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Abstract: Photovoltaic (PV) power generation is pivotal to the energy strategies of various nations,
yet it is plagued by significant security challenges. This paper proposes a large-scale neural network
model that integrates time-domain and frequency-domain techniques for the detection of arc faults in
PV systems. The algorithm leverages sequence decomposition to extract trend information from cur-
rent signals, and then applies the Fourier transform to convert various encoded data into the frequency
domain. Due to the sparsity of frequency-domain information, the computational cost of extracting and
processing information in the frequency domain is minimal, resulting in high efficiency. The selectively
extracted information is then input into a separate lightweight classifier for classification and recogni-
tion. The proposed intelligent framework not only effectively filters out high-frequency noise signals,
but also demonstrates strong robustness against various disturbances, yielding exceptional recognition
performance with an accuracy rate consistently surpassing 97%. Code and data are available at this
repository: https://github.com/yixizhuimeng?tab=projects.

Keywords: signal processing; arc fault detection; artificial intelligence; time-domain and
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1. Introduction

Energy is a fundamental infrastructure underpinning national development and has profound im-
pacts on economic, environmental, and social progress. As energy consumption accelerates, traditional
energy sources approach depletion [1,2]. Moreover, greenhouse gases and environmental pollution re-
sulting from traditional energy consumption significantly affect human quality of life. Renewable
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energy sources, including solar PV and wind power, are emerging as vital solutions for energy secu-
rity and sustainable development. Renewable energy grid integration systems are widely applied in
both distributed power generation and residential power systems. Consequently, there is an increasing
emphasis on the safety of renewable energy systems and inverters [3].

Solar PV power, characterized by its small footprint, ease of installation, and high power generation
capacity, is globally popular and widely applied. In 2020, the addition of renewable energy capacity
exceeded 256 gigawatts (GW), of which solar PV power contributed over half, reaching 139 GW. The
total installed capacity for renewable energy reached 760 GW [4]. It is projected that by 2050, renew-
able energy will be a primary electricity source, providing approximately 11% of global electricity [5].
In the practical application of solar PV systems, direct current (DC) arc faults are among the most
hazardous faults [6]. Electric arcs, a critical challenge in PV systems, are formed by the ionization of
gases between two conductors, leading to a sustained plasma discharge [7]. This process typically oc-
curs through a medium that is usually non-conductive, such as air. Electric arcs are not only hazardous
due to their high temperature and intense brightness, but also because they can cause damage to elec-
trical equipment and pose a fire risk [8]. In terms of electrical characteristics, electric arcs manifest as
distinctive, periodic fluctuations in voltage and current, often accompanied by unique frequency com-
ponents distinguishable from normal operational signals [9]. These properties of electric arcs make
them both a critical area of study and a challenge for effective detection in PV systems.

Typically, PV systems commonly exhibit three types of arc faults: series arc faults (SAF), parallel
arc faults (PAF), and ground arc faults (GAF). Parallel arc faults (PAF) and ground arc faults (GAF) are
usually accompanied by observable signal alterations. Traditional detection apparatus can accurately
capture these signal deviations to initiate appropriate responses [10]. Nevertheless, signal perturbations
resulting from series arc faults (SAF) are subtle, and conventional threshold-based detection methods
struggle to discern such nuanced changes. Consequently, this investigation concentrates on series arc
faults (SAF) within PV systems. Furthermore, the unpredictable incidence of arcs and the pulse-width
modulation (PWM) control utilized in PV inverters introduce high-frequency noise interference to the
current, amplifying the complexity of arc detection tasks [11].

Researchers worldwide have conducted extensive research on direct current arc faults, yielding
some results. Arc fault identification primarily involves four research directions: simulation models,
arc light radiation, electrical signal fluctuations, and reasoning-based intelligent algorithms like neural
networks. Most research involves modeling arc macro characteristics using physical and mathemati-
cal equations, considering arcs as variable resistors and calculating their equivalent impedance using
nonlinear differential equations. Notable models include the Mayr model [12], the Cassie model [13],
and the improved Schavemaker model [14]. Some researchers have improved traditional impedance
models with dynamic models like diode models and hyperbolic models, elucidating arc-related effects
through voltage and current relationships [15]. However, there are significant gaps in the existing
literature, particularly regarding the real-world application of these models due to the complexity of
equations and parameter limitations.

