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Abstract: The multi-point dynamic aggregation problem (MPDAP) that arises in practical applica-
tions is characterized by a group of robots that have to cooperate in executing a set of tasks distributed
over multiple locations, in which the demand for each task grows over time. To minimize the com-
pletion time of all tasks, one needs to schedule the robots and plan the routes. Hence, the problem is
essentially a combinatorial optimization problem. The manuscript presented a new MPDAP in which
the priority of the task was considered that is to say, some tasks must be first completed before others
begin to be executed. When the tasks were located at different priority levels, some additional con-
straints were added to express the priorities of tasks. Since route selection of robots depends on the
priorities of tasks, these additional constraints caused the presented MPDAP to be more complex than
ever. To efficiently solve this problem, an improved optimization algorithm, called the multi-strategy
genetic algorithm (MSGA), was developed. First of all, a two-stage hybrid matrix coding scheme was
proposed based on the priorities of tasks, then to generate more route combinations, a hybrid crossover
operator based on 0-1 matrix operations was proposed. Furthermore, to improve the feasibility of in-
dividuals, a repair schedule was designed based on constraints. Meanwhile, a q-tournament selection
operator was adopted so that better individuals can be kept into the next generation. Finally, experi-
mental results showed that the proposed algorithm is feasible and effective for solving the MPDAP.

Keywords: multi-point dynamic aggregation problem; multi-robot system; task allocation; genetic
algorithm; priority

1. Introduction

The multi-point dynamic aggregation problem (MPDAP) [1] is a topic of great interest in the field of
optimization. It is widely applied in real-world applications, such as intelligent security [2], agricultural
production [3], post-disaster search [4], resource allocation and scheduling for medical care [5, 6],
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multi-robot target detection and tracking [7], e-commerce logistics system [8] and other task allocation
optimization applications [9]. In a nutshell, the MPDAP is that multiple tasks are distributed in different
locations, the demand of each task is increasing over time and a group of robots goes to execute these
tasks from the initial position so that the time to complete the tasks is minimized.

MPDAP originated as a multi-robot task scheduling system, which determines how robots are
scheduled to cooperatively complete tasks in order to optimize the performance of a multi-robot task
scheduling system [10, 11]. Due to the complex relationship between robots and tasks caused by
time-varying task demands and the coordinated execution of tasks, MPDAP is a very challenging and
interesting problem. Over the past few years, researchers have proposed several approaches to solve
this problem. In [12], Gao et al. proposed an adaptive cooperative ant colony optimization algorithm
(AC-ACO). In the framework of the ant colony algorithm, a new pheromone matrix and a pheromone
updating mechanism were proposed to improve the efficiency of solution construction; meanwhile,
in order to reduce the search space and remove some bad solutions, a pheromone restoration based
mechanism was investigated to improve the ability of constructing feasible solutions, and local search
was used to improve the balance between exploration and exploitation [12]. With the purpose of mak-
ing each robot effectively avoid collisions with obstacles and other robots in the environment, Xin et
al. [1] proposed a distributed motion planning algorithm for motion path planning of multiple robots.
Simulation results show that the algorithm can effectively solve the motion planning problem of mul-
tiple robots in the MPDAP task and can cooperate to efficiently accomplish the MPDAP task. Xin et
al. [13] abstracted and modeled forest fire suppression as an MPDAP. For this problem, an estimation of
distribution algorithm (EDA) using K-means clustering and multi-modal Gaussian distribution was de-
signed, in which a multi-mutation encoding/decoding method was employed. The experimental results
show that the proposed EDA can find high quality solutions, and outperform genetic algorithms and
random search methods. For the agent routing problem in multi-point dynamic tasks (ARP-MPDT),
Lu et al. [14] used a multi-model estimation distribution algorithm with node histogram model (NHM)
and edge histogram model (EHM) in probabilistic model, in which the selection ratio of NHM and
EHM probability models was adaptively adjusted. The effectiveness and stability of the algorithm
was demonstrated through comparative experiments. Gao et al. [15] designed two memetic algorithms
based on different individual learning strategies to improve the search capability of the algorithm for
solving MPDAP, which were equality one-step local search (MA-OLS) with better exploration capa-
bility and elite multi-step local search (MA-MLS) with better exploitation capability. Experimental
results show that the proposed memetic algorithms outperform the state of the art method in solving
the task planning problems of MPDA. In order to efficiently solve the MPDAP, a hybrid differential
evolution (DE) and distribution estimation algorithm (EDA) called DE-EDA was proposed in [16]. The
algorithm combined the advantages of the differential evolution algorithm and distribution estimation
algorithm. DE-EDA was also applied to several MPDAP instances of different sizes and compared
with other methods in terms of convergent speed and solution quality, respectively. The results show
that DE-EDA can effectively solve the MPDAP. In [17], Chen et al. studied multi-agent dynamic task
allocation based on a forest fire point model and established a fire spread and dynamic task alloca-
tion model. Chen et al. proposed a dynamic task allocation scheme based on global information,
which ensured that each reallocation can shorten the task completion time and make all task comple-
tion times close to each other. Experiments can verify the better performance of the proposed dynamic
task allocation scheme. In [18], Yuan et al. proposed a multi-agent deep reinforcement learning-based
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multi-robot task assignment method, which has not only the advantage of reinforcement learning to
deal with dynamic environments, but also utilizes deep learning to solve the task assignment problem
with large state space and high complexity.

These algorithms mentioned above can efficiently solve traditional MPDAP. However, few re-
searches involve the priority of the tasks, and the existing approaches cannot be directly used to deal
with this kind of MPDAPs with priority constraints. In this manuscript, we focus on solving MP-
DAP with task priority constraints (MPDATP). In a real practical environment, some tasks need to
be prioritized according to urgent degree due to special locations of these tasks, which may lead to
greater losses. According to this fact, when the tasks are executed, one not only needs to consider
the total completion time but also, and more importantly, the urgency degree of the tasks. So, the
urgent tasks with priority should be completed before others. Such as in a fire scene, there are some
fire points surrounded by chemical plants or densely populated places, then these fire points must be
priorly disposed. For example, Figure 1 shows a multi-robot fire-fighting mission with priority rela-
tionships of tasks. Three robots are assigned to execute 5 tasks. Tasks 2 and 3 are located near the
school and chemical plant, respectively; hence, these two tasks need to be dealt with first. In MPDATP,
the priorities of partial tasks are considered according to the environment. The priority relationships
of the tasks in Figure 1 can be expressed as task2 → task3 → [task1, task4, task5]; that is to say,
ct2 < ct3 < cti (i = 1, 4, 5), where cti are the completion times of task i (i = 1, 2, 3, 4, 5).

task1

task2

depot

task3

task4

task5

robot1

robot2

school

chemical plant

robot3

Figure 1. The multi-robot fire-fighting mission with priority relationships of tasks.

In this case, in order to avoid making loss greater, the priority relationships of tasks need to be
considered in this set of tasks. Such fire points need to be prioritized for fire fighting and rescue, so in
this manuscript, the priority relationships of task execution are taken into account. In a practice setting,
it is reasonable to take the order of task completion as additional constraints when the urgency of the
task is taken into account. However, it can increase the difficulty of searching efficient scheduling
solutions. This is because when scheduling the robots to complete this set of tasks, it is not only
required to satisfy the priority order constraints, but also to minimize the completion time of the tasks.

Thus the MPDATP is a challenging problem. Based on the varying urgency of the tasks, we consider
the priority relationships of tasks and the original set of tasks can be divided into two groups of tasks:
One with priority relationships and another without. Therefore, the robots need to execute two groups
of tasks. The decision maker needs to make decisions on these two groups of tasks according to
the priority. Additionally, the robots are cooperative in completing this set of tasks, which causes a
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large search load compared to the general noncooperative one. Finally, the demand of each task is
increasing over time, and a small delay on a task can produce large task completion times. In addition,
high-quality evolutionary operators are also required to produce more good scheduling solutions for
the complex combinatorial optimization problem.

It should be noted that most of the existing models for MPDAPs are to minimize the completion
time of all tasks, in which each task has the same priority level. However, in a practice setting, a set of
tasks has different priority levels. A recurring question is “When tasks have different levels of urgency,
how should the decision maker go about scheduling the robots to efficiently accomplish this set of
tasks?”; that is to say, how can the decision maker schedule the robots to complete the set of tasks
in a way that satisfies the priority constraints while minimizing the time to complete the tasks, given
the priority of the tasks? Different from the above literatures, in this manuscript a new optimization
problem, MPDATP, is provided, which is solved by designing a new encoding scheme and efficient
evolutionary operators. The main innovations of this manuscript are presented as follows:

1) Based on the real-world requirement, a new MPDATP model is provided by adding priority
constraints to the original one. In the proposed model, some tasks need to be completed before others
due to priority, which has a different optimization procedure from traditional models.

