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Abstract: In response to the challenge of noise filtering for the impulsive vibration signals of rolling
bearings, this paper presented a novel filtering method based on the improved Morlet wavelet, which
has clear physical meaning and is more conducive to parameter optimization through employing
Gaussian waveform width to replace the traditional Morlet wavelet shape factor. Simultaneously, the
marine predation algorithm was employed and the minimum Shannon entropy was used as the
parameter optimization index while optimizing the shape width and center frequency of the improved
Morlet wavelet. The vibration waveform of the rolling bearing was matched perfectly by using the
optimized Morlet wave. Shannon entropy was used as the evaluation index of noise filtering, and the
quantitative analysis of noise filtering was realized. Through experimental validation, this method was
proved to be effective in noise elimination for rolling bearing. It is significance to preprocessing of
vibration signal, feature extraction and fault recognition of rolling bearing.
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1. Introduction

Rolling bearings are the key components of major equipment rotating machinery, in the national
economy is known as “industrial joints” [1]. Rolling bearings usually work in high temperature, high
speed, high stress and other complex and extreme working environment, its inner ring, outer ring,
rolling body, retaining bracket and other parts of the failure is frequent, seriously affecting the safe
operation of the whole machine and equipment [2,3]. Research on rolling bearing fault diagnosis
methods, timely prediction of early bearing failure, for further enhancing the level of high-end
equipment manufacturing, promote the development of intelligent manufacturing in machinery
industry is of great strategic significance. However, when the rolling bearing fails, there is a large
amount of noise interference in the signal acquisition, which makes it difficult to extract the fault
characteristics and affects the accurate identification of the fault state, so the noise reduction of the
rolling bearing fault signal is the key to realize the effective diagnosis of the bearing fault state.

Rolling bearing fault diagnosis methods are mainly divided into model-based [4—8] and data-
driven [9-12], both model-based and data-driven fault diagnosis methods rely on high signal-to-noise
ratio signals. Rolling bearing vibration signal due to bearing resonance, neighboring gear vibration,
sensor vibration and other signal modulation factors, as well as environmental noise, low-frequency
signal interference, cage slippage and other factors, resulting in large signal noise, low signal-to-noise
ratio, seriously affecting the rolling bearing fault state identification. In order to accurately obtain the
rolling bearing fault characteristic signal, reduce the noise and improve the signal-to-noise ratio, the
bearing signal data need to be pre-processed for noise reduction [13]. High-quality data preprocessing
lays a solid foundation for later feature extraction and screening [14].

The current rolling bearing filtering and noise reduction methods include mathematical
morphology filtering [15], EEMD [16,17], wavelet filtering [18], etc. Due to the good local time-
frequency characteristics of wavelet analysis, wavelet filtering methods have attracted much attention
in rolling bearing filtering and noise reduction [ 19-21]. The types of wavelet functions used in wavelet
analysis are diverse and non-unique, including Haar wavelet, Gabor wavelet, db wavelet, Morlet
wavelet and so on. And the time domain waveform of Morlet wavelet has the characteristic of
fluctuating and decaying from the center of wavelet amplitude to both ends and tends to zero. With the
rolling bearing fault vibration signal has the shock attenuation waveform characteristics are very
similar, can greatly improve the “waveform” matching degree, so Morlet wavelet is often used for
rolling bearing signal noise reduction filtering [22]. Currently, the related literature for traditional
Morlet wavelet filtering and noise reduction, most of them are to determine the optimal Morlet wavelet
by determining the bandwidth parameter and the center frequency to realize the filtering and noise
reduction of the bearing signal. Liang et al. [23] used Morlet wavelet combined with singular value
decomposition to achieve effective noise cancellation of mechanical test signals, but the article did not
optimize the wavelet parameters, so it is difficult to ensure the stability of the results. Lin and Qu [24]
proposed to use Shannon entropy method to optimize the bandwidth parameter of Morlet wavelet to
improve the noise reduction effect, but the method did not take into account the center frequency
optimization, which made the matching degree of Morlet wavelet with the shock component greatly
reduced. Zhang et al. [25] used the entropy value as an index to determine the Morlet wavelet bandwidth
parameter and center frequency and used the mixed-wash frog jump algorithm to obtain the optimal
Morlet wavelet to realize the filtering and noise reduction of the bearing signal. Tse and Wang [26]
used the sparsity of the filtered envelope signal as a fitness function to optimize the center frequency
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and bandwidth parameters of the Morlet wavelet filter using genetic algorithm to achieve filtering and
noise reduction of the signal. Jiang et al. [27] designed a denoising method to achieve optimal matching
with impulse signals, in which the improved Shannon wavelet entropy is used to optimize the shape
and bandwidth parameters of the conventional Morlet wavelet and the singular value decomposition
is also required to select the appropriate transform scale, which in turn achieves the filtering of the
signal. Behzad et al. [28] proposed a new Morlet wavelet optimization criterion for the diagnosis of
rolling bearings, which optimizes the wavelet parameters according to the amplitude of the bearing
eigenfrequency by proposing a new criterion for adjusting the scaling parameters of the continuous
wavelet transform. Gu et al. [29] used a complex Morlet wavelet filter for composite fault detection in
rolling bearings, in which the envelope spectrum was used to optimize the wavelet parameters and
achieve noise reduction on the bearing signals. Zhang et al. [30] used traditional Morlet wavelets for
noise reduction of bearing vibration signals, and the optimization process was complicated by
determining the bandwidth and center frequency of the Morlet wavelet through local mean
decomposition and Shannon entropy criterion. Su et al. [31] proposed a hybrid method combining
optimal Morlet wavelet and autocorrelation enhancement algorithms for enhancing periodic impulse
features and removing residual noise. Han et al. [32] proposed a fault feature recognition method based
on small wavelet filter optimized by genetic algorithm and empirical modal decomposition, in which
genetic algorithm is used to optimize the bandwidth parameter and the center frequency of Morlet
wavelet filter and singular value decomposition is used to determine the scale of the transformation,
to obtain the optimal Morlet wavelet, which can then realize the filtering of vibration signals. All of
the above are using traditional Morlet wavelet to achieve bearing signal filtering noise reduction, due
to the fuzzy physical meaning of the traditional Morlet wavelet waveform factor, resulting in the
complexity of the optimization process of the filtering parameters of the bearing signal, the
optimization efficiency is low and so on.