Physical phenomena-based detection methods, like arc light radiation, rely on capturing arc occur-
rences’ physical phenomena using relevant instruments. Murakami et al. [16] observed arc light beams
using high-speed cameras. Yue et al. [17] determined arcs by detecting high input capacitance-caused
intermittent discharges at the interface. Xiong et al. [18] analyzed arc signals’ electromagnetic radi-
ation signals using a fourth-order Hilbert curve. Generally, these methods have successfully detected
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arcs. However, the randomness of arc occurrence positions limits their large-scale application. Electri-
cal signal fluctuation-based detection methods involve studying and analyzing the strong voltage and
current changes occurring when an arc occurs. From a data processing perspective, these methods are
intricately divided into three dimensions: time domain, frequency domain, and time-frequency domain.
While these traditional methods have shown some success in detecting arcs, their practical application
faces limitations due to the inherent randomness of arc occurrence and the variability in arc character-
istics. Compared to previous approaches, our work stands out by providing a more holistic and robust
solution for arc detection, leveraging the strengths of both time-domain and frequency-domain analy-
sis. Our method overcomes the limitations of traditional methods by efficiently processing the unique
electrical signatures of arcs, thus offering a more reliable and scalable solution for arc fault detection
in PV systems.

The method based on changes in the telecommunication signal has been widely applied due to
its simple implementation. Hastings et al. [19] determined arcs by comparing different current peak
signals. Gu et al. [20] conducted arc frequency domain characteristic analysis using the Fast Fourier
Transform (FFT). Frequency domain analysis alone cannot determine the exact arc occurrence time.
Therefore, some researchers combine time-domain and frequency-domain analysis. Liu et al. [21]
used Variational Mode Decomposition (VMD) to fuse time-domain and frequency-domain signals, en-
hancing the arc detection algorithm’s resistance to interference. Wang et al. [22] and Chen et al. [23]
conducted a multi-resolution analysis of arc signals in the time-frequency domain using wavelet trans-
forms. These methods significantly improved arc detection accuracy but are limited by the need for
manually set thresholds. There are no universally applicable discrimination criteria for current and
voltage in different scenarios, hence the need for more effective arc fault detection methods.

Recently, with the upgrade in computing resources, neural networks have been widely applied in
various fields due to their powerful learning and recognition capabilities [24,25]. Li et al. [26] proposed
using a backpropagation-based neural network for arc detection. Yang et al. [27] converted filtered arc
data into grayscale images as Convolutional Neural Network (CNN) inputs for arc classification. Lu
et al. [28] suggested a combined approach using domain adaptation and a Deep Convolutional Gen-
erative Adversarial Network (DA-DCGAN) for arc detection, achieving promising results. Wang et
al. [29] processed power spectra using a Convolutional Neural Network and proposed a lightweight
Efficientnet-B1 model. Data-driven artificial intelligence algorithms that continuously collect data
from new scenarios to reconfigure model parameters show great promise in the field of arc fault detec-
tion [30–32]. However, there are challenges that hinder its full potential [33, 34].

In the field of arc fault detection based on deep learning, there are three significant challenges: 1)
Lack of a common dataset: currently, there is no publicly available dataset for arc fault detection. This
means that researchers need to set up their own arc detection experimental platforms and collect data
before conducting relevant studies. This process can be time-consuming and leads to difficulties in
effectively comparing new models developed by different researchers. 2) Limited scope of learnable
neural networks: existing learnable neural networks are often limited to specific scenarios, lacking a
large-scale, generalized neural network architecture that can handle multiple scenarios effectively. 3)
Time-series analysis for arc prediction: arc occurrences follow a timeline, and the processes before and
after the arc event contain rich time-series information. This information can be utilized for predicting
arc occurrence trends through time-series analysis.

The main contributions of this article, supported by subsequent sections, are as follows:
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1) Provision of a large standard dataset. We create a large standard dataset comprising ten thousand
data points, including various loads such as resistors, capacitors, and inductors. This dataset will assist
researchers in conducting experiments and model evaluations in the field of arc fault detection.

2) Introduction of data augmentation strategy. We employ a classical time-series decomposition
method. This deep-level encoding input strategy is expected to enhance the model’s feature extraction
capability, as demonstrated in our experiments.

3) Fusion of time and frequency domain information. Our approach combines time-domain and
frequency-domain data, utilizing the Fourier transform for feature extraction. This method simplifies
the attention mechanism, capturing both global and local information, as shown in the results.

4) Efficient classifier. We introduce an efficient fast mapping classifier, outperforming traditional
neural networks in classification tasks, as evidenced in our comparative studies.