2) A new two-stage hybrid matrix coding approach is proposed based on priority relationships of
the tasks. The first stage is designed to optimize the routes of robots with priority tasks, whereas the
second stage is for other tasks.

3) To generate more combinations of routes for the robots to execute the tasks, the crossover opera-
tor using matrix operations is adopted. Moreover, to improve the feasibility of individuals, two efficient
repair operators are designed for infeasible solutions.

The rest of the manuscript is arranged as follows. Sections 2 and 3 introduce the related research
and the MPDATP model, respectively. The detailed algorithm design is presented in Section 4. The
experimental studies are implemented in Section 5. Finally, Section 6 concludes this manuscript.

2. Related research

Evolutionary algorithms simulate the evolution of organisms in nature, because nature has a magical
power to preserve good genes and evolve strong genes that are more suitable for survival. By compar-
ing with traditional optimization algorithms, evolutionary computation is a mature global optimization
method with high robustness and wide applicability, which has the characteristics of self-organization,
self-adaptation and self-learning. Furthermore, it is able to deal with complex problems that are diffi-
cult to be solved by traditional optimization algorithms.

Evolutionary algorithms have a particularly wide range of applications, so many researchers use
different evolutionary algorithms to solve various of complex optimization problems in practice [19],
such as unmanned aerial vehicle (UAV) path planning [20], flexible job shop scheduling [21] and
flight operation data-sharing [22]. There are also a number of other applications available in the litera-
ture [23–25].

The genetic algorithm is one of the most popular evolutionary algorithms and it is widely used in
many fields. For the cooperation and collision avoidance problem of multiple unmanned surface ve-
hicles, Wang et al. [26] proposed an improved genetic algorithm as the core algorithm for planning
collision avoidance, which was improved by retaining, deleting and replacing, using hierarchical anal-
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ysis to establish the degree of fit and iteratively optimizing the adjustment of the speed and heading to
calculate the optimal collision avoidance paths for the current multiple unmanned surface vehicles. Mi-
lad et al. [27] proposed an enhanced genetic algorithm to plan the paths of multiple mobile robots in a
continuous environment, and five customized crossover and mutation operators were used to improve
the initial paths and to find the optimal path between the start position and the destination. For the
problem of autonomous navigation and control of unmanned ground vehicles, Xin et al. [28] proposed
a genetic algorithm based on a multi-domain inversion strategy, which can help to effectively improve
the ability of localized search and increase the probability of producing good individuals. In [29], a
quantitative particle swarm algorithm and a multi-population genetic algorithm were combined to con-
struct a new hybrid algorithm, which can effectively solve the automated dock two-level scheduling
model. For multi-person surface vehicle systems, Xia et al. [30] proposed an improved self-organizing
mapping and an improved genetic algorithm to solve multitask assignment and path planning. In the
problem of collision-free shortest path planning for mobile agents, Lee et al. [31] proposed a method
that combined a genetic algorithm and a directional factor to the target point. Additionally, other in-
teresting applications can be found in [32–35]. Due to the high performance of genetic algorithms
for solving complex combinatorial optimization problems, we adopt the genetic algorithm to solve
MPDATP in this manuscript.

3. The MPDATP model

In the MPDATP, a set of tasks S tasks = {task0, task1, task2, ..., taskN} and a set of robots S robots =

{robot1, robot2, ..., robotM} are considered. Each robotk executes tasks with a work efficiency vk and
their initial locations are in the depot (denoted as task0). Each taski has an inherent time-varying de-
mand qi(t), and the relationship between task demand and time is suggested by the following equations
in [12]:

qi(t) = qi(0) + βit , (3.1)

where qi(t) represents the demand of taski at time t, the initial demand of taski is qi(0) and βi is the
inherent increment rate of taski.

The MPDATP model is described as follows:

min f = max
i=1,2,··· ,N

cti (3.2)

subject to

N∑
j=0

yk
i j =

N∑
j=0

yk
ji ∀i = 1, 2, · · · ,N ∀k = 1, 2, · · · ,M (3.3)

N∑
i=0

M∑
k=1

yk
i j ≥ 1 ∀ j = 1, 2, · · · ,N (3.4)

N∑
i=0

yk
i j ≤ 1 ∀ j = 1, 2, · · · ,N ∀k = 1, 2, · · · ,M (3.5)

atk
0 = ct0 = 0 ∀k = 1, 2, · · · ,M (3.6)
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atk
j =

N∑
i=0

(cti + ti j)yk
i j ∀ j = 1, 2, · · · ,N ∀k = 1, 2, · · · ,M (3.7)

q j(t) − [
N∑

i=0

M∑
k=1

(ct j − atk
j)y

k
i jv

k] = 0 ∀ j = 1, 2, · · · ,N (3.8)

β j <

M∑
k=1

N∑
i=0

yk
i jv

k ∀ j = 1, 2, · · · ,N (3.9)

yk
i j ∈ {0, 1}, i , j, ∀ j = 1, 2, · · · ,N ∀k = 1, 2, · · · ,M (3.10)

cti < ct j, i f the priority o f task i is higher than that o f task j , (3.11)

where the binary decision variables yk
i j is taken as 1 if robot k goes from task i to task j, and 0 otherwise.

The notations used in the formulations are summarized in Table 1.

Table 1. Notations used in the problem formulation.

Notation Description
cti the completion time of task i
N the number of tasks
M the number of robots
atk

j the arrival time of robot k at task j
ti j the travel time from task i to task j
q j(t) the demand of task j accumulate at time t
vk the ability of of robot k
β j the inherent increment rate of task j

The objective (3.2) is to minimize the maximum completion time of all the tasks. However, it is
worth noting that in MPDATP, the objective function does not include the time spent returning to the
depot. Constraint (3.3) means that each robot has the same number of paths into each task as the
number of paths out of the task. Constraint (3.4) ensures that each task is executed by at least one
robot. Constraint (3.5) indicates that each task is executed by each robot at most once. Constraint (3.6)
sets the arrival time and completion time for the depot to 0. Constraint (3.7) implies that a robot
immediately goes to its next task once it completes its current task. Constraint (3.8) indicates that
a task is completed when its demand decreases to zero (i.e., the accumulated demand from time 0
to ct j equals to the total demand reduced by the robots executing the task during this time period).
Constraint (3.9) implies that for each task, the total ability of the robots executing the task must be
greater than the inherent increment rate of the task so that the task can be completed. Constraint (3.10)
sets the binary domain of the decision variable. Constraint (3.11) shows the effect of task priority on
task completion time.
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4. Algorithmic design

In this section, the multi-strategy genetic algorithm (MSGA) proposed in this manuscript is pre-
sented. Since a set of tasks is divided into two groups based on whether they have priority relation-
ships or not, the encoding is coded in a two-stage mixed 0–1 matrix with different decoding methods
for different groups. The three crossover operators are designed based on addition, subtraction and
the dot product of matrices to generate more route combinations and potentially good solutions. The
individual repair operators are designed based on the inverse order number in mathematics to ratio-
nalize the inverse order of the task completion time so as to satisfy the priority relationships of the
task completion time, as well as to improve the feasibility of the solution. Finally, the pseudo-code of
MSGA is given and algorithm performance is analyzed.

4.1. Encoding/Decoding strategies

In an MPDATP tasks planning problem with N tasks and M robots, without any loss of generality,
the stage I tasks are taken as those with priority. A feasible solution is encoded as an M × (N + 1)
matrix X:

Xm =



1 xm
11 xm

12 · · · · · · xm
1N

1 xm
21 xm

22 · · · · · · xm
2N

...
...

...
...

...
...

1 · · · · · · xm
rI · · · xm

rN
...
...

...
...

...
...

