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Abstract: In this paper, the stability and bifurcation of a two–dimensional p53 gene regulatory net-
work without and with time delay are taken into account by rigorous theoretical analyses and numerical
simulations. In the absence of time delay, the existence and local stability of the positive equilibrium
are considered through the Descartes’ rule of signs, the determinant and trace of the Jacobian matrix,
respectively. Then, the conditions for the occurrence of codimension–1 saddle–node and Hopf bifurca-
tion are obtained with the help of Sotomayor’s theorem and the Hopf bifurcation theorem, respectively,
and the stability of the limit cycle induced by hopf bifurcation is analyzed through the calculation of
the first Lyapunov number. Furthermore, codimension-2 Bogdanov–Takens bifurcation is investigated
by calculating a universal unfolding near the cusp. In the presence of time delay, we prove that time
delay can destabilize a stable equilibrium. All theoretical analyses are supported by numerical sim-
ulations. These results will expand our understanding of the complex dynamics of p53 and provide
several potential biological applications.

Keywords: stability; saddle–node bifurcation; Hopf bifurcation; Bogdanov–Takens bifurcation; time
delay

1. Introduction

Dynamical analysis of gene regulatory networks (GRNs) characterized by mathematical models
plays an important role in understanding the underlying mechanism of the corresponding biological
processes and predicting what will happen [1–3]. A GRN is composed of genes, RNAs, and pro-
teins represented by nodes, which are connected through the edges that indicate the transformation,
promotion, and inhibition between them [4]. The expression level of proteins in the GRN is closely
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related to the mechanisms of a number of biochemical processes, including cell differentiation [5–7],
neural plasticity [8–10] and the development of cancer [11–13]. Typically, cell fates in response to
stresses are closely related to the dynamics of the tumor suppressor protein p53 in p53 GRN with core
p53–Mdm2 feedback loops [14, 15]. p53 maintains a low level under a homeostatic condition while
moderate and high stresses make p53 exhibit oscillation and high level, which lead to cell cycle arrest
and apoptosis [16,17], respectively. Therefore, more and more research has been focusing on exploring
p53 dynamics numerically and theoretically through the construction of mathematical models with the
help of bifurcation diagrams [18, 19].

Bifurcation diagrams of mathematical models is a useful tool for analyzing the dynamics of
GRN [20]. Bifurcation diagrams of p53 GRN in [16, 17, 21] display various types of bifurcation,
such as codimension–1 saddle–node, Hopf bifurcation and codimension–2 Bogdanov–Takens bifur-
cation. Saddle–node bifurcation can generate the bistability with a low and high expression levels of
p53, which results in cell survival and cell apoptosis, respectively. Hopf bifurcation can induce the
appearance of a stable limit cycle [22] corresponding to the oscillation expression of p53, which result
in cell cycle arrest [23]. Codimension–2 Bogdanov–Takens bifurcation may give rise to the coexis-
tence of a stable steady state and a stable limit cycle [24], which correspond to cell survival and cell
cycle arrest, respectively. Therefore, the analysis of the conditions under which these bifurcations
occur can allow for a deeper understanding of cell fate decision in response to different parameters.
More research has focused on bifurcation analyses of high–dimensional p53 GRNs through numerical
simulations [25–27]. However, theoretical analysis of low-dimensional p53 GRNs contribute to the
understanding of cell fate decisions under different conditions [28, 29].

Theoretical analyses of the bifurcation of dynamical systems described by ordinary differential
equations play an important role in unveiling their complex dynamic properties. Previously, extensive
effort has been devoted to bifurcation analyses of predator–prey models and SIR models of infectious
diseases with various factors [30], while several recent studies have theoretically revealed the bifurca-
tion of GRNs. These studies focus on investigating the existence and stability of possible equilibria
of the system and deriving the rigorous mathematical proofs for the existence of bifurcations, such
as saddle-node bifurcation, Hopf bifurcation of codimension–1 and Bogdanov–Takes bifurcation of
codimension–2 or codimension–3 [31–34]. Besides, Hopf bifurcation may be caused by time delay in
GRNs, and it is analyzed by studying the associated characteristic equation of the corresponding lin-
earized system [18,35]. Although there has been much research on bifurcation analyses for p53 GRNs
through numerical simulations, there is scant theoretical analyses of bifurcations of low dimensional
p53 GRNs.

In this paper, we investigated the bifurcation of a two–dimensional p53 GRN without and with
time delay, as described in [14], by performing rigorous mathematical analysis. Firstly, the existence
of all possible positive equilibria are investigated by applying Descartes’ rule of signs and the local
stability of the positive equilibria are analyzed. Then, in the absence of time delay, the conditions
for the appearance of codimension–1 saddle–node, Hopf bifurcation and codimension–2 Bogdanov–
Takens bifurcation are derived by using Sotomayor’s theorem [36], Hopf bifurcation theorem [37]
and the normal form method, respectively, and the first Lyapunov number is calculated to obtain the
stability of the limit cycle. Furthermore, in the presence of time delay, the Hopf bifurcation induced
by time delay is analyzed on the basis of the Hopf bifurcation theorem. These theoretical results are
numerically supported by bifurcation diagrams and phase portraits, and they can be considered as a
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complement to existing literature on the dynamics of p53 GRN.
The organization of this paper is as follows. The mathematical model of the p53 GRN is given

in Section 2. The existence and local stability of positive equilibria of the p53 GRN without time
delay are analyzed in Section 3. Section 4 presents the conditions for the occurrence of codimension–
1 saddle–node bifurcation, Hopf bifurcation and codimension–2 Bogdanov–Takens bifurcation of the
p53 GRN without time delay through theoretical analyses, which are supported by bifurcation diagrams
and phase portraits. Section 5 is devoted to the analysis of Hopf bifurcation induced by time delay. We
end the paper with the conclusion in Section 6.

2. The model of the p53 GRN

Figure 1. Schematic representation of the p53 GRN. Solid lines represent the promotion and
production. Dashed lines denote the degradation with the degradation product ∅.

In the present work, we consider a core p53 GRN with p53 and its key regulator Mdm2 in [14, 15],
as shown in Figure 1. Figure 1 includes a p53 self–induction positive feedback loop and a negative
feedback loop, where p53 elevates the expression level of the Mdm2 protein and Mdm2 promotes
the degradation of p53. Here, the degradation of p53 is regulated by the concentration of Mdm2 at
some previous time. The rate equations for the concentration of p53 (denoted by x) and that of Mdm2
(denoted by y) are given by the following delay different equations:


dx
dt
= r1 + v1

x2

k2
1 + x2

− v2y(t − τ1)
x

k2 + x
− d1x,

dy
dt
= r2 + v3

x(t − τ2)2

k2
3 + x(t − τ2)2

− d2y.
(2.1)

Here, r1 and r2 denote the basal production rates of p53 and Mdm2, respectively. Also the produc-
tion of both p53 and Mdm2 activated by p53 are modeled by using Hill functions with the production
rates v1 and v3, and Michaelis constants k1 and k3, respectively. d1 and d2 are the basal degradation rates
of p53 and Mdm2, respectively. Besides, p53 is degraded by Mdm2 at a rate v2 in a Michaelis–Menten
function with the Michaelis constant k2. Time delays τ1 and τ2 characterize the periods of time for
gene expression to protein production of p53 and Mdm2.
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3. Analysis of the positive equilibria

In this section, the existence and stability of the positive equilibria of the system (2.1) are investi-
gated and the qualitative behavior of the system (2.1) are given in the following subsections.