The rest of this article is organized as follows. Section 2 introduces related work. Section 3 presents
the proposed model, with a focus on highlighting the improved model’s key components. Section 4 dis-
cusses the evaluation methods and experimental tests. Finally, the experimental findings are explained,
scientific contributions summarized, and future research directions indicated.

2. Related work

The lifecycle of an arc can be broadly divided into four phases: normal, arcing, stable burning, and
extinguished states. As per the UL1699B standard, it is imperative to perform arc fault detection within
the arcing phase. Throughout an arc’s entire lifecycle, subsequent stages are chronologically dependent
on preceding ones, sharing similar components. This process essentially encapsulates a time-series re-
lationship. Unlike other sequential data types, such as language or video, time-series data is recorded
continuously, with each point saving only some scalars. Since a single time point typically cannot pro-
vide sufficient semantic information for analysis, many studies focus on temporal variations, which are
more informative and can reflect the inherent properties of time series, such as continuity, periodicity,
and trend. The Transformer model [35] has shown exceptional performance in sequence processing in
recent years, thanks to its self-attention mechanism. It has yielded remarkable results across various
domains, including natural language processing [36], audio processing [37], and motion analysis [38].
The superior capability of the Transformer architecture primarily stems from its multi-head attention
mechanism, which excels at capturing correlations in long sequences. However, it is crucial to note
that self-attention mechanisms come with O(L2) complexity in terms of both memory and time for
sequences of length L, which can be highly unfriendly. LogTrans [39] employs causal convolutions
to incorporate features into the attention mechanism, reducing the complexity to O(L(log L)2). In-
former [40] utilizes a ProbSparse self-attention mechanism based on the KL divergence to reduce the
complexity to O(L*log L). Reformer [41] replaces dot-product attention with local hashing attention,
reducing the complexity from O(L2) to O(L*log L). Autoformer [42] introduces a sequence-based at-
tention mechanism, achieving O(L*log L) complexity. Pyraformer [43] introduces a multi-resolution
pyramid attention mechanism for modeling long-range dependencies and time series prediction, reduc-
ing both time and space complexity to O(L). FEDformer [44] leverages frequency-domain information
to represent sparsity and designs a frequency-enhanced Transformer, reducing complexity to linear.

Electronic Research Archive Volume 32, Issue 1, 332–353.



336

3. Method

3.1. The data augmentation module for sequence decomposition

In actual arc sampling data, the arc data’s behavior exhibits a wider range compared to normal
data. The normal data range is encompassed by the arc data, making it challenging to separate normal
data for detection. Due to the evident temporal correlations in arc data, we introduce a time-series
decomposition approach for handling arc recognition tasks. It is crucial to highlight that the actual
arc noise, influenced by different loads, can not be ignored. Our method takes into account the noise
and discrepancies introduced by these varying loads, ensuring a closer alignment with real-world arc
characteristics. Time-series decomposition aids in understanding the characteristics of time-series data,
enabling better detection. In the STL (Seasonal and Trend decomposition using LOESS) time series
decomposition algorithm [45], the original time series data is separated into several constituent parts,
each representing distinct patterns or categories that can potentially be predicted. Usually, it includes
the trend component, seasonal component, and residual, representing the long-term trend, repetitive
cycles, and irregular fluctuations, respectively, within a time series. Figure 1 illustrates the current
decomposition in the normal and arc state.

Figure 1. Normal current and abnormal current decomposition schematic diagram.

Xt = Ŝ t + T̂t + R̂t (3.1)

where Ŝ t represents seasonal information, T̂ t represents trend cycle information, and R̂t represents
residual information. Inspired by Zhou et al. [44], we apply the concept of sequence decomposition to
process the arc data.

In the seasonal-trend decomposition, for an input sequence of length L, the trend component of
the time series x (x ∈ RL∗d), denoted as t, is obtained by taking the average of the sum of sequence
values over k periods. This process is referred to as moving average smoothing, and the procedure is
as follows:

T̂t =
1
m

k∑
j=−k

xt+ j (3.2)
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where m = 2k + 1, T̂ t represents the trend component value at time t, and xt+ j represents the value of
the time series at the jth position relative to time t, with t as the symmetric center.

Through the process of moving average smoothing, some of the randomness in the original time
series data is eliminated, while the smoothed trend component is retained, resulting in the creation of a
new sequence. He et al. [46] employed a residual approach to transmit the original information directly
to deeper layers, ensuring the sufficiency of learnable information in neural networks. Inspired by this
concept, we use the decomposed trend components of the original time series as carriers to transfer
information to deeper layers. Compared to directly transmitting the raw sequence information, the
trend components contain purer sequence information, which significantly reduces the blind feature
extraction inherent in using convolutional methods.