In 2019, Cohen [33] proposed an improved Morlet wavelet using Gaussian waveform width
instead of the traditional Morlet wavelet shape factor, which further clarified the physical significance
of the Morlet wavelet waveform parameters. And only the improved Morlet wavelet waveform width
and center comment rate need to be optimized, which simplifies the bearing signal filtering process.
Therefore, this paper adopts the improved Morlet wavelet for noise reduction filtering of rolling
bearing vibration signals to realize the optimal matching between the Morlet wavelet waveform and
the effective signal waveform of rolling bearing fault vibration. This method can effectively filter
out a large number of noise signals and invalid signals, which greatly simplifies the filtering process
and realizes the purpose of noise reduction filtering for rolling bearing fault vibration signals.

In order to achieve the best match between the Morlet wavelet and the rolling bearing vibration
waveform, the waveform width and center frequency of the improved Morlet wavelet [33] need to be
optimized. As intelligent optimization algorithms are intelligent and universal, they are able to
maintain high solution accuracy and optimization efficiency when solving many complex optimization
problems, among other advantages [34], while the Marine predator algorithm [35] is a meta-heuristic
algorithm proposed by Faramarzi et al. in 2020, which has the characteristics of fast convergence speed
and balancing the global search capability and local search capability. It also has the advantages of
simple structure, few parameters, easy implementation as well as the ability to obtain the optimal
solution at a low computational cost, so in this paper, we will introduce the ocean predation algorithm
to optimize the parameters of the improved Morlet wavelet waveform width and center frequency.
Reasonable selection of the fitness function is a key link in the optimization of the marine predation
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algorithm to the improved Morlet wavelet parameters. The actual signals of rolling bearings mostly
belong to sparse distribution, while the noise belongs to non-sparse distribution [36]. Shannon entropy
is a measure of the sparsity of a signal, and its size can reflect the sparse characteristics of the signal
intuitively. If the after-filtering signal contains rich regular fault signals, both the signal periodicity
characteristics are obvious, then the signal shows strong sparse characteristics, Shannon entropy is
smaller, that is, at this time Morlet wavelet filtering parameters optimization is reasonable. If the signal
after filtering contains a large number of noise signals or irregular signals, the signal does not contain
important fault information, showing weak sparse characteristics, Shannon entropy is larger, that is, at
this time, Morlet wavelet filtering parameters are not set reasonably. Nikolaou and Ioannis [37] used
Shannon entropy as an indicator to optimize the wavelet waveform parameters for demodulation of
rolling bearing vibration signals. The results of Kankar et al. [38] showed that the wavelet optimization
method was developed using the minimum Shannon entropy criterion approach, which helps in rolling
bearing feature extraction and wavelet parameter optimization. A comparative analysis of wavelet
coefficients based on entropy measurements was carried out by Dubey et al. [39]. The results show
that using Shannon entropy and average Shannon entropy the best wavelet can be selected among the
discrete wavelets. Dong et al. [40] used local average decomposition and its Shannon entropy to
analyze the collected bearing vibration signals, effectively extracted the eigenvalues and fault
characteristics and completed the fault diagnosis with good results. All in all, it is due to the fact that
Shannon entropy is less affected by local noise and interference. Shannon entropy can better represent
the similarity between the wavelet function and the signal being analyzed, and using Shannon entropy
to optimize the wavelet parameters produces good results. Therefore, in this paper, the minimum
Shannon entropy is selected as the fit of the function of the ocean predation algorithm and the improved
Morlet wavelet waveform width and center frequency are jointly optimized. Therefore, the two
parameter combinations are better matched, reducing the degree of mismatch of the single parameter
optimization and then used in combination and increasing the reliability of parameter optimization.