3.1. Existence of the positive equilibria

In the section, we focus on analyzing the conditions for the existence of a positive equilibrium in the
system (2.1) for biological reasons. Assuming a positive equilibrium of the system (2.1) is E(x∗, y∗),
which satisfies the following equations:

f1(x∗, y∗) = r1 + v1
x2
∗

k2
1 + x2

∗

− v2y∗
x∗

k2 + x∗
− d1x∗ = 0,

f2(x∗, y∗) = r2 + v3
x2
∗

k2
3 + x2

∗

− d2y∗ = 0.
(3.1)

Obviously, the second equation of Eq (3.1) is equivalent to

y∗ =
r2

d2
+ v3

x2
∗

d2(k2
3 + x2

∗)
. (3.2)

Rearranging the first equation of Eq (3.1), we get

g(x∗) =
F(x∗)
S (x∗)

= 0, (3.3)

where
F(x∗) = C6x6

∗ +C5x5
∗ +C4x4

∗ +C3x3
∗ +C2x2

∗ +C1x∗ +C0, (3.4)

S (x∗) = d2(k2
1 + x2

∗)(k2 + x∗)(k2
3 + x2

∗), (3.5)

C0 = d2k2
1k2k2

3r1, C1 = k2
1k2

3(d2r1 − r2v2 − d1d2k2),
C2 = d2k2

1k2r1 + k2
3(d2k2r1 + d2k2v1 − d1d2k2

1),
C3 = −k2

1v2v3 + k2
3(d2v1 + d2r1 − r2v2 − d1d2k2) + k2

1(d2r1 − r2v2 − d1d2k2),
C4 = −d1d2k2

3 + (d2k2r1 + d2k2v1 − d1d2k2
1),

C5 = d2r1 + d2v1 − r2v2 − v2v3 − d1d2k2, C6 = −d1d2.

(3.6)

Obviously, x∗ is the root of the following equation

F(x) = 0. (3.7)

If the root x∗ of Eq (3.7) is positive, y∗ is positive according to Eq (3.2) with positive rate constants.
Therefore, the conditions for the existence of positive roots of Eq (3.7) are suitable for the one of the
positive equilibria of the system (2.1).

Applying Descartes’ rule of signs to Eq (3.7), we obtained the number of possible positive equilibria
in the system (2.1) is concluded in Table 1. Obviously, the system (2.1) must have at least one positive
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equilibrium for C0C6 < 0. Besides, according to Eq (3.6), we conclude that if C2 < 0, then C4 < 0
and if C4 > 0, then C2 > 0. Hence, based on the cases 1–4 in Table 1, a unique positive equilibrium
E(x∗, y∗) in the system (2.1) exists under the conditions in the following theorem.

Table 1. Number of possible positive equilibria in the system (2.1).

Case C0 C1 C2 C3 C4 C5 C6 Number of sign changes Number of possible positive equilibria(E)
1 + − − − − − − 1 1
2 + + − − − − − 1 1
3 + + + − − − − 1 1
4 + + + + − − − 1 1
5 + + + + + − − 1 1
6 + + + + + + − 1 1
7 + + − + − − − 3 1, 3
8 + − − + − − − 3 1, 3
9 + − + + − − − 3 1, 3

10 + − − − − + − 3 1, 3
11 + + − − − + − 3 1, 3
12 + + + − + + − 3 1, 3
13 + − + + + + − 3 1,3
14 + + + − + − − 3 1, 3
15 + + + + − + − 3 1, 3
16 + − + + + − − 3 1, 3
17 + + + − − + − 3 1, 3
18 + − + − − − − 3 1, 3
19 + + − + − + − 5 1, 3, 5
20 + − + − − + − 5 1, 3, 5
21 + − + + − + − 5 1, 3, 5
22 + − − + − + − 5 1, 3, 5
23 + − + − + − − 5 1, 3, 5
24 + − + − + + − 5 1, 3, 5

Theorem 3.1. The system (2.1) has a unique positive equilibrium E(x∗, y∗) if one of the following
conditions holds:
(i) C2 < 0,C3 < 0,C5 < 0;
(ii) C1 > 0,C3 > 0,C4 > 0;
(iii) C1 > 0,C2 > 0,C4 < 0,C5 < 0.

Theorem 3.1 is verified by the nullclines of x and y in Figure 2, where the system (2.1) has a unique
positive equilibrium for the condition (i) C2 = −0.1197 < 0, C3 = −0.1384 < 0, C5 = −0.000723 < 0
with v1 = 0.18, v2 = 0.003, v3 = 0.6, d1 = 0.034, d2 = 0.02, r1 = 0.01, r2 = 0.001, k1 = 6, k2 = 4,
k3 = 4 in Figure 2(a) and the condition (ii) C1 = 0.0057 > 0, C3 = 0.1080 > 0, C4 = 0.0024 > 0 with
v1 = 0.63, v2 = 0.01, v3 = 0.985, d1 = 0.004, d2 = 0.0025, r1 = 0.021, r2 = 0.0001, k1 = 1.5, k2 = 2,
k3 = 9 in Figure 2(b). Besides, Figure 2(c) shows that the system (2.1) has three positive equilibria for
C1 = −0.1585 < 0, C2 = 0.0932 > 0, C3 = 0.0173 > 0, C4 = −0.0107 < 0, C5 = −0.0018 < 0 in case
9 with v1 = 0.18, v2 = 0.01, v3 = 0.55, d1 = 0.034, d2 = 0.03, r1 = 0.011, r2 = 0.001, k1 = 2.4, k2 = 2,
k3 = 4.

Here, the conditions for the existence of the positive equilibria in system (2.1) are given in Table 1.
Furthermore, the stability of the positive equilibria is analyzed in the next section.
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Figure 2. The nullclines of x (solid line) and y (dashed line) in system (2.1). Red solid and
hollow dots are the stable and unstable equilibria.

3.2. Stability of the positive equilibria

To investigate the stability of any positive equilibrium E(x∗, y∗) of the system (2.1), the correspond-
ing Jacobian matrix J is given by

J(E) =


2k2

1v1x∗
(k2

1 + x2
∗)2
−

k2v2y∗
(k2 + x∗)2 − d1 −

v2x∗
k2 + x∗

2k2
3v3x∗

(k2
3 + x2

∗)2
−d2

 .
The characteristic equation of the system (2.1) is

λ2 − tr(J)λ + det(J) = 0.