This decomposition, especially the extraction of the trend component, plays a vital role in arc de-
tection. The trend component helps in isolating the consistent and longer-lasting patterns in the data,
which can be indicative of the arc’s presence.

3.2. Frequency domain information processing module based on Fourier transform

The Fourier transform is an effective tool for mapping information from the time domain to the
frequency domain, decomposing a time-domain signal into a superposition of different frequencies of
sine or cosine waves. The mathematical formula is as follows:

F(ω) =
∫

f (t)e−iωtdt (3.3)

where f(t) is the time-domain function, F(ω) is the representation of the function in the frequency
domain, i is the imaginary unit, and ω is the frequency. In a time series, the current value not only
depends on past values, but also exhibits some form of dependency on future values, showing mutual
interdependence. A time series signal is transformed into its corresponding signal spectrum through
the Fourier transform, where the amplitude and phase information of each frequency component col-
lectively represent the characteristics of the original signal at that frequency. This allows us to obtain
global information such as the main frequency component and frequency distribution range. On the
other hand, due to the temporal correlations in time series signals, there are highly similar components
between data signals. The frequency domain information matrix obtained using the Fourier transform
has low rank, theoretically reducing the complexity of the input signal.

Assuming the input current signal is x(x ∈ RN∗D), it is first subjected to a linear projection using
the matrix W(W ∈ RD∗D) to obtain the q(q ∈ RN∗D) information matrix. After processing with the
Fourier function, the time-domain information matrix q is transformed into the frequency-domain in-
formation matrix Q(Q ∈ RN∗D). Due to the similarity in the frequencies of the main components in
the frequency-domain information, we select a certain number of frequencies using random sampling
as the main frequencies for the entire information. Compared to fixed sampling, random sampling
allows for a more comprehensive consideration of both low-frequency and high-frequency component
characteristics.

Q̃ = Sel(Q) = Sel(F(q)) (3.4)

Where Q̃ ∈ CM∗D, we limit M << N, significantly reducing the computational complexity. We
initialize a set of random parameter matrices R(R ∈ CD∗D∗M), where the first D represents the input
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channel and the second D represents the output channel. We define Y as the result of the operation
between Q and R, represented as follows:

Ỹ = Q̃ ⊙ R (3.5)

where Ỹ ∈ CM∗D. To restore the obtained information using zero-padding to the same length as in-
formation Y(Y ∈ RN∗D), we then use the inverse Fourier transform to convert the frequency-domain
information back to the time domain. The specific process is represented as follows:

Fe(q) = F−1(Padding(Q̃ ⊙ R)) (3.6)

where F−1(x) represents the inverse Fourier transform, and Fe(q) represents the time-domain informa-
tion.

Transforming the signal to the frequency domain enables the model to detect arc-specific frequency
components, which might be otherwise masked in the time-domain data. This transformation is crucial
as arcs generate characteristic frequency signatures that can be isolated and detected more effectively
in the frequency domain.

3.3. Frequency domain attention mechanism based on the Fourier transform

For the input information’s queries, keys, and values matrices, they can be represented as q ∈
RL∗D, k ∈ RL∗D, v ∈ RL∗D, where q, k, v are obtained by multiplying the input information x with their
respective matrices. The formulas are as follows:

q = x • wq (3.7)

k = x • wk (3.8)

v = x • wv (3.9)

where wv,wk,wq ∈ RL∗D. The standard attention is represented as:

Atten(q, k, v) = Softmax

 qkT√
dq

 v. (3.10)

In the frequency domain attention based on the Fourier transform, we first perform Fourier trans-
form on the original q, k, v sequence data information. Then, we randomly select M frequency compo-
nents as the primary features of the information sequence for the attention mechanism calculation. The
former are represented as Q̃ ∈ CM D, K̃ ∈ CM D, Ṽ ∈ CM∗D respectively. The Fourier-based frequency
domain attention mechanism can be represented as:

Q̃ = Sel(F(q)) (3.11)

K̃ = Sel(F(k)) (3.12)

Ṽ = Sel(F(v)) (3.13)

F(q, k, v) = F−1(Padding(∂(Q̃ • K̃) • Ṽ)) (3.14)
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where ∂ is the activation function, and we use softmax as the activation function. Zero-padding is
performed before executing the inverse Fourier transform.

The introduction of the attention mechanism in the frequency domain helps the model to focus on
specific frequency components which are more indicative of arcs. This targeted attention ensures that
the model gives more importance to frequencies which are more likely to be associated with arcs,
improving the detection accuracy.