1 xm
M1 xm

M2 · · · · · · xm
MN


, (4.1)

where the elements in the first column of the matrix (4.1) are all 1, indicating that every robot starts
from the depot. From the second column to the last column, the rest of the elements are 0 or 1, as shown
in (4.2). (4.3) indicates that for each task, the total ability of the robots executing it must be greater than
its inherent increment rate. Otherwise, the task can never be completed. In the matrix (4.1), the left
and right sides of the vertical lines indicate the stages I and II, respectively. The tasks with priorities
are encoded in the stage I, and the other tasks are encoded in the stage II. It means that there are I tasks
with priorities among N tasks, and the remaining N− I tasks do not have. We assume that, according to
the environment and the urgency of the tasks, etc., the tasks are ordered from the highest to the lowest
priorities. The task with the highest priority is assigned the integer I, and the tasks are assigned the
integer in turn until the task with the lowest priority is assigned the integer 1.

xri =

 1, i f robot r goes to task i and completes the task i

0, otherwise
(4.2)

M∑
r=1

xrivr > βi . (4.3)

The decoding procedure is executed as follows:
In each row of (4.1), 1 means the robot visits the task, whereas 0 represents the robot never visits

the task. In the stage I, the order of visiting tasks is probabilistic according to the priority of the task,
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and the higher the ptaskki
(ki ∈ {1, 2, · · · , I}), the more likely it is to be visited first.

ptaskki
=

i∑I
i=1 i

(4.4)

In the stage II, the order of visiting tasks is determined by

VOtaski =
βi

spathi

, (4.5)

where βi is the inherent increment rate of task i and spathi is the path length from depot to task i. A task
with a larger βi and a smaller spathi should be visited preferentially. Hence, VOtaski can be taken as an
index by which the tasks can be chosen by a probability choice scheme, one by one.

For example, the example in Figure 1 can be encoded as follows:
1 0 1 1 1 0
1 1 1 0 1 1
1 1 1 0 1 1

 , (4.6)

where 
1 0 1
1 1 1
1 1 1

 (4.7)

and 
1 1 0
0 1 1
0 1 1

 (4.8)

are the encodings for stages I and II, respectively. For narrative clarity, matrix (4.6) is written as
matrix (4.9). 

robot depot task2 task3 task1 task4 task5

robot1 1 0 1 1 1 0
robot2 1 1 1 0 1 1
robot3 1 1 1 0 1 1

 (4.9)

In matrix (4.9), the first row [1 0 1 1 1 0] means that tasks [depot, task3, task1, task4] need to be
visited sequentially. The values of the relevant parameters of the tasks are shown in Tables 2 and 3.
Based on the visiting probability value ptask3 > ptask1 , ptask3 > ptask4 and the order VOtask4 > VOtask1 , the
visiting path of robot1 is determined as depot → task3 → task4 → task1.

Table 2. The values of ptask of the tasks in Figure 1.

Parameters task2 task3 task1 task4 task5

i 2 1 0 0 0
ptask 2/3 1/3 0 0 0
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Table 3. The values of VOtask of the tasks in Figure 1.

Parameters task1 task4 task5

β 0.3 1.5 1.2
s 3 5 6
VOtask 0.1 0.3 0.2

4.2. Evolutionary operators

I. Crossover operator
The crossover operator is a genetic recombination process that mimics reproduction in nature, in

which the individual quality of the population is improved. In order to improve the performance of
individuals and produce more promising individuals, three crossover operators are proposed.

Individuals participating in the crossover are selected with crossover probability pc and the selected
individuals are randomly paired. For each pair of parents, three crossover operators are randomly
selected to produce two offspring and these two offspring are used to replace the parental points, and
the points that do not participate in the crossover are directly regarded as their own offspring, thus
obtaining the set of crossover offspring.

Crossover operator 1, matrix addition strategy:

Oc1 = Xm + Xn . (4.10)

The offspring of the crossover operator 1 can be described as

Oc1 =



1 xm
11 + xn

11 xm
12 + xn

12 · · · · · · xm
1N + xn

1N
1 xm

21 + xn
21 xm

22 + xn
22 · · · · · · xm

2N + xn
2N

...
...

...
...

...
...

1 · · · · · · xm
rI + xn

rI · · · xm
rN + xn

rN
...

...
...

...
...

...

1 xm
M1 + xn

M1 xm
M2 + xn

M2 · · · · · · xm
MN + xn

MN


. (4.11)

Crossover operator 2, matrix subtraction strategy:

Oc2 = Xm − Xn . (4.12)

The offspring of the crossover operator 2 can be described as

Oc2 =



1 xm
11 − xn

11 xm
12 − xn

12 · · · · · · xm
1N − xn

1N
1 xm

21 − xn
21 xm

22 − xn
22 · · · · · · xm

2N − xn
2N

...
...

...
...

...
...

1 · · · · · · xm
rI − xn

rI · · · xm
rN − xn

rN
...

...
...

...
...

...

1 xm
M1 − xn

M1 xm
M2 − xn

M2 · · · · · · xm
MN − xn

MN


. (4.13)

Crossover operator 3, corresponding element multiplication strategy:

Oc3 = Xm ∗ Xn . (4.14)
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The offspring of the crossover operator 3 can be described as

Oc3 =



1 xm
11 × xn

11 xm
12 × xn

12 · · · · · · xm
1N × xn

1N
1 xm

21 × xn
21 xm

22 × xn
22 · · · · · · xm

2N × xn
2N

...
...

...
...

...
...

1 · · · · · · xm
rI × xn

rI · · · xm
rN × xn

rN
...

...
...

...
...

...

1 xm
M1 × xn

M1 xm
M2 × xn

M2 · · · · · · xm
MN × xn

MN


. (4.15)

Of the above three crossover operators, crossover operators 1 and 2 are designed based on the
addition and subtraction operations of matrices and crossover operator 3 is a newly defined matrix
multiplication rule for multiplying elements in corresponding positions in a matrix. The use of dif-
ferent crossover operators may generate more potential routes, which can improve the diversity of the
population.

II. Mutation operator
The mutation operator can improve the diversity of populations to some extent and likewise con-

tributes to the feasibility of populations. In order to produce potentially good solutions, the mutation
operation with 0-1 reciprocal change is used.

First, a fixed mutation probability pm and a random number η are generated for each gene in each
offspring in the crossover offspring set. If η ≤ pm, the number r in the bit is changed to 1 − r;
otherwise, the number remains unchanged. Specifically, the number r is changed into another number
1− r; otherwise, the bit remains unchanged. The mutation operator is performed on the elements of all
columns except for the first column.

III. Individual repair operator
During the evolution process, it may happen that robots cannot complete the tasks assigned to them

or they can complete the tasks but the time to complete them does not satisfy the priority restriction,
which leads to an infeasible solution. In MPDATP, it should first be rationalized that the robot can
complete each task. In addition, the priority relationship needs to be satisfied for each task. Finally,
it is desired that the time to complete the task is minimized. An efficient scheduling scheme requires
to adjust the robot’s routes such that the priority constraints are satisfied, resulting in a high-quality
feasible solution.

In the individual matrix (4.1), the elements in the first column are all 1, but the elements in the
other positions may not take values of 0 or 1, and perhaps do not satisfy the constraint (4.3). That is,
there are no robots to execute a certain task or the scheduled robots cannot complete the task, so the
repair operator simply adds robots to this task until they can complete this task. For constraint (4.3),
the repair operator 1 is used, which is given as follows:

Step 1. The elements in the individual matrix (4.1) are made feasible, i.e., the elements greater than
1 become 1, the elements less than 0 become 0.

Step 2. Verify whether the elements of each column satisfy constraints (4.3); if so, turn to Step 4;
otherwise, turn to Step 3.

Step 3. Randomly select the element in each column that is 0 and change it to 1 until the element in
that column satisfies constraint (4.3).

Step 4. End.
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In the MPDATP, tasks with priorities are also considered. The fact that individuals satisfy constraint
(4.3) just means that the set of tasks can be accomplished by these robots, but there is a possibility that
they do not satisfy the priority relationship of the tasks, so it is necessary to replan the routes of some
robots, and the planning makes it possible for the robots not only to accomplish this set of tasks, but
also to satisfy the priority relationship of the tasks. Therefore, we need to continue to optimize the
routes of robots so that it satisfies constraint (3.11) by individual repair operator 2. For the sake of
narrative convenience, we refer to the tasks that have a priority relationship as the tasks in stage I and
the others as the tasks in stage II.

An example is presented to illustrate the individual repair operator 2. The problem has a total of 10
tasks, where 5 tasks have priority relationships and other tasks do not, so it is useful to set their priority
relationship as T1 < T2 < T3 < T4 < T5 < T6,T7,T8,T9,T10.

Case 1 Ti(i = 1, 2, 3, 4, 5) < T j( j = 6, 7, 8, 9, 10) is met.
Step 1. If T1 < T2 < T3 < T4 < T5 is met, the repair process stops; otherwise, go to Step 2.
Step 2. Rank the completion times of stage I tasks to obtain the order T3 < T2 < T4 < T1 < T5; see

Table 4.

Table 4. Task completion time order(I).