The trace tr(J) and the determinant det(J) of the Jacobian matrix J are given by

tr(J) =
2k2

1v1x∗
(k2

1 + x2
∗)2
−

k2v2y∗
(k2 + x∗)2 − d1 − d2,

det(J) =
k2v2d2y∗
(k2 + x∗)2 −

2k2
1v1d2x∗

(k2
1 + x2

∗)2
+

2k2
3v2v3x2

∗

(k2 + x∗)(k2
3 + x2

∗)2
+ d1d2.

(3.8)

The local stability of the positive equilibrium E(x∗, y∗) is decided by the signs of tr(J) and det(J).
Next, we will first study the sign of det(J). Since

det(J) =
k2v2d2y∗
(k2 + x∗)2 −

2k2
1v1d2x∗

(k2
1 + x2

∗)2
+

2k2
3v2v3x2

∗

(k2 + x∗)(k2
3 + x2

∗)2
+ d1d2

= − d2g′(x∗) = −d2
F′(x∗)S (x∗) − F(x∗)S ′(x∗)

S 2(x∗)
.

(3.9)

According to F(x∗) = 0 in Eq (3.7), we conclude that

det(J) = −
F′(x∗)

(k2 + x)(k2
1 + x2)(k2

3 + x2)
, (3.10)
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and the signs of det(J) and F′(x∗) are opposite. Therefore, the signs of F′(x∗) and tr(J) decide the
stability of the positive equilibrium E(x∗, y∗), which are given in the following theorem.

Theorem 3.2. The stability of the positive equilibrium E(x∗, y∗) under different conditions is described
in Table 2.

Table 2. The stability of the positive equilibrium E(x∗, y∗).

Case Conditions Eigenvalues Properties
1 F′(x∗) < 0 tr(J) < 0 Reλ1 < 0, Reλ2 < 0 Asymptotically stable
2 tr(J) = 0 λ1 = −i

√
det(J), λ2 = i

√
det(J) Linear center

3 tr(J) > 0 Reλ1 > 0, Reλ2 > 0 Unstable
4 F′(x∗) = 0 tr(J) < 0 λ1 = tr(J) < 0, λ2 = 0 Non-hyperbolic
5 tr(J) = 0 λ1 = λ2 = 0 Non-hyperbolic
6 tr(J) > 0 λ1 = 0, λ2 = tr(J) > 0 Unstable(Non-hyperbolic)
7 F′(x∗) > 0 ∀tr(J) λ1λ2 < 0 Unstable(saddle)

However, the signs of F′(x∗) and tr(J) are not decided explicitly due to their complex expression,
so we will give some numerical examples to illustrate the stability of E(x∗, y∗) in the following section.
The stability of E(x∗, y∗) can be changed by the bifurcation, which will be explored in the following
bifurcation analysis.

4. Bifurcation analysis of p53 GRE without time delay

Bifurcation changes the stability and the number of equilibria in the system as the parameter
varies through a critical value. In this section, we investigate the conditions for the occurrence of
codimension–1 saddle–node and Hopf bifurcation with respect to v3 and codimension–2 Bogdanov–
Takens bifurcation with respect to v3 and d2 in the system (2.1) without time delay.

4.1. Saddle-node bifurcation

According to Sotomayor theorem [36], we shall establish the conditions under which the system
(2.1) experiences saddle–node bifurcation at the equilibrium E(x∗, y∗) when the control parameter v3

crosses the critical value vS N
3 .

The first condition is that tr(J(E))|v3=vS N
3
, 0 and det(J(E))|v3=vS N

3
= 0, which correspond to

(SN.1)

2k2
1v1x∗

(k2
1 + x2

∗)2
−

k2v2y∗
(k2 + x∗)2 − d1 − d2 , 0,

vS N
3 =

2k2
1v1d2x∗(k2 + x∗)(k2

3 + x2
∗)

2

2k2
3v2x2

∗(k2
1 + x2

∗)2
−

k2v2d2y∗(k2
3 + x2

∗)
2

2k2
3v2x2

∗(k2 + x∗)
−

d1d2(k2 + x∗)(k2
3 + x2

∗)
2

2k2
3v2x2

∗

,

based on Eqs (3.8) and (3.10).
Next, to obtain the transversality conditions, the eigenvectors of the matrices J(E, vS N

3 ) and
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JT (E, vS N
3 ) with the eigenvalue λ = 0 are given as follows, respectively,

V =
(

V1

V2

)
=


d2(k2

3 + x2
∗)

2

2k2
3vS N

3 x∗
1

 , W =
(

W1

W2

)
=

 −d2(k2 + x∗)
v2x∗
1

 .
Denoting f (x, y) = ( f1(x, y), f2(x, y))T ,

fv3

(
E; vS N

3

)
=


0
x2
∗

k2
3 + x2

∗

 ,
D2 f

(
E; vS N

3

)
(V,V) =


∂2 f1

∂x2 V2
1 + 2

∂2 f1

∂x∂y
V1V2 +

∂2 f1

∂2y
V2

2

∂2 f2

∂x2 V2
1 + 2

∂2 f2

∂x∂y
V1V2 +

∂2 f2

∂2y
V2

2


(E;vS N

3 )

=


d2(k2

3 + x2
∗)

2

2k2
3vS N

3 x∗

[
−

2k2v2

(k2 + x∗)2 +
d2(k2

3 + x2
∗)

2

2k2
3vS N

3 x∗

(
k2

1v1(k2
1 − 3x2

∗)
(k2

1 + x2
∗)3

+
k2v2y∗

(k2 + x∗)3

)]
d2

2(k2
3 − 3x2

∗)(k
2
3 + x2

∗)

4k2
3vS N

3 x2
∗

 .

Clearly, the transversality conditions are

WT fv3

(
E; vS N

3

)
=

x2
∗

k2
3 + x2

∗

, 0,

(SN.2) WT
[
D2 f

(
E; vS N

3

)
(V,V)

]
=

d2
2(k2

3 + x2
∗)

2

2k2
3vS N

3 x2
∗

[
2k2

(k2 + x∗)
+

(k2
3 − 3x2

∗)

2(k2
3 + x2

∗)
−

d2(k2
3 + x2

∗)
2

2k2
3vS N

3 x∗

(
k2

1v1(k2
1 − 3x2

∗)(k2 + x∗)
v2(k2

1 + x2
∗)3

+
k2y∗

(k2 + x∗)2

)]
, 0.

Therefore, based on the above analyses, we get the following theorem.

Theorem 4.1. The system (2.1) experiences saddle–node bifurcation at the positive equilibrium
E(x∗, y∗) as the parameter v3 crosses the critical value vS N

3 if the conditions (SN.1) and (SN.2) hold.

Here vS N
3 =

2k2
1v1d2 x∗(k2+x∗)(k2

3+x2
∗)

2

2k2
3v2 x2

∗(k2
1+x2

∗)2 −
k2v2d2y∗(k2

3+x2
∗)

2

2k2
3v2 x2

∗(k2+x∗)
−

d1d2(k2+x∗)(k2
3+x2

∗)
2

2k2
3v2 x2

∗

.