3.4. Efficient mapping classification head

Unlike the traditional Transformer architecture used for downstream tasks, we use the Transformer
solely as a feature extractor. Traditional convolutional methods for feature extraction can result in
localism and redundancy in the extracted features due to variations in convolutional kernels and strides.
In contrast to the traditional convolution-based feature extraction approach, Transformers inherently
possess the capability to extract global features by computing importance scores for different features
through attention mechanisms. This approach avoids the redundancy and locality issues associated
with convolutional methods.

Fedformer [44] and others directly perform downstream MLP tasks after the Transformer encoding
layer. This approach results in significant waste of the importance calculation performed by the Trans-
former layer as it places both important and unimportant features on a similar scale for downstream
tasks. This suppresses the proportion of highly important features. Instead, we use a specific convolu-
tional network to perform convolutional operations on the features extracted by the Transformer layer
in order to extract important features for downstream classification tasks.

MobileNet is a type of lightweight convolutional neural network that employs depth-wise sepa-
rable convolutions. It maintains high recognition accuracy while keeping the parameter count and
computational load low. We drew inspiration from this approach and introduced depth-wise separable
convolutions in the task of arc detection, achieving notable performance improvements. The essence
of depth-wise separable convolution is to confine the receptive field of standard convolution within
a single channel. In other words, all information within a specific channel is processed by a single
convolutional kernel. Convolution kernels with the same number of channels are then used to filter
information across multiple channels. Afterward, point-wise convolution is employed to balance and
synergize information between channels, resulting in new features. As shown in Figures 2 and 3, com-
pared to standard convolution, depth-wise convolution primarily focuses on a single channel. After
aggregating the features extracted from a single channel, 1 x 1 point-wise convolution (Figure 4) is
used to synergize the information within the channel. This significantly contributes to reducing param-
eter computation and extracting feature information for the Transformer layer.

Figure 2. Standard convolution filters.
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Figure 3. Depthwise convolutional filters.

Figure 4. 1*1 Convolutional filters called pointwise convolution in the context of depthwise
separable convolution.

This tailored convolutional approach ensures that the subtle arc-related features extracted by the
Transformer are not lost and are further refined for the classification task. By focusing on channel-
specific information using depth-wise convolution, we ensure that the unique characteristics of arcs are
captured and used effectively for detection.

4. Experiment implements

In order to evaluate the proposed SunSpark model, which is based on time-frequency fusion, we
conducted experimental comparisons with several typical models, including the Transformer with self-
attention mechanism [35], LogTransformer using causal convolution [39], Informer based on KL di-
vergence [40], Reformer with local hashing attention [41], Autoformer [42], Pyraformer [43], FED-
former [44], and others.

4.1. Implementation details

The experimental evaluation was conducted utilizing the PyTorch machine learning framework on a
dedicated Windows workstation. The system was equipped with an Intel(R) Core(TM) i7-6800K CPU
operating at a frequency of 4.2 GHz, backed by 32 GB of RAM for handling extensive data loads. The
computational processes were accelerated using an NVIDIA GeForce GTX 1080 Ti GPU.

4.2. Standardized unified arc dataset

The self-collected arc dataset was obtained using a self-sampling device based on electromagnetic
induction principles. This device captured current data at a dense frequency of 4 million samples
per second under various voltage and load conditions. It is critical to note that different loads can
significantly influence the characteristics of arc faults. In our dataset, we considered a variety of
loads that might mask arcs, potentially leading to false positives in arc detection. This comprehensive
approach ensures that our model is trained with diverse scenarios, reflecting real-world complexities.

Due to the presence of 4 million data points in each record, the dataset became exceedingly large,
posing a significant burden on existing deep learning hardware. To mitigate this, we sliced each ini-

Electronic Research Archive Volume 32, Issue 1, 332–353.



341

tially collected dataset, ensuring that the accuracy of the original data was preserved while reducing
the burden on data processing equipment. The entire dataset was divided into six sections based on
the integrated devices in the circuit: 1uF capacitor, 10uF capacitor, 80uH inductor, one set of con-
nected resistors, seven sets of parallel-connected resistors, and no connected resistors. We conducted
arc current data collection experiments at voltages ranging from 100 V to 300 V for each load configu-
ration. To address the concerns of low-quality data or noise, we conducted rigorous preprocessing. We
promptly corrected the collected data using visualization tools. Some of the data collected at specific
voltage levels were removed due to excessive external noise interference, while data with significant
state transitions were retained.