Task task1 task2 task3 task4 task5

Target order 1 2 3 4 5
Inverse order number 3 1 0 0 0
Inverse proportion 3/4 1/4 0 0 0

In Table 4, the target order refers to the order relationship that the task priority needs to be satisfied
eventually, and the inverse order number represents the sum of the inverse order of a task in the current
order. The current order of the 5 tasks is 32415 (task3, task2, task4, task1, task5); 3 and 2 constitute an
inverse order, so the inverse order number of task2 is 1; 3, 2 and 4 all constitute the inverse order to 1,
so the inverse order number of task1 is 3.

Step 3. Internally schedule robots.
Since the inverse order number of task3, task4 and task5 is 0, the inverse order numbers of task2

and task1 are 1 and 3, respectively. So, task2 and task1 need to be moved forward by 1 and 3 bits,
respectively. Schedule robots from task3 and task4 to task2 or task1 using the task5 completion time as
a criterion.

The time to complete task3 is set to be 10 percent less than the time to complete task5, and the time
to complete task4 is set to be 5 percent less than the time to complete task5. Under this criterion, other
robots are dispatched from task3 and task4 into task1 or task2, and for ease of narration, these robots
are made into the Active Robot Group. Since task1 has a larger inverse order number, 75 percent of the
robots from the Active Robot Group are randomly scheduled to task1, and the remaining 25 percent of
the robots are scheduled to task2. The probability of scheduling a robot is determined by the inverse
proportion of the task, e.g., if the inverse order number of task1 is 3 and the inverse order number of
task2 is 1, the sum of the inverse order numbers is 4, so three-quarters (i.e., 75 percent) of the robots
from the Active Robot Group are scheduled to task1. For experimental convenience, this procedure
is executed up to 3 times and is stopped once the constraint (3.11) is satisfied; otherwise, Step 4 is
performed.
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Step 4. Externally schedule robots.
Schedule robots from the stage II tasks to the stage I tasks according to probability. In order to

minimize the total time to complete the tasks, it is specified that the smaller the time to complete a
task in the stage II tasks, the higher the probability of scheduling robots from that task, and the robots
are randomly scheduled within a given task. The process doesn’t stop until the constraint (3.11) is
satisfied.

Case 2 Ti (i = 1, 2, 3, 4, 5) < T j ( j = 6, 7, 8, 9, 10) is not met.
Step 1. Rank the completion times of stage I tasks to obtain the order T3 < T4 < Ti1 < T5 < Ti2 <

T1 < Ti3 < Ti4 < T2, i1, i2, i3 and i4 ∈ {6, 7, 8, 9, 10}; see Table 5. In case 2, only the order in which the
stage I tasks are listed in the overall task set is required.

Table 5. Task completion time order(II).

Task task1 task2 task3 task4 task5

Target order 1 2 3 4 5
Inverse order number 5 7 0 0 0
Inverse proportion 5/12 7/12 0 0 0

Step 2. Schedule robots from the Active Robot Group.
The current order of task1 and task2 are 6 and 9 in the whole task set, respectively. The task3,

task4 and task5 are ranked in the top 5, indicating that before task2, there are 4 stage II tasks that take
less time to complete. On the basis of being able to complete these 4 tasks of stage II and for ease
of narration, the rest of these robots are made into the Active Robot Group, and the robots from the
Active Robot Group are randomly scheduled to task1 or task2. Five-twelfths of the robots from the
Active Robot Group are randomly scheduled to task1, and the remaining seven-twelfths of the robots
are scheduled to task2. The process of randomly scheduling the remaining robots is executed up to
three times. Sort the completion times and stop if constraint (3.11) is satisfied, or, if the case 1 is
satisfied, continue the repair process according to case 1; otherwise, proceed to Step 3.

Step 3. Schedule remaining robots from the stage II tasks.
With the criterion that the stage II tasks can be completed, the remaining robots are randomly

scheduled to tasks with non-zero inverse ordinal numbers in the stage I task. The process of randomly
scheduling the remaining robots is executed up to three times. Sort the completion times and stop if
constraint (3.11) is satisfied, or, if the case 1 is satisfied, continue the repair process according to case
1; otherwise, proceed to Step 4.

Step 4. Schedule all robots from certain tasks in the stage II task.
Randomly schedule all robots from a task in the stage II task group to tasks with a non-zero inverse

order number in the stage I task to stop if it satisfies constraint (3.11), or, if the case 1 is satisfied,
continue the repair process according to the case 1; otherwise, continue to randomly dispatch all robots
from two (or three, or four, . . .) tasks in the stage II task group, schedule all robots to the tasks with a
non-zero inverse order number in the stage I task so that it satisfies constraint (3.11) or, in case 1, stop.

IV. Selection operator
The selection operator is intended to keep good individuals into the next generation or to lead

potential good individuals to appear in the next generation of the population. In this manuscript, the
q-tournament selection operator is adopted.
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The q individuals are randomly selected from the parent and the offspring populations, the one with
the highest fitness value is saved to the next generation and the process is repeatedly executed until the
number of individuals in the next generation reaches a predetermined population size.

4.3. Algorithm details

Based on the above-mentioned design, the pseudo-code of the MSGA is presented in Algorithm 1.
Algorithm 2 is the pseudo-code of the repair process for an individual.

Algorithm 1 Procedure of the MSGA
Require: Tmax: maximum running time; benchmark instance; NP:population size;
Ensure: output the set A to get the optimal solution X∗

1: generate initial population P(T ) = {X1, X2, · · · , XNP} ; T ← 0.
2: using Algorithm 2 to repair the individuals in the population P(T ).
3: store the optimal individual X∗ to the set A according to the fitness value of the individuals in P(T ).
4: while T ≤ Tmax do
5: the crossover offspring population O(T )c is obtained after the crossover operator of population

P(T ).
6: the offspring population O(T ) is obtained after the mutation operator of crossover offspring

population O(T )c.
7: using Algorithm 2 to repair the individuals in the population O(T ).
8: the next generation population P(T + 1) is obtained from population P(T ) and offspring popu-

lation O(T ) according to the selection operator.
9: update set A according to the fitness value of the individuals in O(T ).

10: T = T + 1.
11: end while

Algorithm 2 Procedure for repairing individuals
Require: current population: P(T )c = {X1(T )c, X2(T )c, · · · , XNP(T )c};
Ensure: repair population: P(T )r = {X1(T )r, X2(T )r, · · · , XNP(T )r};

1: for i = 1 : NP do
2: if Xi(T )c satisfies constraint (4.3) then
3: if Xi(T )c satisfies constraint (3.11) then
4: replace all the illegal elements in the individual Xi(T )c by 0 to get the repaired individ-

ual Xi(T )r;
5: else
6: individual Xi(T )c undergoes repair operator 2 to obtain individual Xi(T )r;
7: end if
8: else
9: individual Xi(T )c undergoes repair operator 1 and repair operator 2 to obtain individual

Xi(T )r;
10: end if
11: end for
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4.4. Algorithm analyze

In the original model MPDAP, the priority constraints of the tasks are not considered, so it is only
necessary to rationally plan the routes of the robots going to execute the tasks so that the time to
complete the set of tasks is minimized. In the MPDATP, some of the tasks have priority constraints,
and the obtained rational plan to execute the tasks must satisfy the priority constraints to minimize
the time to complete the set of tasks, which makes MPDATP more challenging when compared to the
original model. Based on the characteristics of MPDATP, we design MSGA. The reasonableness of
the MSGA design is analyzed below.

1) Encoding and decoding strategies
Because some of the tasks in a group of tasks have priority constraints, we use a two-stage hybrid

0-1 matrix encoding. The tasks with priorities are encoded in stage I and the other tasks are encoded in
stage II. With the purpose of satisfying the priority constraints, different decoding strategies are used.
After decoding, each row is the traveling path of a robot performing a task.

Figure 2 shows the representation of the solution presented in the AC-ACO [12]. According to the
instance in Figure 2, as encoded in this manuscript is matrix (4.16).

robot depot task1 task2 task3 task4 task5

robot1 1 1 0 1 0 1
robot2 1 0 1 1 0 1
robot3 1 0 0 0 1 1

 (4.16)

Figure 2. Solution construction process in AC-ACO.

Analyzing these two representations of the solutions, the encoding in the manuscript is formally
concise and decoded according to a decoding mechanism with information about the inherent incre-

Electronic Research Archive Volume 32, Issue 1, 445–472.



459

ment rate of the task as well as the length of the path, making the path of the robot to perform the task
more suitable for the MPDAP.