In summary, for the problems of unclear physical significance of traditional Morlet wavelet
waveform factors and complicated optimization process, this paper applies the improved Morlet
wavelet to the noise reduction filtering of rolling bearing vibration signals. Its use of Gaussian
waveform width instead of the traditional Morlet wavelet shape factor makes its physical meaning
clear and more conducive to waveform parameter optimization. At the same time, the marine predation
algorithm is introduced as the optimization framework and the minimum Shannon entropy is used as
the optimization index of Morlet wavelet width and center frequency parameters of the marine
predation algorithm to realize the adaptive optimization of Morlet wavelet parameters, simplify the
optimization process of Morlet wavelet parameters and improve the rolling bearing fault signal and
the optimal Morlet wavelet matching degree, effectively filtering out a large number of noise signals and
invalid signals. Thus, the noise reduction filtering of rolling bearing faulty vibration signals is realized.

The main contributions of this paper can be summarized as follows:

In the actual working environment, the obtained rolling bearing fault characteristics signal is
mostly a non-smooth sequence of signals, which inevitably contains a large degree of noise, masking
the original fault characteristics signal. In order to accurately obtain the rolling bearing fault
characteristic signal, reduce the noise and improve the signal-to-noise ratio, it is necessary to carry out
data noise reduction preprocessing. In this paper, the improved Morlet wavelet is innovatively applied
to the noise reduction filtering of rolling bearing vibration signals. A new way of taking the value of
waveform width is proposed, in which the width of single pulse vibration of bearing failure is taken as
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the upper limit of the waveform width and the minimum value of the improved Morlet waveform
width [33] is taken as the lower limit of the waveform width. This method clarifies the specific physical
meaning of the wavelet waveform parameters. At the same time, the marine predation algorithm is
used as an optimization framework for the improved Morlet wavelet waveform parameters by taking
advantage of its excellent global search capability, outstanding local search capability and fast
convergence rate. And combined with the ability of Shannon entropy to directly quantify the sparsity
of the bearing signal and the magnitude of the signal-to-noise ratio of the response signal, the best
optimization of the parameters of the improved Morlet wavelet waveform is achieved. The optimal
combination of waveform parameters is used to match the improved Morlet wavelet waveform with
the effective signal waveform of rolling bearing fault vibration. The experimental results show that a
large number of noise signals and invalid signals can be effectively filtered out, which greatly
simplifies the filtering process of the Morlet wavelet and provides a new realization method for the
pre-processing of rolling bearing vibration signals.

2. Analysis of a theoretical approach to noise reduction filtering for rolling bearings based on
improved Morlet wavelets

In this paper, waveform matching of rolling bearing signals based on improved Morlet wavelet
and further noise reduction filtering will be realized. The improved Morlet wavelet utilizes a Gaussian
waveform width instead of the traditional wavelet shape factor, which is a key parameter used to
balance the wavelet time accuracy and frequency accuracy. The improved Morlet wavelet
mathematical expression [33] is as follows:

—4In(2)?

W= e (1)

where 4 is the width of the modified Morlet wavelet and fis the center frequency.

The Fourier transform of the improved Morlet wavelet W is performed to study the effect of 4
and f'on the time domain and frequency domain characteristics of the improved Morlet wavelet. The
results of the simulation are shown in Figure 1.