4.3. Time-Frequency Domain Fusion Transformer Network

Figure 5. SunSpark model network.

Incorporating the insights from our time-series decomposition, our Time-Frequency Domain Fu-
sion Transformer Network aims to capture the nuanced patterns in both time and frequency domains.
The model integrates the decomposed trend components from the original time series as carriers to
transfer information into deeper layers, enhancing the model’s capability to discern intricate patterns
and improving its performance.

The network (Figure 5) we designed primarily consists of a Sequence Decomposition Enhancement
Module, Frequency Domain Information Processing Module, Encoder Layers, and a Classifier. The
input current information, ‘x’, is first subjected to sequence decomposition to obtain the trend compo-
nent ‘T’. Subsequently, we employ a residual connection, which is a vital architectural innovation in
deep learning, allowing the model to learn identity functions that expedite the training process and en-
able the stacking of more layers without the network performance degrading. This residual connection
is employed to combine the data, encoded values, and the trend information ‘T’ to enhance the se-
quential time-domain information ‘x’. This process extracts the trend information from the sequential
data and accumulates it with the original information, enhancing important details while preserving the
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integrity of the original data. The newly obtained information is then individually subjected to position
encoding and time encoding. The resulting encoded information is fused and serves as the input to
the Frequency Domain Information Processing Module. This module primarily involves filtering out
unnecessary information from the input encoded data. This is achieved by performing a Fourier trans-
form on the time-domain encoded data to obtain frequency-domain feature components corresponding
to each piece of information. Due to the similarity of the frequency-domain components, we randomly
select a subset of components from the feature component set and handle the remaining information
through padding. The attention mechanism in the Encoder Layers primarily utilizes frequency-domain
attention. It processes the input information to obtain the corresponding Q, K, and V for the attention
layer through matrix operations. Similar to the Frequency Domain Information Processing Module
mentioned earlier, these Q, K, and V representations are then mapped using Fourier transforms.

In order to reduce computational complexity and focus on essential information, a fixed number
of feature components are selected at random from the mapped frequency-domain information for
attention mechanism calculations. This significantly reduces unnecessary dot product computations,
thereby greatly decreasing computational complexity.

After the dot product calculations of the attention mechanism in the Encoder Layers, multi-
dimensional features of the current input data are extensively extracted. These extracted features are
then fed into our designated classifier. The classifier primarily consists of 13 depth-wise separable
convolutions, with each depth-wise separable convolution including both depth-wise and point-wise
convolutions. We adapted the 3 x 3 depth-wise convolutional kernel from MobileNet to 3 x 1 to suit
our current detection task. Additionally, a point-wise convolution is applied between channels before
the depth-wise convolution, which helps filter inter-channel information for the subsequent depth-wise
convolution. Finally, there is another point-wise convolution in the depth-wise separable convolution
unit to balance local information within a single channel.

4.4. Encoding experiment comparison

We conducted experiments on different modes under time encoding as well as the trend component
information obtained through sequence decomposition, separately. The purpose of conducting this
experiment was to find a time representation method that is similar to the current sequence. After
comparison, the time encoding method based on hourly intervals, as shown in Figure 6, aligns with the
characteristics of our data. In the figure, ‘s’ represents secondly, ‘t’ represents minutely, ‘h’ represents
hourly, ‘d’ represents daily, ‘w’ represents weekly, and ‘m’ represents monthly.

From Table 1, it is evident that hourly (h) time encoding method yields the highest accuracy of 84%.
This is significantly higher compared to other methods, suggesting that hourly intervals are the most
suitable time granularity for representing our data in the context of this study. The daily (d) and weekly
(w) intervals also provide relatively high accuracy, indicating that these granularities capture some
essential patterns in the data. In contrast, the methods based on seconds (s), minutes (t), and monthly
(m) intervals perform poorly, suggesting that these time granularities might either miss critical patterns
or introduce unnecessary noise into the data representation.
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Figure 6. Comparative experiment of time encoding embedding methods.

Table 1. Comparative experiment results of time encoding embedding methods.

Embedding method Test accuracy (%)
d 80.8
h 84
m 70.5
s 70
t 69
w 79

After selecting a suitable time encoding method, we made minor adjustments to the overall network
architecture, including configuring the dimension of the model (Figure 7).

From Table 2, it can be observed that the model with a dimension of 512 offers the highest accuracy
of 90.1%. This suggests that, while increasing the model’s dimensionality can capture more intricate
patterns, there is an optimal point beyond which the performance might degrade due to overfitting or
increased computational complexity.