2) Evolution procedure
The crossover and mutation operators in MSGA are designed to generate more potentially good

solutions, and the selection operator is designed to keep the good solutions. Individual repair opera-
tors are also designed to enable the generation of more feasible good solutions, and to facilitate the
convergence of the algorithm. The evolution procedure is suitable for MPDATP.

3) Algorithm performance
MSGA is designed to solve MPDATP with encoding and decoding strategies, and evolutionary

operators based on priority constraints. Meanwhile, the number of priority tasks is not going to affect
the performance of the algorithm. It can be analyzed that an increase in the number of tasks with
priority constraints leads to an increase in the computational cost of finding a reasonable solution for
executing the task when dealing with this part of the task. However the computational cost of dealing
with the rest of the task will conversely decrease. The computational cost changes in trade-off with
the increase or decrease in the number of priorities, so the new model does not evidently increase the
computational cost of the optimization algorithm.

5. Simulation

The results of the simulation experiments are divided into two parts. In the first part, the original
model of MPDAP [12] is solved by MSGA and the model doesn’t involve priority constraints. Ac-
cording to the experimental results, the Friedman’s test and Wilcoxon’s test, it can be seen that MSGA
is effective in solving this kind of MPDAPs. In the second part, the priority constraints are taken into
account and MSGA provides the experimental results for the new model with priority constraints.

5.1. Comparison with other methods

All 50 benchmark instances are taken from [12]. In order to make the experimental results well
presented, the benchmark instances are divided into 3 groups, namely, Group 1, Group 2 and Group 3.
The differences between groups of benchmark instances are shown in Table 6, where N is the number
of tasks and M is the number of robots. All the instances are denoted by their group name, number of
robots, number of tasks and the ratio between the sum of all the task inherent rates and the sum of all
the robot abilities. For example, benchmark instance 1 is named as G1 5 4 0.39. G1 denotes the group
of the instance, 5 is the number of robots, 4 is the number of tasks and 0.39 is the ratio.

Table 6. Differences between groups of benchmark instances.

Instance The number of benchmark instances Range of N Range of M Range of N + M
Group 1 27 [4,40] [3,30] (9,50)
Group 2 6 [10,60] [15,40] [50,95)
Group 3 17 [15,120] [20,120] [95,180]

In order to make the comparison fair and verify the effectiveness of the MSGA, the parameter
settings are taken similar to the benchmark instances, and the stopping criterion is set also the same as
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competitors. The proposed algorithm is run independently for 30 times, and computational results are
recorded in Tables 7–12. The data of MA [15] based on two variants is shown in columns MA-MLS
and MA-OLS in Tables 7, 9 and 11. The data of EDA [16] is shown in column EDA in Tables 7, 9
and 11. The data of iterative local search (ILS) [35] is presented in column ILS in Tables 8, 10 and 12.
The data of AC-ACO [12] is provided in column AC-ACO in Tables 8, 10 and 12. Column MSGA
provides the computational results by MSGA.

In Tables 7–12, the comparison data includes the means and standard deviations of the completion
time of tasks, and ∗ means the corresponding method cannot obtain a feasible solution in a limited
period of time. The numbers in parentheses indicates the rank-order of all compared approaches on
a benchmark instance. The smaller the rank value, the better the algorithm. In addition, some visual
comparisons are also provided by Figures 3–8. For example, in Figure 3, in the set of bars of MA-
MLS, the performance of MA-MLS compared with other methods, ranked 1 is 4 times, ranked 2
is 13 times, ranked 3 is 9 times, and ranked 4 is 1 time, so the total rank value of all is 61, i.e.,
1 × 4 + 2 × 13 + 3 × 9 + 4 × 1 = 61.

Table 7. Comparison (I) of experimental results on Group 1.

Instance MA-MLS MA-OLS EDA MSGA
Mean Std Mean Std Mean Std Mean Std

G1 5 4 0.39 1.07E+2(4) 1.9E+0 1.06E+2(3) 1.5E+0 1.05E+2(2) 1.2E-1 1.03E+2(1) 1.5E+0
G1 5 5 1.66 1.22E+3(3) 4.6E+1 1.17E+3(2) 3.2E+1 1.31E+3(4) 5.9E+1 1.13E+3(1) 2.1E+1
G1 3 10 1.51 9.52E+2(3) 2.1E+1 9.22E+2(2) 3.6E+1 1.03E+3(4) 2.9E+1 8.76E+2(1) 3.3E+0
G1 3 15 5.03 1.09E+5(3) 4.4E+4 5.98E+4(2) 1.3E+4 ∗(4) ∗ 2.76E+4(1) 8.3E+2
G1 5 10 0.93 4.33E+2(2) 1.1E+1 4.20E+2(1) 1.2E+1 4.78E+2(3) 9.4E+0 4.09E+2(1) 6.5E+0
G1 10 5 1.39 6.00E+2(3) 2.2E+1 5.87E+2(2) 2.6E+1 6.53E+2(4) 2.7E+1 5.65E+2(1) 2.1E+1
G1 5 10 3.67 3.12E+4(3) 6.3E+3 2.23E+4(2) 2.9E+3 ∗(4) ∗ 1.30E+4(1) 3.1E+3
G1 5 20 4.36 5.24E+4(3) 7.2E+3 3.74E+4(2) 4.3E+3 ∗(4) ∗ 2.03E+3(1) 4.3E+2
G1 10 10 3.79 3.53E+4(3) 7.8E+3 3.19E+4(2) 6.8E+3 ∗(4) ∗ 7.79E+3(1) 3.1E+2
G1 11 11 1.28 3.05E+2(2) 1.7E+1 3.10E+2(3) 1.0E+1 4.06E+2(4) 1.7E+1 2.50E+2(1) 2.0E+1
G1 30 5 0.46 1.50E+2(1) 9.7E-1 1.50E+2(1) 6.9E-1 1.55E+2(2) 1.7E+0 1.50E+2(1) 1.1E+0
G1 15 10 1.17 3.39E+2(2) 1.0E+1 3.59E+2(3) 9.0E+0 4.19E+2(4) 1.1E+1 3.17E+2(1) 1.2E+0
G1 10 15 1.3 6.28E+2(2) 9.7E+0 6.44E+2(3) 1.0E+1 8.07E+2(4) 3.3E+1 6.07E+2(1) 9.7E+0
G1 20 10 0.47 1.04E+2(3) 1.9E+0 1.03E+2(2) 1.7E+0 1.13E+2(4) 2.5E+0 9.77E+1(1) 1.8E+0
G1 20 10 0.96 3.41E+2(2) 7.0E+0 3.61E+2(3) 4.5E+0 4.05E+2(4) 1.2E+1 3.31E+2(1) 4.0E+0
G1 20 10 0.94 2.73E+2(2) 8.5E+0 2.79E+2(3) 3.7E+0 3.12E+2(4) 6.5E+0 2.39E+2(1) 4.5E+0
G1 5 40 3.95 1.51E+4(3) 7.3E+2 1.43E+4(2) 5.1E+2 2.73E+4(4) 2.2E+3 1.23E+4(1) 4.6E+2
G1 10 20 6.04 ∗(2) ∗ ∗(2) ∗ ∗(2) ∗ 9.10E+4(1) 5.12E+3
G1 30 10 0.65 1.83E+2(2) 3.9E+0 1.84E+2(3) 3.4E+0 1.97E+2(4) 4.6E+0 1.68E+2(1) 2.4E+0
G1 15 20 0.67 3.51E+2(1) 7.0E+0 3.67E+2(3) 1.8E+0 3.92E+2(4) 6.1E+0 3.60E+2(2) 3.1E+0
G1 30 10 1.34 4.14E+2(2) 1.6E+1 4.58E+2(3) 8.0E+0 5.35E+2(4) 2.9E+1 4.02E+2(1) 3.2E+0
G1 15 20 5.98 ∗(2) ∗ ∗(2) ∗ ∗(2) ∗ 7.02E+4(1) 1.8E+3
G1 17 23 1.71 4.07E+2(1) 2.4E+1 6.10E+2(3) 2.5E+1 8.12E+2(4) 4.1E+1 4.58E+2(2) 3E+0
G1 20 20 0.58 2.74E+2(2) 5.7E+0 2.88E+2(3) 2.5E+0 3.05E+2(4) 4.4E+0 2.60E+2(1) 3.2E+0
G1 20 20 0.97 1.92E+2(2) 1.1E+1 2.53E+2(3) 6.3E+0 2.82E+2(4) 1.2E+1 1.45E+2(1) 2.3E+0
G1 20 20 0.967 4.01E+2(1) 7.8E+0 4.26E+2(3) 5.7E+0 4.80E+2(4) 1.3E+1 4.08E+2(2) 4.6E+0
G1 15 30 2.16 1.68E+3(2) 7.4E+1 2.09E+3(3) 5.8E+1 2.44E+3(4) 1.0E+2 1.41E+3(1) 2.2E+1
Rank value 61 - 66 - 99 - 30 -

The results of the Group 1 are shown in Tables 7 and 8 and Figures 3 and 4. MSGA is slightly worse
than MA-MLS in G1 15 20 0.67, G1 17 23 1.71 and G1 20 20 0.967; however, MSGA is better than
the comparison algorithm in the remaining 24 instances in Table 7. In Table 8, MSGA provides worse
results for 10 instances, but better results for the remaining 17 instances. For 27 benchmark instances
on Group 1, the rank-order values of MSGA are 30 and 39, respectively. The difference of 1 between
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MSGA’s rank value and AC-ACO’s rank value indicates that the two methods are not comparable in
performance. Compared with other methods except for AC-ACO, the rank value of MSGA is the
smallest.