Theorem 4.1 is verified by the bifurcation diagram of x with respect to v3 in Figure 3(a) and phase
portraits of x and y for five typical values of v3 in Figure 3(b)–(f) with the same parameters v1 = 0.18,
v2 = 0.01, d1 = 0.034, d2 = 0.03, r1 = 0.011, r2 = 0.001, k1 = 2.4, k2 = 2, k3 = 4. In Figure
3(a), black solid and dashed lines represent stable and unstable equilibria, respectively, which meet
at two saddle–node bifurcation points S N1 and S N2 with vS N1

3 = 0.4606397 and vS N2
3 = 0.5991365,

respectively. In Figure 3(b)–(f), the solid lines represent the trajectory running along the arrows and
red solid and hollow dots denote the stable and unstable equilibria, respectively.

As shown in Figure 3(a), the system (2.1) undergoes saddle–node bifurcation at E1(x∗, y∗) =
(0.7593, 0.5674) and E2(x∗, y∗) = (1.3543, 2.0872) as v3 passes through vS N1

3 = 0.4606397 and vS N2
3 =
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0.5991365, respectively, with tr(J(E1, vS N1
3 )) = −0.0263 , 0, WT

[
D2 f

(
E1; vS N1

3

)
(V,V)

]
= 0.0118 , 0

and tr(J(E2, vS N2
3 )) = −0.0315 , 0, WT

[
D2 f

(
E2; vS N2

3

)
(V,V)

]
= 0.0104 , 0, which meet all condi-

tions in Theorem 4.1. vS N1
3 and vS N2

3 divide the region in Figure 3(a) into five parts, in which phase por-
traits of x and y are illustrated in Figure 3(b)–(f). Only a stable equilibrium appears for v3 = 0.45 < vS N1

3
in Figure 3(b) and v3 = 0.61 > vS N2

3 in Figure 3(f). Two equilibria coexist at v3 = vS N1
3 in Figure 3(c)

and v3 = vS N2
3 in Figure 3(e). There are three equilibria for v3 that vary between vS N1

3 and vS N2
3 in

Figure 3(d)).

Furthermore, the stability and property of these equilibria E(x∗, y∗) in Figure 3(b)–(f) are listed
in Table 3 to verify three cases in Table 2. The properties of unstable non-hyperbolic equilibria and
unstable saddle are consistent with the conditions of cases 4 and 7 in Table 2, respectively. Other
equilibria are asymptotically stable nodes, which correspond to case 1 in Table 2.

Figure 3. (a) Codimension–1 bifurcation diagram of x with respect to v3 for v1 = 0.18,
v2 = 0.01, d1 = 0.034, d2 = 0.03, r1 = 0.011, r2 = 0.001, k1 = 2.4, k2 = 2, k3 = 4.
Black solid and dashed lines represent stable and unstable equilibria, respectively. S N1 and
S N2 are saddle–node bifurcation points. (b)–(f) The phase portraits of x and y for v3 =

0.45, 0.4606397, 0.55, 0.5991365, 0.61, respectively. Red solid and hollow dots are stable
and unstable equilibria, respectively. Blue lines with arrows denote the trajectory.
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Table 3. The properties of the positive equilibria E(x∗, y∗) in Figure 3.

v3 Ei(x∗, y∗) F′(x∗) tr(J) Stability Phase portraits
0.45 (2.1967, 3.5089) −0.2792 −0.0273 Asymptotically stable Figure 3(b)
0.4606397 (0.7593, 0.5674) 0 −0.0263 Non-hyperbolic(saddle-node) Figure 3(c)

(2.1538, 3.4845) −0.2573 −0.0267 Asymptotically stable Figure 3(c)
0.55 (0.6400, 0.4910) −0.03146 −0.0305 Asymptotically stable Figure 3(d)

(1.0352, 1.1842) 0.0246 −0.0206 Unstable(saddle) Figure 3(d)
(1.7665, 3.0254) −0.0981 −0.0218 Asymptotically stable Figure 3(d)

0.5991365 (0.6186, 0.4999) −0.0391 −0.0315 Asymptotically stable Figure 3(e)
(1.3543, 2.0872) 0 −0.0190 Non-hyperbolic(saddle-node) Figure 3(e)

0.61 (0.6147, 0.5025) −0.0405 −0.0316 Asymptotically stable Figure 3( f )

4.2. Hopf bifurcation

In this section, we try to explore the conditions under which a positive equilibrium E(x∗, y∗) loses
the stability through Hopf bifurcation under some parametric restriction. Here, considering v3 as the
bifurcation parameter, we shall establish the conditions under which the system (2.1) experiences Hopf
bifurcation at the positive equilibrium E(x∗, y∗) when v3 crosses the critical value vHB

3 .
The first condition is that the Jacobian matrix J(E, vHB

3 ) has a pair of purely imaginary eigenvalues,
that is tr(J(E, vHB

3 )) = 0 and det(J(E, vHB
3 )) > 0, which correspond to

(HB.1)
vHB

3 = −
d2(d1 + d2)(k2 + x∗)2(k2

3 + x2
∗)

k2v2x2
∗

+
2d2k2

1v1x∗(k2 + x∗)2(k2
3 + x2

∗)

k2v2x2
∗(k2

1 + x2
∗)2

−
r2(k2

3 + x2
∗)

x2
∗

,

and F′(x∗, vHB
3 ) < 0.

Besides, the transversality condition that ensures the changes of stability of the positive equilibrium

through non–degenerate Hopf bifurcation is
dRe(λi)

dv3
|v3=vHB

3
, 0, i.e.,

(HB.2)
dtr(J(E))

dv3

∣∣∣∣∣
v3=vHB

3

=
x3
∗(k

2
1v2 + v3x2

∗)
F′(x∗)

[
2k4

1v1 − 6k2
1v1x2

∗

(k2
1 + x2

∗)3
+

k2r2v2

d2(k2 + x∗)2 +
k2v2v3(k2

3 + 3x2
∗ + 2x∗k2)

d2(k2
3 + x2

∗)2(k2 + x∗)2

]
−

k2v2x2
∗

d2(k2
3 + x2

∗)(k2 + x∗)2
, 0.