Table 2. Comparison experiment results of encoding dimension settings.

D model ACC (%)
256 88.7
512 90.1
1024 85.4
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Figure 7. Comparison experiment of encoding dimension settings.

An essential aspect of SunSpark’s evaluation was understanding its performance across various op-
erating points. When subjected to different environmental conditions, such as increased noise levels or
varying arc types, the model consistently demonstrated exceptional robustness. Particularly, our exper-
iments in the ‘Trend Component Decomposition’ and ‘Time-Frequency Domain Fusion Transformer
Network’ highlighted SunSpark’s capability to discern intricate patterns across varying conditions.
However, as depicted in our ‘Encoding Experiment Comparison’, when the encoding method was
based on finer granularities like seconds (s) or minutes (t), there was a slight dip in performance. This
offers valuable insights for further refinement and indicates areas where additional training or feature
engineering might be beneficial.

4.5. Trend component decomposition experiment

Time-series data, especially in the context of arc fault detection, often contains underlying patterns
or trends that can provide valuable insights. The trend component of a time-series data captures its
long-term movement. Specifically, it reflects the consistent and long-lasting increase or decrease in the
data. Extracting and analyzing these trend components can offer a clearer perspective of the underlying
patterns in the data, devoid of noise or short-term fluctuations. In our approach, we place significant
emphasis on extracting and utilizing these trend components to enhance our model’s ability to identify
arc faults accurately.
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Figure 8. Trend component decomposition experiment.

Table 3. Trend component decomposition experiment results.

Embedding ACC (%)
value 88.4
Value+position 89.3
Value+position+Temporal 89.7
V+P+T+trend 91.1
V+P+T+seasonal (moving = 25) 88.6
V+P+T+seasonal (moving = 75) 89.3
V+P+T+trend+seasonal (moving = 75) 89.6

As previously elaborated, the trend component plays a pivotal role in understanding the underlying
patterns of time-series data. Figure 8 illustrates that both position encoding and time encoding notice-
ably enhance recognition accuracy (Table 3). Incorporating trend component information results in a
more substantial improvement in accuracy. Moreover, experiments that involved decomposing periodic
components and adjusting the sliding factor parameter confirmed that periodic component information
adversely affects recognition performance.

4.6. Comparison experiment of encoding layer numbers

Prior to conducting internal experiments within the encoding layers, we assessed the number of
encoding layers, as shown in Figure 9 and Table 4. To maintain a lightweight model for training and
implementation, we limited the experiments to five encoding layers. This approach was adopted to
avoid the excessive computational overhead associated with a higher number of layers.
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Figure 9. Comparison experiment of encoding layer numbers.

Table 4. Comparison experiment results of encoding layer numbers.

Encoder-layers Acc (%)
Two-layers 84.6
Three-layers 91.3
Four-layers 90.8
Five-layers 90.3

4.7. Selection of frequency domain components in Fourier mode

In this experiment, current signals underwent a Fourier transformation, transitioning from the time
domain to frequency domain data. Given the inherent low-rank and sparsity characteristics of signals
in the frequency domain, we conducted experiments to determine an optimal number of frequency
domain components that would represent the majority of information while minimizing computational
cost, as shown in Table 5 and Figure 10.

Table 5. Selection of frequency domain components in Fourier mode.

Select model ACC (%)
Model = 60 91.0
Model = 64 91.5
Model = 120 88.0
Model = 128 89.1
Model = 16 91.1
Model = 32 91.0
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Figure 10. Selection of frequency domain components in Fourier mode.

4.8. Comparison of efficiency among different classifiers

In this paper, we introduce a comparative analysis between lightweight networks, specifically Mo-
bileNet, and traditional, more complex neural network architectures. This analysis focuses on key
performance metrics including inference time, computational efficiency, and accuracy. Traditional
networks, known for their deep and complex structures, offer high accuracy but often at the cost of
increased computational resources and longer inference times. In contrast, MobileNet, a lightweight
network, is designed to reduce computational demand while maintaining a balance between accuracy
and efficiency. This makes it particularly suitable for applications where resource constraints are a
critical factor.

In our comparative analysis within Section 4.8, we specifically evaluate the efficiency of different
classifiers, including lightweight networks like MobileNet, in the context of real-time arc fault detec-
tion. Our findings challenge the traditional belief that increased complexity and a higher parameter
count inherently translate to superior performance. Lightweight networks, particularly MobileNet,
exhibit competitive performance, especially in terms of speed and resource utilization, which are crit-
ical for real-time applications. For instance, MobileNet demonstrated a precision of 0.9709, recall
of 0.9613, and F1 score of 0.9661, outperforming other classifiers like Efficientnet (precision: 0.8906,
recall: 0.8742, F1: 0.8729), and Squeeze Net (precision: 0.8671, recall: 0.8670, F1: 0.8670).