Table 8. Comparison (II) of experimental results on Group 1.

Instance
ILS AC-ACO MSGA

Mean Std Mean Std Mean Std
G1 5 4 0.39 1.06E+2(2) 1.3E+0 1.06E+2(2) 1.3E+0 1.03E+2(1) 1.5E+0
G1 5 5 1.66 1.20E+3(2) 5.7E+1 1.23E+3(3) 2.9E+1 1.13E+3(1) 2.1E+1
G1 3 10 1.51 8.99E+2(3) 3.2E+1 8.77E+2(1) 1.5E+1 8.76E+2(1) 3.5E+0
G1 3 15 5.03 4.00E+4(3) 7.4E+3 2.73E+4(1) 10.0E+1 2.76E+4(2) 8.3E+2
G1 5 10 0.93 4.15E+2(2) 9.4E+0 4.09E+2(1) 8.2E+0 4.09E+2(1) 8.5E+0
G1 10 5 1.39 6.01E+2(3) 3.6E+1 5.68E+2(2) 1.7E+1 5.65E+2(1) 2.1E+1
G1 5 10 3.67 1.83E+4(3) 1.8E+3 1.31E+4(2) 7.1E+2 1.30E+4(1) 3.1E+3
G1 5 20 4.36 3.35E+4(3) 4.7E+4 1.79E+4(2) 1.0E+3 2.03E+3(1) 4.3E+2
G1 10 10 3.79 1.76E+4(3) 2.5E+3 7.44E+3(1) 3.7E+2 7.79E+3(2) 3.1E+2
G1 11 11 1.28 3.36E+2(3) 2.3E+1 2.79E+2(2) 1.1E+1 2.50E+2(1) 2.0E+1
G1 30 5 0.46 1.50E+2(1) 1.8E+0 1.50E+2(1) 1.9E+0 1.50E+2(1) 1.1E+0
G1 15 10 1.17 3.61E+2(3) 2.1E+1 3.42E+2(2) 8.0E+0 3.17E+2(1) 1.2E+0
G1 10 15 1.3 6.55E+2(3) 3.7E+1 6.30E+2(2) 1.3E+1 6.07E+2(1) 9.7E+0
G1 20 10 0.47 9.85E+1(3) 1.8E+0 9.67E+1(1) 1.7E+0 9.77E+1(2) 1.8E+0
G1 20 10 0.96 3.61E+2(3) 2.4E+1 3.41E+2(2) 7.2E+0 3.31E+2(1) 4.0E+0
G1 20 10 0.94 2.70E+2(3) 1.6E+1 2.50E+2(2) 3.6E+0 2.39E+2(1) 4.5E+0
G1 5 40 3.95 1.19E+4(2) 4.8E+2 1.17E+4(1) 6.3E+2 1.23E+4(3) 4.6E+2
G1 10 20 6.04 ∗(3) ∗ 9.19E+4(2) 4.1E+3 9.10E+4(1) 5.12E+3
G1 30 10 0.65 1.75E+2(3) 7.9E+0 1.61E+2(1) 2.9E+0 1.68E+2(2) 2.4E+0
G1 15 20 0.67 3.54E+2(2) 1.0E+1 3.33E+2(1) 4.5E+0 3.60E+2(3) 3.1E+0
G1 30 10 1.34 4.20E+2(3) 5.8E+1 3.68E+2(1) 8.5E+0 4.02E+2(2) 3.2E+0
G1 15 20 5.98 ∗(3) ∗ 7.83E+4(2) 2.1E+3 7.02E+4(1) 1.8E+3
G1 17 23 1.71 5.24E+2(3) 5.4E+1 3.43E+2(1) 1.5E+1 4.58E+2(2) 3E+0
G1 20 20 0.58 2.73E+2(2) 5.5E+0 2.60E+2(1) 3.7E+0 2.60E+2(1) 3.2E+0
G1 20 20 0.97 2.39E+2(3) 2.1E+1 1.65E+2(2) 6.3E+0 1.45E+2(1) 2.3E+0
G1 20 20 0.967 4.35E+2(3) 3.1E+1 3.78E+2(1) 5.9E+0 4.08E+2(2) 4.6E+0
G1 15 30 2.16 1.66E+3(3) 1.8E+2 1.34E+3(1) 3.6E+1 1.41E+3(2) 2.2E+1
Rank value 73 - 40 - 39 -

The computational results on Group 2 are shown in Tables 9 and 10 and Figures 5 and 6. In
Table 9, MSGA’s results are all top ranked. In Table 10, MSGA has worse results in G2 40 10 0.67
and G2 40 15 0.67, but better results in the remaining 4 examples. For 6 benchmark instances on
Group 2, the rank-order of the MSGA are 6 and 9 , respectively. In Table 10, the rank value of AC-
ACO is 10 and the rank value of MSGA is 9, which indicates that both methods perform similarly.
Compared with other methods except for AC-ACO, MSGA has a better performance on Group 2.

The computational results on Group 3 are shown in Tables 11 and 12 and Figures 7 and 8. In
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Table 11, the results of MSGA are all better than those of the comparison methods. Although in
Table 12, MSGA is slightly worse than AC-ACO in G3 60 30 1.14 and G3 80 80 0.54, MSGA is
better than the comparison methods in the other 15 instances. For 17 benchmark instances in Group
3, the rank-orders of the MSGA are 17 and 19, respectively. Compared with other algorithms, MSGA
has a better performance in Group 3.

Figure 3. Ranking comparison (I) of experimental results on Group 1.

Figure 4. Ranking comparison (II) of experimental results on Group 1.

Table 9. Comparison (I) of experimental results on Group 2.

Instance MA-MLS MA-OLS EDA MSGA
Mean Std Mean Std Mean Std Mean Std

G2 40 10 0.67 2.34E+2(2) 3.4E+0 2.39E+2(3) 1.3E+0 2.56E+2(4) 3.8E+0 2.29E+2(1) 3.2E+0
G2 40 15 0.67 2.99E+2(1) 3.1E+0 3.05E+2(2) 2.2E+0 3.20E+2(3) 3.7E+0 2.98E+2(1) 2.5E+0
G2 20 40 3.61 2.21E+4(2) 3.0E+3 5.28E+4(3) 4.6E+3 ∗(4) ∗ 5.35E+3(1) 3.2E+2
G2 30 30 1.04 5.58E+2(2) 8.9E+0 5.80E+2(3) 6.7E+0 6.36E+2(4) 7.5E+0 4.30E+2(1) 2.4E+1
G2 30 30 1.94 1.37E+3(2) 6.3E+1 1.54E+3(3) 4.3E+1 1.53E+3(3) 8.6E+1 8.78E+2(1) 3.2E+1
G2 15 60 3.64 1.73E+4(2) 1.3E+3 2.50E+4(4) 1.2E+3 2.08E+4(3) 1.4E+3 5.71E+3(1) 3.1E+2
Rank value 11 - 18 - 21 - 6 -
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Figure 5. Ranking comparison (I) of experimental results on Group 2.

Table 10. Comparison (II) of experimental results on Group 2.