From the time-domain plots (a)—(d), when /4 is kept constant and f is increased, the wavelet
fluctuation is intensified within the same time width; and when fis kept constant and / is increased,
the wavelet oscillation decay time is prolonged. From the frequency domain plots (e)—(h), when f'is
kept constant and /% is increased, the width of the waveform decreases in the frequency domain,
indicating a prolonged decay time of the wavelet oscillations. From the above analysis results, it can
be seen that the changes of 4 and f, whether in the time domain or frequency domain, will have an
important impact on the improved Morlet wavelet waveform and also affect the improved Morlet
wavelet. Furthermore, the rolling bearing fault signal waveform can achieve the best matching of the
key parameters. Therefore, the optimization of / and f'is the key to achieve the optimal noise reduction
filtering for rolling bearings, which is also the focus of the research in this paper.
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Figure 1. Improved Morlet wavelet waveform in time domain and frequency domain.

The improved Morlet wavelet is used for noise reduction filtering of rolling bearing fault vibration
signals, which is essentially a wavelet convolution feature to match the bearing vibration signal with
the improved Morlet wavelet Gaussian window sine wave, and the result is a time series of “similarity”
between the bearing signal and the wavelet. The result is a time series of “similarity” between the
bearing signal and the wavelet, so the process of convolution of the bearing signal with the improved
Morlet wavelet in the frequency domain is the noise reduction filtering process of the bearing signal.
Let x(¢) characterize the rolling bearing signal, then the noise reduction filtering process of rolling
bearing using improved Morlet wavelet can be expressed as

Rix(0)'} = F{X (/) *w ()] 2
X(f)=FFT(x(2)) A3)
w(f)=FFT(W) “4)

where R{x(f)’} is the signal after x() noise reduction filtering, 7! denotes Fourier inverse transform,
* denotes convolution and FFT stands for fast Fourier transform.

From the above equation, it can be seen that the realization of the improved Morlet wavelet on
the rolling bearing vibration signal filtering noise reduction only needs to carry out the corresponding
Fourier transform of the original rolling bearing signal x(#) and Morlet wavelet W. Then, after the
Fourier inverse transform, convolution processing can be quickly realized on the noise reduction
filtering of rolling bearing vibration signal.
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3. Optimization of rolling bearing signal waveform matching based on improved Morlet wavelet

From the previous analysis, it is clear that the values of h and f directly affect the improved Morlet
wavelet’s filtering characteristics. In order to make the improved Morlet wavelet better, extract the
impact feature components in the vibration signal and improve the rolling bearing fault signal noise
reduction filtering effect, it is necessary to jointly optimize the combination of the improved Morlet
wavelet width /# and the center frequency f, so as to obtain the optimal matching parameters of the
rolling bearing waveform and achieve the best filtering effect. That the marine predation algorithm has
the advantages of simple structure, few parameters, is easy to implement and is able to obtain the
optimal solution at a low computational cost [35]. In this paper, the marine predation algorithm is
introduced to construct the prey matrix of the marine predation algorithm using the parameters of
improved Morlet wavelet waveform width /4 and center frequency f. Then, the minimum Shannon
entropy is used as the value of adaptive degree. After the optimization operation of the marine
predation algorithm in the three stages of exploration—coexistence of exploration and exploitation and
exploitation—the optimal combination of the waveform width 4 and the center frequency f'is obtained,
which realizes the optimal matching of the improved Morlet wavelet and the waveforms of the
vibration signals of the rolling bearings.

As the wavelet waveform width, the value of 4 is closely related to the width of the single impulse
vibration waveform of the bearing fault, so it can be based on the width of the single impulse vibration
of the bearing fault as a reference for the / value. According to [33], the lower limit value of wavelet
waveform width /4 optimization can be set as 1/fs, where fs 1s the sampling frequency and its upper limit
value can be set as two times of the theoretical fault vibration period of the rolling bearing to ensure
that 4 is sufficient for the optimization range. The center frequency f roughly reflects the vibration of
the waveform within the width of 4. In order to expand the range of f optimization, the range of f can
be directly set to 0 < f < fs/2, which makes the range of values of 4 and f'as follows:

0, f./2)
freos o

he 1/ f,,2] f)

where f is the theoretical failure characteristic frequency of rolling bearings, which can usually be
calculated according to the bearing geometry parameters.

According to the marine predation algorithm [20], the constructed prey matrix position
initialization can be calculated according to the following equation

W, =1/ f.+randx 2/ f.-1/ f.)

0 ©)
Soa=rand X f /2

where rand is a random number uniformly distributed in the range 0 to 1 and the superscript 0 indicates
the initial position.