These metrics underscore the efficiency of MobileNet, attributable to its architecture, which is op-
timized for rapid processing and reduced computational demand without significantly compromising
the quality of feature extraction. Moreover, when comparing inference time (IT), MobileNet showed
a remarkable speed of 13 milliseconds (ms), which is faster than most of the traditional models like
Informer (16 ms) and Transformer (18 ms). This efficiency makes MobileNet an ideal choice for
our application, providing a balanced trade-off between speed, accuracy, and computational resource
utilization.

Contrary to traditional beliefs, our findings indicate that lightweight networks, while typically less
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complex and possessing fewer parameters than traditional networks, can still offer efficient feature
extraction capabilities in specific contexts. In our study, lightweight networks such as MobileNet
showed competitive performance, particularly in speed and resource utilization, crucial for real-time
arc fault detection. This efficiency is partly due to their architecture, optimized for rapid processing and
reduced computational demand, without significantly compromising the quality of feature extraction,
as evidenced by the metrics in Table 6.

Table 6. Comparison of efficiency among different classifiers.

Classification head Precision Recall F1
No addition 0.6424 0.6424 0.6420
Efficientnet 0.8906 0.8742 0.8729
Mobile Net 0.9709 0.9613 0.9661
Shuffle Net 0.9751 0.9518 0.9633
Squeeze Net 0.8671 0.8670 0.8670

4.9. Comprehensive comparative experiment of large models

SunSpark demonstrates excellent recognition characteristics for time-series data, such as arc se-
quences. Compared to other models, its time-frequency domain transformation substantially reduces
the complexity of feature extraction. To conduct a meaningful comparison between SunSpark and ex-
isting models, we performed comparative experiments with models in the relevant field. The recorded
results are as follows.

Table 7. Comprehensive comparative experiment of large models.

Models Precision Recall F1 Train loss Val acc Val loss IT (ms)
Autoformer 0.8921 0.8870 0.8866 0.0936 0.8869 0.491 12
Informer 0.8883 0.8599 0.8574 0.3489 0.8600 0.4398 16
Pyraformer 0.9015 0.8990 0.8989 0.1768 0.8990 0.1799 15
Reformer 0.8802 0.8560 0.8537 0.2825 0.8560 0.3179 10
TimesNet 0.7036 0.6995 0.6979 0.5838 0.6994 0.5749 11
Transformer 0.9004 0.9002 0.9002 0.1301 0.9002 0.2099 18
SunSpark (Ours) 0.9709 0.9604 0.9661 0.0039 0.9663 0.1006 13

As illustrated in Table 7, our model attained the highest scores across various evaluation metrics.
Compared to the inference-focused model, Informer, our model exhibited a 9% improvement in recog-
nition capability while significantly reducing computational complexity.

5. Conclusions

This article successfully outlines a cost-effective, rapid-detection, and high-accuracy universal arc
fault diagnosis method by examining the time-frequency domain characteristics of PV current signals
in normal and fault states. The proposed model leverages time series decomposition to extract trend
information, enhancing the continuity of information throughout the time sequence. The enhanced
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information undergoes transformation from the time domain to the frequency domain via the Fourier
transform, and essential features are extracted in the frequency domain. This process considerably
reduces the computational cost of Transformer-like large models while preserving the ability to extract
robust features. Ultimately, the information transformed back into the time domain is processed by
a lightweight classifier for arc fault diagnosis. Experimental results indicate that, at a high-frequency
signal sampling rate, this diagnostic model effectively filters out high-frequency noise signals while
maintaining an accuracy rate exceeding 97%, representing an improvement of over 7%.

As part of our future work, we aim to explore the practical deployment of our proposed technique in
real-world scenarios. This includes assessing the feasibility of implementing our method on low-cost,
low-power devices or integrating it with existing infrastructure. We plan to conduct comprehensive
studies to evaluate the performance of our technique when deployed on various types of devices, rang-
ing from embedded systems to portable diagnostic tools. This will not only validate the effectiveness
of our technique in diverse field conditions, but will also provide insights into its adaptability and
scalability in different operational environments. Moreover, the execution time of the designed model
surpasses that of some traditional algorithms. Consequently, enhancing the execution speed of this
algorithm is another crucial focus for future research.
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