Instance
ILS AC-ACO MSGA

Mean Std Mean Std Mean Std
G2 40 10 0.67 2.37E+2(2) 7.2E+0 2.27E+2(1) 3.2E+0 2.29E+2(2) 3.2E+0
G2 40 15 0.67 2.96E+2(2) 1.2E+1 2.80E+2(1) 4.3E+0 2.98E+2(3) 2.5E+0
G2 20 40 3.61 1.32E+4(3) 4.0E+3 5.53E+3(2) 4.3E+2 5.35E+3(1) 3.2E+2
G2 30 30 1.04 5.48E+2(3) 4.1E+1 4.66E+2(2) 6.4E+0 4.30E+2(1) 2.4E+1
G2 30 30 1.94 1.31E+3(3) 7.8E+1 1.10E+3(2) 4.0E+1 8.78E+2(1) 3.2E+1
G2 15 60 3.64 1.12E+4(3) 1.9E+3 1.01E+4(2) 4.8E+2 5.71E+3(1) 3.1E+2
Rank value 16 - 10 - 9 -

Figure 6. Ranking comparison (II) of experimental results on Group 2.

Because the experimental results of MSGA and AC-ACO are ranked, MSGA is ranked one place
ahead of AC-ACO, so MSGA and AC-ACO perform about the same in solving Groups 1 and 2; how-
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ever, there is a large ranking difference in Group 3 performance, with MSGA ranking 19 and AC-ACO
ranking 32. Meanwhile, except for AC-ACO, MSGA has a smaller and larger ranking compared to
all other methods. Therefore, it is not difficult to see that the MSGA is effective for solving these 50
benchmark instances.

Table 11. Comparison (I) of experimental results on Group 3.

Instance MA-MLS MA-OLS EDA MSGA
Mean Std Mean Std Mean Std Mean Std

G3 80 15 0.76 1.98E+2(2) 2.3E+0 2.00E+2(3) 2.4E+0 2.07E+2(4) 3.5E+0 1.60E+2(1) 2.2E+0
G3 20 60 1.51 1.01E+3(2) 2.9E+1 1.06E+3(3) 9.6E+0 1.15E+3(4) 1.4E+1 6.70E+2(1) 7.5E+0
G3 80 20 0.7 3.18E+2(2) 3.1E+0 3.24E+2(3) 2.1E+0 3.35E+2(4) 4.1E+0 2.55E+2(1) 3.8E+0
G3 80 20 1.12 3.90E+2(2) 6.2E+0 4.11E+2(3) 4.6E+0 4.53E+2(4) 1.1E+1 2.43E+2(1) 3.4E+0
G3 20 80 4.33 1.25E+5(2) 2.5E+4 2.33E+5(3) 2.0E+4 ∗(4) ∗ 1.86E+4(1) 2.3E+2
G3 60 30 1.14 5.52E+2(2) 9.9E+0 5.91E+2(3) 6.9E+0 6.95E+2(4) 2.2E+1 5.13E+2(1) 4.2E+0
G3 60 40 0.69 3.91E+2(2) 3.4E+0 3.99E+2(3) 3.0E+0 4.04E+2(4) 4.4E+0 3.20E+2(1) 2.1E+0
G3 40 60 1.54 9.48E+2(2) 1.7E+1 9.84E+2(3) 8.9E+0 1.05E+3(4) 1.5E+1 5.37E+2(1) 1.3E+1
G3 80 40 0.97 4.64E+2(2) 5.4E+0 4.79E+2(3) 3.9E+0 5.01E+2(4) 8.5E+0 3.10E+2(1) 4.2E+0
G3 40 80 1.05 6.42E+2(2) 8.1E+0 6.40E+2(3) 5.0E+0 6.60E+2(4) 9.5E+0 4.60E+2(1) 3.5E+0
G3 80 40 2.25 6.54E+3(3) 1.0E+3 1.01E+4(4) 8.8E+2 3.69E+3(2) 3.4E+2 1.42E+3(1) 3.2E+1
G3 60 60 0.92 4.29E+2(2) 5.3E+0 4.40E+2(4) 3.3E+0 4.36E+2(3) 6.2E+0 2.79E+2(1) 3.5E+0
G3 60 60 0.922 5.51E+2(2) 6.3E+0 5.64E+2(3) 4.8E+0 5.56E+2(2) 5.8E+0 3.84E+2(1) 6.0E+0
G3 120 30 1.2 4.44E+2(2) 6.1E+0 4.64E+2(3) 4.9E+0 4.94E+2(4) 1.2E+1 2.63E+2(1) 5.7E+0
G3 80 60 0.72 4.18E+2(3) 4.1E+0 4.28E+2(4) 3.9E+0 4.17E+2(2) 4.7E+0 3.17E+2(1) 3.3E+0
G3 80 80 0.54 3.23E+2(3) 3.3E+0 3.28E+2(4) 3.5E+0 3.08E+2(2) 2.5E+0 2.50E+2(1) 2.8E+0
G3 60 120 2.07 3.25E+3(3) 6.5E+1 3.36E+3(4) 4.6E+1 3.09E+3(2) 8.2E+1 1.97E+3(1) 5.5E+1
Rank value 38 - 56 - 57 - 17 -

Figure 7. Ranking comparison (I) of experimental results on Group 3.

In addition, the average rankings of the six methods on Groups 1–3 and the 50 benchmark instances
according to the Friedman’s test are shown in Table 13, where MSGA is ranked less (1.59, 1.50, 1.12,
1.42) than the other methods. Although the gap between MSGA (1.50) ranking and AC-ACO (1.67)
ranking is smaller on Group 2, there is a significant gap on Group 1, Group 3 and overall bench-
mark instances ranking, which means that MSGA performs better than others on overall benchmark
instances.
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Table 12. Comparison (II) of experimental results on Group 3.

Instance
ILS AC-ACO MSGA

Mean Std Mean Std Mean Std
G3 80 15 0.76 2.00E+2(3) 1.1E+1 1.70E+2(2) 3.6E+0 1.60E+2(1) 2.2E+0
G3 20 60 1.51 9.60E+2(3) 2.7E+1 7.53E+2(2) 1.9E+1 6.70E+2(1) 7.5E+0
G3 80 20 0.7 3.31E+2(3) 1.5E+1 2.86E+2(2) 5.5E+0 2.55E+2(1) 3.8E+0
G3 80 20 1.12 4.16E+2(3) 2.2E+1 3.10E+2(2) 7.2E+0 2.43E+2(1) 3.4E+0
G3 20 80 4.33 6.42E+4(3) 5.2E+3 2.21E+4(2) 2.0E+3 1.86E+4(1) 2.3E+2
G3 60 30 1.14 6.21E+2(3) 3.7E+1 5.08E+2(1) 7.2E+0 5.13E+2(2) 4.2E+0
G3 60 40 0.69 4.00E+2(3) 1.2E+1 3.40E+2(2) 3.0E+0 3.20E+2(1) 2.1E+0
G3 40 60 1.54 9.05E+2(3) 2.3E+1 6.82E+2(2) 2.0E+1 5.37E+2(1) 1.3E+1
G3 80 40 0.97 4.99E+2(3) 2.0E+1 3.86E+2(2) 5.2E+0 3.10E+2(1) 4.2E+0
G3 40 80 1.05 6.23E+2(3) 1.7E+1 5.00E+2(2) 6.6E+0 4.60E+2(1) 3.5E+0
G3 80 40 2.25 1.42E+4(3) 5.0E+3 1.69E+3(2) 6.6E+1 1.42E+3(1) 3.2E+1
G3 60 60 0.92 4.48E+2(3) 1.8E+1 3.17E+2(2) 4.0E+0 2.79E+2(1) 3.5E+0
G3 60 60 0.922 5.58E+2(3) 1.5E+1 4.18E+2(2) 6.9E+0 3.84E+2(1) 6.0E+0
G3 120 30 1.2 4.97E+2(3) 1.8E+1 3.40E+2(2) 6.7E+0 2.63E+2(1) 5.7E+0
G3 80 60 0.72 4.51E+2(3) 1.5E+1 3.29E+2(2) 2.8E+0 3.17E+2(1) 3.3E+0
G3 80 80 0.54 3.54E+2(3) 1.5E+1 2.49E+2(1) 1.8E+0 2.50E+2(2) 2.8E+0
G3 60 120 2.07 4.02E+3(3) 3.3E+2 2.19E+3(2) 6.9E+1 1.97E+3(1) 5.5E+1
Rank value 51 - 32 - 19 -

Figure 8. Ranking comparison (II) of experimental results on Group 3.

Results of the Wilcoxon signed-rank test on Group 1 in Table 14 provides larger R+ values than R−

values in all cases, and the p-value is larger than 0.1 for AC-ACO. However, the p-values are less than
0.05 for MA-MLS, MA-OLS, EDA and ILS. This shows that the performance of MSGA is better than
these methods.