Lastly, the first Lyapunov number Γ at the equilibrium E(x∗, y∗) is computed to analyze the stability
of the limit cycle. By the transformation X = x − x∗, Y = y − y∗, the system (2.1) becomes


dX
dt
= a10X + a01Y + a20X2 + a11XY + a02Y2 + a30X3 + a21X2Y + a12XY2 + a03Y3 + Q1(|X,Y |4),

dY
dt
= b10X + b01Y + b20X2 + b11XY + b02Y2 + b30X3 + b21X2Y + b12XY2 + b03Y3 + Q2(|X,Y |4),
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where

a10 =
2k2

1v1x∗
(k2

1 + x2
∗)2
−

k2v2y∗
(k2 + x∗)2 − d1, a01 = −

v2x∗
k2 + x∗

, a20 =
k2

1v1(k2
1 − 3x2

∗)
(k2

1 + x2
∗)3

+
k2v2y∗

(k2 + x∗)3 ,

a30 = −
4k2

1v1x∗(k2
1 − x2

∗)
(k2

1 + x2
∗)4

−
k2v2

(k2 + x∗)4 , a11 = −
k2v2

(k2 + x∗)2 , a21 =
k2v2

(k2 + x∗)3 ,

b10 =
2k2

3v3x∗
(k2

3 + x2
∗)2
, b01 = −d2, b20 =

k2
3v3(k2

3 − 3x2
∗)

(k2
3 + x2

∗)3
, b30 = −

4k2
3v3x∗(k2

3 − x2
∗)

(k2
3 + x2

∗)4
,

a02 = a12 = a03 = b02 = b11 = b03 = b12 = b21 = b03 = 0.

According to the formula in [21], the first Lyapunov number Γ is given as follows

(HB.3) Γ = −
3

2a01Φ
3
2

[a10b10a2
11 − 2a10a01a2

20 − 2a2
01a20b20 − (a01b10 − 2a2

10)a11a20

+ (3a01a30 − 2a10a21)(a2
10 + a01b10)],

where Φ = a10b01 − a01b10.
Therefore, we get the following theorem.

Theorem 4.2. The system (2.1) experiences Hopf bifurcation at the positive equilibrium E(x∗, y∗)
when v3 crosses the critical value vHB

3 with the conditions (HB.1) and (HB.2). A supercritical
(subcritical) Hopf bifurcation occurs for the first Lyapunov number Γ < 0 (> 0) in (HB.3). Here
vHB

3 = −
d2(d1+d2)(k2+x∗)2(k2

3+x2
∗)

k2v2 x2
∗

+
2d2k2

1v1 x∗(k2+x∗)2(k2
3+x2

∗)
k2v2 x2

∗(k2
1+x2

∗)2 −
r2(k2

3+x2
∗)

x2
∗

.

Note that the sign of the first Lyapunov number Γ cannot be determined directly due to its com-
plex expression; we illustrate Hopf bifurcation of the system (2.1) through the following numerical
examples to verify the correctness of Theorem 4.2.

Two supercritical Hopf bifurcation points HBsup1 and HBsup2, and a subcritical Hopf bifurcation
point HBsub are shown in bifurcation diagrams of x with respect to v3 in Figure 4(a)–(b), where black
solid and dashed lines respectively represent stable and unstable equilibria while green and purple lines
denote stable and unstable limit cycles. For v1 = 0.8153, v2 = 0.2, d1 = 0.015, d2 = 0.04, r1 = 0.03,
r2 = 0.002, k1 = 7, k2 = 3 and k3 = 7, the first critical value vHB

3 = 0.2096 labeled by HBsup1,

where the conditions, E(x∗, y∗) = (5.1628, 1.8957), F′(x∗) = −34.7231 < 0,
dtr(J(E))

dv3
= 0.1612 > 0

and Γ = −0.1455 < 0, imply the appearance of a stable limit cycle. Then the stable limit cycle
disappears at another critical value vHB

3 = 0.2589 labeled by HBsup2 with E(x∗, y∗) = (3.3111, 1.2332),

F′(x∗) = −19.3163 < 0,
dtr(J(E))

dv3
= −0.2941 < 0 and Γ = −0.9058 < 0. For v3 = 0.25 between

HBsup1 and HBsup2, a stable limit cycle surrounding an unstable equilibrium is illustrated in the phase
portrait of x and y in Figure 4(c). Beside, Figure 4(b) shows a subcritical Hopf bifurcation point
HBsub at vHB

3 = 0.1852 with the conditions E(x∗, y∗) = (4.4394, 4.1289), F′(x∗) = −2.1014 < 0,
dtr(J(E))

dv3
= 2.7028 > 0 and Γ = 0.4856 > 0. An unstable limit cycle surrounding a stable focus

coexists with a saddle and a node for v3 = 0.1838 in the phase portrait in Figure 4(d).
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Figure 4. (a) – (b) Codimension–1 bifurcation diagrams of x with respect to v3 for v1 =

0.8153, v2 = 0.2, d1 = 0.015, d2 = 0.04, r1 = 0.03, r2 = 0.002, k1 = 7, k2 = 3, k3 = 7
and v1 = 0.63, v2 = 0.06, v3 = 0.1838, d1 = 0.034, d2 = 0.025, r1 = 0.011, r2 = 0.001,
k1 = 4.5, k2 = 2, k3 = 4, respectively. Black solid and dashed lines represent stable and
unstable equilibria, respectively. HBsup1, HBsup1 and HBsub are supercritical and subcritical
Hopf bifurcation points. S N denotes the saddle–node bifurcation point. Green and purple
vertical lines represent the stable and unstable limit cycles, respectively. (c) – (d) Phase
portraits of x and y. A stable limit cycle (the green line) created by HBsup1 at v3 = 0.25 in
(a). An unstable limit cycle (the purple line) created by HBsub at v3 = 0.1838 in (b).

4.3. Bogdanov – Takens bifurcation

Apart from codimension–1 saddle–node and Hopf bifurcation, the system (2.1) may undergo
codimension–2 Bogdanov–Takens bifurcation at the positive equilibria E(x∗, y∗), which will be ana-
lyzed by considering v3 and d2 as bifurcation parameters in the next section.

Let vBT
3 and dBT

2 be two critical values of v3 and d2, at which det(J(E))
∣∣∣∣(v3,d2)=(vBT

3 ,d
BT
2 ) = 0 and

tr(J(E))
∣∣∣∣(v3,d2)=(vBT

3 ,d
BT
2 ) = 0. Perturbing v3 and d2 by v3 = vBT

3 + µ1 and d2 = dBT
2 + µ2 with µ1 and

µ2 in a small neighborhood of (0, 0), the system (2.1) becomes
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dx
dt
= r1 + u2

x2

k2
1 + x2

− v2y
x

k2 + x
− d1x,

dy
dt
= r2 + (vBT

3 + µ1)
x2

k2
3 + x2

− (dBT
2 + µ2)y.

