to recurrent neural 
network-based approaches. This could be attributed to the fact that transforming the original check-in 
sequences into graph structural data may facilitate the learning of user preferences, as opposed to 
treating the check-ins as a single long sequence. 

5.6. Ablation study 

To further validate the effectiveness of our proposed adaptive feature fusion module, we 
conducted additional experiments. Specifically, we introduced two variants of MCSAN, namely 
MCSAN-S and MCSAN-C. MCSAN-S equally aggregates the representations of POIs from various 
contextual information to derive the final node representation. On the other hand, MCSAN-C utilizes 
vector concatenation to fuse the POI representations and calculate the final user preferences. We kept 
the recommendation list length fixed at 10 and compared these variants with MCSAN across all 
datasets. The results are presented in Tables 3–5. 

Table 3. The performance of MCSAN and its variants on Phoenix. 

Model Recall NDCG
MCSAN-S 0.2467 0.1271
MCSAN-C 0.2489 0.1278
MCSAN 0.2525 0.1297
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Table 4. The performance of MCSAN and its variants on New York. 

Model Recall NDCG
MCSAN-S 0.2186 0.1169
MCSAN-C 0.2201 0.1176
MCSAN 0.2225 0.1187

Table 5. The performance of MCSAN and its variants on Singapore. 

Model Recall NDCG
MCSAN-S 0.2210 0.1182
MCSAN-C 0.2234 0.1193
MCSAN 0.2292 0.1217

Based on the aforementioned results, it is evident that our proposed adaptive feature fusion 
module effectively improves the model performance across all real-world datasets, showing the 
effectiveness of our design. Furthermore, it can be observed that MCSAN-C surpasses MCSAN-S on 
all datasets. This observation suggests that the vector concatenation operation is better suited for 
learning user preferences than the vector summation operation.  

6. Conclusions 

In this paper, we propose a novel method called MCSAN for the task of next POI recommendation. 
Unlike existing methods that rely on the complete check-in sequences of users to learn their 
preferences, MCSAN introduces a new module called CIS. This module transforms the full check-in 
sequence into contextual information-aware subsequences, allowing MCSAN to effectively capture 
the influences of different contextual factors present in the original check-in sequence. MCSAN then 
adopts an attention-based neural network block to learn representations of POIs from these constructed 
subsequences. Hence, MCSAN can effectively capture the contextual information and its impact on 
user preferences. Furthermore, MCSAN incorporates an adaptive feature fusion module that 
dynamically adjusts the aggregation weights of different contextual factors based on the check-in 
patterns of individual users. This approach preserves the unique user preferences by giving more 
weight to the relevant contextual factors for each user. We conducted extensive experiments on three 
real-world datasets to evaluate the performance of MCSAN. The experimental results demonstrate the 
effectiveness of our proposed method in next POI recommendation, as compared to recent state-of-
the-art approaches. As discussed before, MCSAN can adaptively learn the user preferences from 
different contextual factors. However, our proposed MCSAN highly dependents on the sequence 
construction. Hence, the construction strategy and the sampling method may have large influence on 
the model performance. In the future work, we will develop more suitable sequence construction and 
sampling strategies for the POI recommendation task. 
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