Results of the Wilcoxon signed-rank test on Group 2 in Table 15 make clear in the same way that
MSGA performed better than the other four methods. It provides larger R+ values than R− values in all
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cases, and the p-values are less than 0.05 for MA-MLS, MA-OLS, EDA and ILS, except for AC-ACO.
Results of the Wilcoxon signed-rank test on Group 3 in Table 16 show that MSGA performed better

than the other five methods. It provides larger R+ values than R− values in all cases, and the p-values
are less than 0.05.

So, overall, MSGA ranks first in the Friedman’test, results of the Wilcoxon signed-rank test on
the 50 benchmark instances in Table 17 provide larger R+ values than R− values in all cases and the
p-values are less than 0.05, showing that MSGA performs better than other methods.

Table 13. Rankings by the Friedman’s test of MSGA and other methods.

Methods Ranking (Group 1) Ranking (Group 2) Ranking (Group 3) Ranking
MA-MLS 3.87 3.83 3.53 3.75
MA-OLS 4.20 5.33 4.62 4.48
EDA 5.74 5.67 5.00 5.48
ILS 3.69 3.00 4.85 4.00
AC-AC0 1.91 1.67 1.88 1.87
MSGA 1.59 1.50 1.12 1.42

Table 14. Results obtained by the Wilcoxon signed-rank test based on the mean values for
MSGA and other methods on Group 1.

MSGA VS R+ R− p-value α = 0.1 α = 0.05
MA-MLS 334 17 < 0.001 YES YES
MA-OLS 351 0 < 0.001 YES YES
EDA 378 0 < 0.001 YES YES
ILS 331 20 < 0.001 YES YES
AC-ACO 170.5 129.5 0.558 NO NO

Table 15. Results obtained by the Wilcoxon signed-rank test based on the mean values for
MSGA and other methods on Group 2.

MSGA VS R+ R− p-value α = 0.1 α = 0.05
MA-MLS 21 0 0.028 YES YES
MA-OLS 21 0 0.028 YES YES
EDA 21 0 0.028 YES YES
ILS 20 1 0.046 YES YES
AC-ACO 18 3 0.116 NO NO

On Groups 1 and 2, the performance of MSGA is comparable to that of AC-ACO, but better than
the other four methods. On Group 3, the performance of MSGA is better than the performance of all
five comparison methods. Overall, the performance of MSGA is better than the performance of the
other five comparison methods in the 50 benchmark instances, indicating that MSGA is feasible and
effective in solving MPDAP.
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Table 16. Results obtained by the Wilcoxon signed-rank test based on the mean values for
MSGA and other methods on Group 3.

MSGA VS R+ R− p-value α = 0.1 α = 0.05
MA-MLS 153 0 < 0.001 YES YES
MA-OLS 153 0 < 0.001 YES YES
EDA 153 0 < 0.001 YES YES
ILS 153 0 < 0.001 YES YES
AC-ACO 150 3 < 0.001 YES YES

Table 17. Results obtained by the Wilcoxon signed-rank test based on the mean values for
MSGA and other methods on the 50 benchmark instances.

MSGA VS R+ R− p-value α = 0.1 α = 0.05
MA-MLS 1202 23 < 0.001 YES YES
MA-OLS 1225 0 < 0.001 YES YES
EDA 1275 0 < 0.001 YES YES
ILS 1186 39 < 0.001 YES YES
AC-ACO 857.5 270.5 0.002 YES YES

5.2. Experimental results of MPDATP

In this subsection, a simulation experiment is done based on the prioritization relationship of tasks.
In a real environment, some tasks need to be prioritized according to their urgency due to their special
location, which can lead to greater losses. In fact, when executing these tasks, it is not only necessary to
consider the total completion time but, more importantly, to consider the urgency of the task. Therefore,
priority should be given to the immediate task. For the convenience of the experiment, without loss of
generality, 50 percent of a set of tasks are set to have priority constraints in the simulation experiment.
The results of the simulation experiments are shown in Tables 18–20, where f refers to the objective
function of the model.

According to the data in Tables 18–20, it can be seen that the time to complete a set of tasks increases
after considering the task priority constraints set by the urgency degree of the tasks. However there is
also a small number of instances in which the time to complete the task is the same as the completion
time of the original model; this is because the randomly set task priority may be the same as the optimal
solution for completing the task in the original model, which results in the same value of the objective
function for the two models. The time to complete the tasks increases when there are task priority
constraints, and in a practical setting it is possible to sacrifice the cost of time for the sake of life or
some properties.

6. Conclusions

In the model of MPDATP, a set of tasks needs to be prioritized. In this manuscript, the tasks
prioritization relationships were considered based on the urgency of the task. In order to efficiently
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Table 18. The solutions of prioritized relational model for Group 1.

Instance
Best solution of prioritized relational model Best solution of original model
f f

G1 5 4 0.39 1.03E+2 1.03E+2
G1 5 5 1.66 1.16E+3 1.13E+3
G1 3 10 1.51 1.10E+3 8.76E+2
G1 3 15 5.03 2.76E+4 2.75E+4
G1 5 10 0.93 6.23E+2 4.09E+2
G1 10 5 1.39 6.02E+2 5.65E+2
G1 5 10 3.67 1.34E+4 1.30E+4
G1 5 20 4.36 2.03E+3 2.03E+3
G1 10 10 3.79 8.56E+3 7.79E+3
G1 11 11 1.28 3.71E+2 2.50E+2
G1 30 5 0.46 2.68E+2 1.50E+2
G1 15 10 1.17 7.16E+2 3.17E+2
G1 10 15 1.3 6.50E+2 6.07E+2
G1 20 10 0.47 3.01E+2 9.77E+1
G1 20 10 0.96 5.23E+2 3.31E+2
G1 20 10 0.94 4.47E+2 2.39E+2
G1 5 40 3.95 3.58E+4 1.23E+4
G1 10 20 6.04 1.17E+5 9.10E+4
G1 30 10 0.65 4.46E+2 1.68E+2
G1 15 20 0.67 6.61E+2 3.60E+2
G1 30 10 1.34 7.37E+2 4.02E+2
G1 15 20 5.98 1.55E+5 7.02E+4
G1 17 23 1.71 4.58E+2 4.58E+2
G1 20 20 0.58 5.27E+2 2.60E+2
G1 20 20 0.97 1.45E+2 1.45E+2
G1 20 20 0.967 4.95E+2 4.08E+2
G1 15 30 2.16 2.11E+3 1.41E+3

Table 19. The solutions of bilevel programming model for Group 2.

Instance
Best solution of prioritized relational model Best solution of original model
f f

G2 40 10 0.67 3.07E+2 2.29E+2
G2 40 15 0.67 4.97E+2 2.98E+2
G2 20 40 3.61 6.60E+3 5.35E+3
G2 30 30 1.04 9.09E+2 4.30E+2
G2 30 30 1.94 1.42E+3 8.78E+2
G2 15 60 3.64 5.80E+3 5.71E+3
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Table 20. The solutions of bilevel programming model for Group 3.

Instance
Best solution of prioritized relational model Best solution of original model
f f

G3 80 15 0.76 4.96E+2 1.60E+2
G3 20 60 1.51 5.55E+3 6.70E+2
G3 80 20 0.7 5.13E+2 2.55E+2
G3 80 20 1.12 6.49E+2 2.43E+2
G3 20 80 4.33 1.26E+5 1.86E+4
G3 60 30 1.14 6.15E+2 5.13E+2
G3 60 40 0.69 5.99E+2 3.20E+2
G3 40 60 1.54 1.57E+3 5.37E+2
G3 80 40 0.97 9.68E+2 3.10E+2
G3 40 80 1.05 8.13E+2 4.60E+2
G3 80 40 2.25 1.15E+4 1.42E+3
G3 60 60 0.92 7.67E+2 2.79E+2
G3 60 60 0.922 1.16E+3 3.84E+2
G3 120 30 1.2 8.10E+2 2.63E+2
G3 80 60 0.72 1.08E+3 3.17E+2
G3 80 80 0.54 1.00E+3 2.50E+2
G3 60 120 2.07 3.21E+3 1.97E+3

solve this problem, an MSGA was proposed, in which a two-stage hybrid matrix encoding was given
to show the route of each robot for the tasks with priority constraints. Meanwhile, to improve the
diversity and feasibility of individuals, three crossover operators based on matrix operations and two
individual repair operators based on rationally adjusting the inverse order were given, respectively.
From the experimental results, the proposed MSGA solving MPDAP was effective. Moreover, the
MSGA also provided decision makers with effective task completion options in cases where some
tasks have priority constraints.

In the future, there are still some interesting topics that need to be further investigated. There is also
a need to design optimization operators and optimization learning techniques that are more suitable
for solving such practical problems, as well as to provide decision makers with more sound theoretical
guidance.
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