(4.1)

Transforming the equilibrium E(x∗, y∗) to the origin (0, 0) by z1 = x− x∗ and z2 = y− y∗, the system
(4.1) becomes ż1 = a10(µ)z1 + a01(µ)z2 + a20(µ)z2

1 + a11(µ)z1z2 + R1(z, µ),
ż2 = b00(µ) + b10(µ)z1 + b01(µ)z2 + b20(µ)z2

1 + R2(z, µ),
(4.2)

where

a10(µ) =
2k2

1v1x∗
(k2

1 + x2
∗)2
−

k2v2y∗
(k2 + x∗)2 − d1, a01(µ) = −

v2x∗
k2 + x∗

, a20(µ) =
k2

1v1(k2
1 − 3x2

∗)
(k2

1 + x2
∗)3

+
k2v2y∗

(k2 + x∗)3 ,

a11(µ) = −
k2v2

(k2 + x∗)2 , b00(µ) = r2 + (v3 + µ1)
x2
∗

k2
3 + x2

∗

− (d2 + µ2)y∗, b10(µ) =
2k2

3(vBT
3 + µ1)x∗

(k2
3 + x2

∗)2
,

b01(µ) = −(dBT
2 + µ2), b20(µ) =

k2
3(vBT

3 + µ1)(k2
3 − 3x2

∗)

(k2
3 + x2

∗)3
,

and z = (z1, z2)T , µ = (µ1, µ2)T . Ri(z, µ) = O(∥z∥3) (i = 1, 2) denotes the power series as to z1, z2 with
the order 3 and more. The coefficients of Ri(z, µ)(i = 1, 2) and ai j, bi j smoothly depend on µ1 and µ2.
According to b00(0) = 0 , we rewrite the system (4.2) at µ1 = 0 and µ2 = 0 in the following form

dz
dt
= J0z + F(z),

where

(BT.1) J0 =

(
a10(0) a01(0)
b10(0) b01(0)

)
, 0 ,

F(z) =
(

a20(µ)z2
1 + a11(µ)z1z2 + R1(z, µ)

b20(µ)z2
1 + R2(z, µ)

)
.

Let a10(0) = a10, a01(0) = a01, b10(0) = b10 and b01(0) = b01. Since J0 has two zero eigenvalues,
we get a10 + b01 = 0 and a10b01 = a01b10. Then, we choose α0 =

(
1,−a10

a01

)T
, α1 =

(
0, 1

a01

)T
and

β0 = (1, 0)T , β1 = (a10, a01)T as the eigenvector and generalized eigenvector with zero eigenvalues for
J0 and JT

0 , respectively, which satisfy ⟨α0, β0⟩ = ⟨α1, β1⟩ = 1 and ⟨α1, β0⟩ = ⟨α0, β1⟩ = 0. The linearly
independent vectors α0 and α1 form a basis of R2. Thus, we make the following transformation

z = γ1α0 + γ2α1,

i.e., γ1 = z1, γ2 = a10z1 + a01z2. Then the system (4.2) becomesγ̇1 = γ2 + c20(µ)γ1
2 + c11(µ)γ1γ2 + R3(γ, µ),

γ̇2 = d00(µ) + d10(µ)γ1 + d01(µ)γ2 + d20(µ)γ1
2 + d11(µ)γ1γ2 + R4(γ, µ),

(4.3)
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where
c20(µ) = a20(µ) −

a10a11(µ)
a01

, c11(µ) =
a11(µ)

a01
, d00(µ) = a01b00(µ),

d10(µ) = a01b10(µ) − a10b01(µ), d01(µ) = a10 + b01(µ),

d20(µ) = a10a20(µ) −
a2

10a11(µ)
a01

+ a01b20(µ), d11(µ) =
a10a11(µ)

a01
,

and R3,4(γ, µ) = O(∥γ∥3) (γ = (γ1, γ2)T ). Due to a10 + b01 = 0 and a10b01 = a01b10, we obtain
d00(0) = d10(0) = d01(0) = 0.

Next, making the transformations η1 = γ1 and η2 = γ2 + c20(µ)γ1
2 + c11(µ)γ1γ2 + R3(γ, µ), system

(4.3) becomesη̇1 = η2,

η̇2 = e00(µ) + e10(µ)η1 + e01(µ)η2 + e20(µ)η1
2 + e11(µ)η1η2 + e02(µ)η2

2 + R5(η, µ),
(4.4)

where

e00(µ) = d00(µ), e10(µ) = d10(µ) + c11(µ)d00(µ), e01(µ) = d01(µ), e02(µ) = c11(µ),
e20(µ) = d20(µ) + c11(µ)d10(µ) − c20(µ)d01(µ), e11(µ) = d11(µ) + 2c20(µ),

and R5(η, µ) = O(∥η∥3), η = (η1, η2)T . Moreover, we have

e00(0) = e10(0) = e01(0) = 0, e20(0) = d20(0), e11(0) = d11(0) + 2c20(0), e02(0) = c11(0).

And we assume that

(BT.2) e11(0) = d11(0) + 2c20(0) , 0,

Then making a coordinate shift η1 = ω1 + ξ(µ), η2 = ω2, where ξ(µ) ≈ − e01(µ)
e11(0) , the system (4.4)

reduces to {
ω̇1 = ω2,

ω2 = f00(µ) + f10(µ)ω1 + f20(µ)ω2
1 + f11(µ)ω1ω2 + f02(µ)ω2

2 + R6(ω, µ),
(4.5)

where

f00(µ) = e00(µ) + e10(µ)ξ(µ) + · · · , f10(µ) = e10(µ) + 2e20(µ)ξ(µ) + · · · , f02(µ) = e02 + ξ(µ) + · · · ,
f11(µ) = e11(µ) + 2ξ(µ) + · · · , f20(µ) = e20(µ) + 3ξ(µ) + · · · ,

(4.6)
and R6(ω, µ) = O(∥ω∥3) (ω = (ω1, ω2)T ).

Next, introducing a new time variable τ1 by dt = (1 + θ(µ)ω1) dτ1, θ(µ) = − f02(µ), system (4.5)
becomes {

ω̇1 = ω2,

ω̇2 = h00(µ) + h10(µ)ω1 + h20(µ)ω2
1 + h11(µ)ω1ω2 + R7(ω, µ),

(4.7)

in which
h00(µ) = f00(µ), h10(µ) = f10(µ) − 2 f00(µ) f02(µ),
h20(µ) = f20(µ) − 2 f10(µ) f02(µ) + f00(µ) f02(µ)2, h11(µ) = f11(µ),
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and R7(ω, µ) = O(∥ω∥3).
If the following condition holds,

(BT.3) h20(0) = d20(0) , 0,

then we introduce the new variables τ2 =

∣∣∣∣∣h20(µ)
h11(µ)

∣∣∣∣∣ τ1, y1 =
h2

11(µ)
h20(µ)

ω1, y2 = sign
(
h20(µ)
h11(µ)

)
h3

11(µ)

h2
20(µ)

ω2, the

system (4.7) is changed to{
ẏ1 = y2,

ẏ2 = m00(µ) + m10(µ)y1 + y2
1 + sy1y2 + R8(y, µ),

(4.8)

where

m00(µ) =
h4

11(µ)

h3
20(µ)

h00(µ), m10(µ) =
h2

11(µ)
h2

20(µ)
h10(µ), (4.9)

s = sign
(
h20(µ)
h11(µ)

)
= sign

(
h20(0)
h11(0)

)
= sign

(
e20(0)
e11(0)

)
= ±1,

and R8(y, µ) = O(∥y∥3), y = (y1, y2)T .
If the following transversality condition holds,

(BT.4) det
(
∂ (m00,m10)
∂ (µ1, µ2)

)
µ1=µ2=0

, 0,

the system (4.1) experiences Bogdanov–Takens bifurcation when µ = (µ1, µ2) is in a small neighbor-
hood of (0, 0) based on the results in [22]. According to the above discussion, the following theorem
is obtained.