After many iterations of the marine predation algorithm, the prey matrix and elite matrix formed
in the t-th iteration can be expressed as follows:
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where the first number of the subscript denotes the individual and the second number denotes the
dimension, e.g., 4'n,1 denotes the first dimension coordinate value of the nth individual; f»> denotes the
second dimension coordinate value of the nth individual. The elite matrix is obtained by replicating
h'1,1and f12 N times, where I denotes up to the current t-th iteration and 4’11 and /12 is a combination
that minimizes the adaptation value.

Because rolling bearing vibration signals exhibit super-Gaussian or sparse distributions, noise is
non-sparse compared to the effective signal components of bearing vibration. Entropy quantifies the
sparseness of a signal’s distribution. The smaller the entropy value, the sparser the signal distribution,
the more organized the signal is, and the less noise there is [36—40]. And Shannon entropy is the total
amount of information in the variable, which can reflect the sparseness of the rolling bearing signal.
The smaller the Shannon entropy value, the sparser and more ordered the bearing signal is and the less
noise the bearing signal contains. Therefore, the Shannon entropy can be used as a fitness value for the
marine predation algorithm in the process of optimizing the improved Morlet wavelet parameters. The
Shannon entropy expression is given as

SEGx(1) ==Y, p(x)log, p(x) ®)

n=1+log,(N) )

where N is the total number of rolling bearing signal data points, # is the total number of segments and
p(xi) is the probability that a bearing signal data point falls within x;.

According to the principle of marine predation algorithm, the designed waveform matching
optimization flow of rolling bearing signal based on improved Morlet wavelet is shown in Figure 2,
where 7" denotes the number of iterations.

First, the 4 and f search ranges are set respectively, where the upper and lower limits of /# and f
can be assigned according to Eq (5) and the prey initial matrix is constructed according to Eq (6) to
complete the initialization of its position; taking each individual (%, f) in the prey initial matrix as an
improved Morlet wavelet parameter, according to Eqs (2)—(4) of the rolling bearing vibration signal
filtering noise reduction and the Shannon entropy of the filtered signal is calculated according to Eqs (8)
and (9). This Shannon entropy is used as the adaptive degree value of the marine predation algorithm
and the elite matrix is constructed with the prey individual corresponding to the minimum adaptive
degree value. Second, the elite and prey matrices are updated based on the current iteration number ¢
at the stage in the whole iteration cycle and based on the iterative process of the marine predation
algorithm’s exploration optimization process, hybrid exploration, development co-optimization
process, and development optimization process. Finally, after each completed update, its impact on the
fitness value is evaluated based on the FADs effect, and if the fitness value of the prey position under
the current iteration is lower than that of the previous iteration, the new prey position will replace the
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previous one, completing the prey matrix update, and vice versa unchanged. That is, the (4, f)
combination corresponding to the minimum fitness value within the iteration number T steps is

obtained, i.e., the optimal matching parameter between the faulty vibration waveform of the rolling
bearing and the improved Morlet wavelet.

Set A,/ optimization range
according to Eq. (5);
Population size; #; T; FADs

Construet the Prey initial matrix
according to Eq. (6).
|

> Prey Matrix |

v

Noise reduction filtering of rolling bearing signals using
each individual (4,f) in the Prey matrix as an improved
Morlet wavelet parameter.

v

Calculate the Shannon entropy of the signal after filtering of
the rolling bearings, and use the Shannon entropy as the
adaptive degree value of the marine predation algorithm.

The Elite matrix was constructed with the Prey individual
cotresponding to the minimum fitness value.
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Exploration ||Hybrid Exploration || Development
Optimization || and Development || Optimization
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Output the optimal (%,/)
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Figure 2. Optimization process of rolling bearing vibration signal waveform matching
based on improved Morlet wavelet.
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4. Experiment

4.1. Experimental validation of the Xi’an Jiaotong University XJTU-SY rolling bearing accelerated
life dataset

In this section, XJTU-SY rolling bearing accelerated life test dataset [41] is used to experimentally
validate the method of this paper, the shaft speed f- is 37.5 Hz, the radial force is 11 KN, the sampling
frequency fs 1s 25.6 kHz and the model of rolling bearing is LDK UER204, and its specific geometric
parameters are shown in Table 1.

Table 1. Bearing parameters (LDK UER204).