Theorem 4.3. The system (2.1) experiences codimension–2 Bogdanov–Takens bifurcation at the posi-
tive equilibrium E(x∗, y∗) as (v3, d2) varies near

(
vBT

3 , d
BT
2

)
and the conditions (BT.1)–(BT.4) are satis-

fied. The local representations of the bifurcation curves are given as follows:
(i) the saddle–node bifurcation curve S N =

{
(µ1, µ2) | 4m00 − m2

10 = 0
}
;

(ii) the Hopf bifurcation curve H = {(µ1, µ2) | m00 = 0, m10 < 0};

(iii) the homoclinic bifurcation curve HL =
{

(µ1, µ2) | m00 = −
6

25
m2

10 + O
(
m2

10

)
, m10 < 0

}
.

Theorem 4.3 is verified by codimension–2 bifurcation diagram of v3 and d2 in Figure 5 and phase
portraits of x and y in Figure 6 with r1 = 0.011, r2 = 0.001, v1 = 0.63, v2 = 0.06, k1 = 4.5, k2 = 2,
k3 = 4 and d1 = 0.034. Through numerical simulation, we find that system (2.1) undergoes Bogdanov–
Takens bifurcation at (v3, d2) = (0.3419136, 0.04331208) , where the conditions (BT.1)–(BT.4) in
Theorem 4.3 are as follows,

J0 =

(
0.043312 −0.034413
0.054513 −0.043312

)
, 0

∣∣∣∣∣∂ (m00,m10)
∂ (µ1, µ2)

∣∣∣∣∣
µ1=µ2=0

=

∣∣∣∣∣∣ 0.009438 0.563671
−0.163326 5.187334

∣∣∣∣∣∣ = 0.141019 , 0,
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e11(0) = −0.002882 , 0, h20(0) = d20(0) = −0.000125 , 0, and s = sign(0.042991) = +1. Moreover,
the local representations of the bifurcation curves are given as follows,
(i) the saddle–node bifurcation curve S N

{(µ1, µ2) | 0.0000002763620326µ1 − 0.000002097660245µ2

+ 0.000003702622789µ2
1 +2.500675014µ1µ2 − 20.19183593µ2

2 = 0
}

;

(ii) the Hopf bifurcation curve H

{(µ1, µ2) | 0.000003273285777µ1 − 0.00002645487898µ2

+3.14829075µ1µ2 − 25.22103078µ2
2 = 0, m10 < 0

}
;

(iii) the homoclinic bifurcation curve HL

{(µ1, µ2) | 0.000000690907144µ1 − 0.000006244213952µ2

− 0.000005734914096µ2
1 +6.251472238µ1µ2 − 50.47629929µ2

2 = 0, m10 < 0
}
.

Figure 5 illustrates the curves S N, H and HL in the (µ1, µ2) parameter plane. These curves divide
the small neighborhood of the origin (0, 0) in the (µ1, µ2) plane into four parts, in which the phase por-
traits of x and y are given in Figure 6 with the trajectory in blue solid lines and the stable and unstable
equilibria in red solid and hollow dots, respectively. In order to see the variation around Bogdanov–
Takens bifurcation point, phase portraits of x and y are given in insets in Figure 6(a)–(f).
(a) The system (2.1) has a cusp of codimension–2 Bogdanov–Takens bifurcation point EBT

2 with an-
other stable node for (µ1, µ2) = (0, 0) (see Figure 6(a)).
(b) The system (2.1) has a unique stable node when (µ1, µ2) lies in region I (see Figure 6(b)).
(c) A saddle and an unstable focus coexist with another stable node when (µ1, µ2) enters into region II
from region I through the branch S N− of the curve S N (see Figure 6(c)).
(d) The unstable focus becomes stable and is surrounded by an unstable limit cycle when (µ1, µ2)
crosses the subcritical Hopf bifurcation curve H into region III (see Figure 6(d)).
(e) A homoclinic loop occurs for (µ1, µ2) on the curve HL (see Figure 6(e)).
(f) The unstable limit cycle disappears and three stable equilibria are left when (µ1, µ2) crosses the HL
curve into region IV (see Figure 6( f )).

Figure 5. Codimension–2 bifurcation diagram of x with respect to perturbation coefficients
µ1 and µ2. The origin is codimension–2 Bogdanov–Takens bifurcation point.
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Figure 6. The phase portraits of x and y for typical (µ1, µ2) in Figure 5. (a)
(µ1, µ2) = (0, 0). (b) (µ1, µ2) = (−0.0069136,−0.00231208) in region I (c) (µ1, µ2) =
(−0.0069136,−0.00081998) in region II. (d) (µ1, µ2) = (−0.0069136,−0.00081368) in
region III. (e) (µ1, µ2) = (−0.0069136,−0.00080280) on the curve HL. (f) (µ1, µ2) =
(−0.0069136,−0.00071208) in region IV.

5. Hopf bifurcation with time delay

In this section, we will investigate the effect of time delay on the stability of the positive equilibrium
E(x∗, y∗) in system (2.1).

The system (2.1) is linearized at E(x∗, y∗) as follows,(
ẋ(t)
ẏ(t)

)
=

(
p11 0
0 p22

) (
x(t)
y(t)

)
+

(
0 p12

0 0

) (
x(t − τ1)
y(t − τ1)

)
+

(
0 0

p21 0

) (
x(t − τ2)
y(t − τ2)

)
(5.1)

where

p11 =
2k2

1v1x∗
(k2

1 + x2
∗)2
− d1, p12 = −

v2x∗
k2 + x∗

,

p21 =
2k2

3v3x∗

(k2
3 + x2

∗)2
, p22 = −d2.

(5.2)
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The characteristic equation of the linearized system (5.1) is

λ2 − (p11 + p22)λ + p11 p22 − p12 p21e−λ(τ1+τ2) = 0. (5.3)

Assuming that λ = iω(ω > 0) is the root of Eq (5.3) and τ = τ1 + τ2, we get the following equation

ω2 + (p11 + p22)iω − p11 p22 + p12 p21(cosωτ − i sinωτ) = 0. (5.4)

Separating the real and imaginary parts of Eq (5.4) results in p12 p21 cos(ωτ) + ω2 − p11 p22 = 0,
p12 p21 sin(ωτ) − (p11 + p22)ω = 0.

(5.5)

Thus, cos(ωτ) and sin(ωτ) are given by
cos(ωτ) =

p11 p22 − ω
2

p12 p21
,

sin(ωτ) =
(p11 + p22)

p12 p21
ω,

(5.6)

which implies that
ω4 + (p2

11 + p2
22)ω2 + (p22 p11)2 − (p12 p21)2 = 0. (5.7)

The discriminant of Eq (5.7) is

∆ω =
(
p2

11 + p2
22

)2
− 4

(
(p22 p11)2 − (p12 p21)2

)
=

(
p2

11 − p2
22

)2
+ 4(p12 p21)2 > 0.

(5.8)

Therefore, Eq (5.7) has two different roots ω2
1 and ω2

2, and ω2
1 + ω

2
2 = −(p2

11 + p2
22) < 0, ω2

1ω
2
2 =

(p22 p11)2 − (p12 p21)2. Therefore, if (p22 p11)2 − (p12 p21)2 < 0, Eq (5.7) has a purely imaginary root iω0

and

ω0 =

√
−(p2

11 + p2
22) +

√
∆ω

2
. (5.9)

Then, according to Eq (5.6), the critical value of τ is given as follows,

τ
( j)
0 =

1
ω0

arccos(
p11 p22 − ω

2
0

p12 p21
) +

2 jπ
ω0
, j = 0, 1, 2, · · · . (5.10)

Let
τ0 = min{τ( j)

0

∣∣∣ j = 0, 1, 2, · · · }. (5.11)

Next, we will verify the transversality condition sign


[
dRe(λ(τ))

dτ

]∣∣∣∣∣∣
τ=τ0

 , 0. By differentiating

both sides of Eq (5.3) with respect to τ, we get(
dλ(τ)

dτ

)−1

= −
(2λ − (p11 + p22))eλτ

p12 p21λ
−
τ

λ
.
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At τ = τ0, we have

Re
(
dλ
dτ

)−1

= Re
{
−

(2λ − (p11 + p22))eλτ

p12 p21λ
−
τ

λ

}
= Re

{
(p11 + p22) cosω0τ0 + 2ω0 sinω0τ0 + i((p11 + p22) sinω0τ0 − 2ω0 cosω0τ0)

p12 p21iω0

}
=

1
(p12 p21)2 {2ω0

2 + [(p11 + p22)2 − 2p11 p22]}

=
1

(p12 p21)2

√
∆ω > 0.

Hence,

sign


[
dRe(λ)

dτ

]∣∣∣∣∣∣
τ=τ0

 = sign

Re
(
dλ
dτ

)−1
∣∣∣∣∣∣∣
τ=τ0

 > 0.

Finally, we have the following theorem based on the Hopf bifurcation theorem [37].

Theorem 5.1. Let τ0 and p11, p12, p21, p22 be defined by Eqs (5.11) and (5.2), If (p22 p11)2− (p12 p21)2 <

0, the positive equilibrium E(x∗, y∗) of system (2.1) is asymptotically stable for τ ∈ (0, τ0] and the
system (2.1) undergoes Hopf bifurcations at τ = τ0.

Theorem 5.1 is verified by the bifurcation diagram of x with respect to τ2 in Figure 7(a) and
phase portraits of x and y in Figure 7 (b)–(d) with v1 = 0.86, v2 = 0.6, v3 = 0.89, d1 = 0.017, d2 =

0.49, r1 = 0.17, r2 = 0.004, k1 = 1.07, k2 = 0.03 and k3 = 0.42. For these parameters, the system
(2.1) has a unique equilibrium E(x∗, y∗) = (0.2126, 0.3785) and (p22 p11)2 − (p12 p21)2 = −0.4940 < 0,
then ω0 = 0.7677, τ0 = 0.4677 in Theorem 5.1. Based on Theorem 5.1, the positive equilibrium
E(x∗, y∗) = (0.2126, 0.3785) is locally asymptotically stable for τ ∈ (0, τ0) and the system (2.1) under-
goes supcritical Hopf bifurcation at τ = τ0, which is accord with bifurcation diagram in Figure 7 (a).
In Figure 7 (a), black solid and dashed lines respectively denote stable and unstable equilibria while
green dots represent the maxima and minima of stable limit cycle, supcritical Hopf bifurcation HBsup

occurs at τ2 = 0.2677 = τ0 − τ1 with τ1 = 0.2. Besides, in the phase diagrams of x and y in Figure
7(b)–(d), red solid and hollow dots denote stable and unstable equilibria, respectively, and blue and
green lines respectively denote the trajectory and a stable limit cycle, the positive equilibrium E(x∗, y∗)
is stable for τ2 = 0.1 < τ0 − τ1 in Figure 7(b); and it lose stability at τ2 = 0.2677 = τ0 − τ1 in Figure
7(c); then it become unstable one with the appearance of a stable limit cycle at τ2 = 0.35 > τ0 − τ1 in
Figure 7(d).
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Figure 7. (a) Codimension–1 bifurcation diagram of x with respect to τ2 for τ1 = 0.2. (b)–(d)
Phase portraits of x and y for τ2 = 0.1 < τ0−τ1, τ2 = τ0−τ1 = 0.2677 and τ2 = 0.35 > τ0−τ1.

6. Conclusions

In this paper, we are mainly concerned with the stability and bifurcation of system (2.1) without
and with time delay τ. For τ = 0, the existence of positive equilibria of system (2.1) are analyzed
through the Descartes’ rule of signs to obtain the conditions under which the system (2.1) has a unique
positive equilibrium in Theorem 3.1, which are verified by the nucllines of x and y in system (2.1)
in Figure 2. The stability of positive equilibria of system (2.1) without time delay is presented in
Table 2 due to the complex expression of the determinant and trace of the Jacobian matrix. For positive
equilibria, selecting v3 as a bifurcation parameter, the conditions of saddle-node and Hopf bifurcation in
system (2.1) are given in Theorems 4.1 and 4.2, which gives the first Lyapunov number that determines
the stability of limit cycle. These two theorems are verified by codimension-1 bifurcation diagram
of x with respect to v3 in Figures 3 and 4, which include saddle-node bifurcation and supercritical
and subcritical Hopf bifurcation, respectively. Furthermore, by choosing two parameters v3 and d2 in
system (2.1) as bifurcation parameters, we prove that the system exhibits codimension-2 Bogdanov-
Takens bifurcation under the conditions in Theorem 4.3, which is obtained by calculating universal
unfolding near the cusp. Theorem 4.3 is verified by codimension- 2 bifurcation diagram in Figure 5,
which includes Bogdanov-Takens bifurcation point generating the curves of saddle-node, Hopf and
homoclinic bifurcation. For τ , 0, we find time delay induce the superscribe Hopf bifurcation under
the conditions in Theorem 5.1, which is verified by the bifurcation diagram of x with respect to τ2 and
phase portraits of x and y.

Our results give rigorous mathematical proofs of the stability and bifurcation for a two-dimensional
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p53 GRN to expand the understanding of p53 GRN. Besides, the theoretical analyses of GRNs
with noise and space will be further to explored [38–40]. In recent years, fractional-order differen-
tial equations (FODEs) are used to describe GRNs because they possess memory, after-affects and
hereditary properties, which are more compatible with reality than the integer-order differential equa-
tions [41–44]. Therefore, it is worth to explore the stability and bifurcation of GRNs described by three
or four dimensional FODEs.
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