Bearing type Inside Outside Ball Number of Angle of Pitch
diameter diameter diameter rolling load from diameter
(Di/mm) (Do/mm)  (d/mm) elements radial plane (D/mm)
2) (a/rad)
LDK UER204 29.3 39.8 7.92 8 0 34.55
Ball bearing

The theoretical failure frequency of rolling bearings is related to shaft speed, bearing geometry
and defect location. The theoretical failure frequency fiz of the inner ring of the bearing, the theoretical
failure frequency for of the outer ring of the bearing and the theoretical failure frequency frrr of the
bearing cage are calculated as follows:

S = ZJZF’ [1+%cos(0¢)} (10)
Sor = Zg’ (1—%c05(0¢)} (11)
fFTF =%(1—%COS(O€)) (12)

where f- is the shaft speed, D is the pitch diameter, d is the ball diameter, Z is the number of rolling
elements and « is the angle of the load from the radial plane. The calculated theoretical failure
frequency of rolling bearings is shown in Table 2.

According to the results of bearing degradation related research [42], the bearing motion state
is normal in less than 80% of the operating time period during the full-life operation of the bearing.
In 80-90% of the operating time period, the bearing will be in early failure (EF); in 90-95% of the
operating time period, the bearing will be in mid-term failure (MF) and in the remaining operating
time period, the bearing will be in terminal failure (TF). According to the bearing full life cycle
operation law, respectively take the bearing early, middle and late failure corresponding to the data file
samples, its intercepted sample data information is shown in Table 2.
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Table 2. Bearing failure vibration data.

Experimental Data set Sample  Failure Selected csv Theoretical failure
condition size location files frequency (fz/Hz)
Rotation speed:  Bearing2 1 491 Inner ring EF: 418.csv; 184.39
37.5Hz MF: 451.csv;
Radial force: 11 TF: 476.csv;
KN Bearing2 2 161 Outer ring EF: 136.csv; 115.61
MF: 148.csv;
TF: 156.csv;
Bearing2 3 533 Cage EF: 453 .csv; 14.45
MF: 489.csv;
TF: 517.csv;

4.1.1.  Outer ring early failure experiment

Early failure vibration data (EF: 136.csv) of the outer ring was used to validate the effectiveness
of noise reduction filtering of the method in this paper. fs is 25.6 kHz and f; is 115.61 Hz, the search
range of the improved Morlet wavelet width /4 is [3.91e-5, 1.73e-2] and the search range of fis [0, 12800],
which is calculated according to Eq (5). For the marine predation algorithm, population size is
usually 30-50 and the maximum number of iterations 7 is usually 100-300. In order to realize the
optimal / and f optimization results, this paper sets the population size to 50, the maximum number of
iterations 7 to 300 and sets the FADs to 0.2.

Based on the waveform matching optimization process of rolling bearing vibration signal with
improved Morlet wavelet, the outer ring early failure vibration data (EF: 136.csv) is subjected to noise
reduction filtering operation and the iterative curve of waveform matching optimization is shown in
Figure 3. The Shannon entropy SE shows a trend of gradual convergence, with a minimum SE of 2.01
at the completion of the iteration.

Filtering noise reduction results are shown in Figure 4(b), the filtered signal compared with the
original signal impact components increased significantly, the filtered signal noise compared with the
original signal noise is significantly reduced and the filtered bearing failure vibration impact signal has
a certain periodicity, verifying the effectiveness of this paper’s filtering noise reduction method.

The envelope analysis [43] of the filtered signal is shown in Figure 5. The fundamental frequency
of the actual eigenfrequency of the outer ring fault obtained by the envelope analysis is similar to the
theoretical fault frequency. Factors such as environmental noise and cage slippage may be the main
reasons for the deviation between the actual and theoretical frequencies.

In addition, we can clearly see the outer ring theoretical failure characteristic frequency of the
base frequency of 2 times the frequency (230.4 Hz), 3 times the frequency (345.6 Hz), etc., which can
be judged at this time bearings occur in the outer ring failure.

The synthesis of the above analysis results shows that the method proposed in this paper is
effective in noise reduction filtering of early fault signals in the outer ring.
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Figure 4. Raw signal and filtered signal result.

In order to further illustrate the advantages of the method proposed in this paper and compare the
method of this paper with other wavelet filtering noise reduction methods, the outer ring early failure
vibration data (EF: 136.csv) is subjected to wavelet soft-threshold filtering for noise reduction, and the
obtained results are shown in Figure 4(c). The vibration impact component of the signal after wavelet
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soft threshold filtering is not obvious compared with the filtering results of the proposed method, and
the Shannon entropy of the signal after wavelet soft threshold filtering is further calculated to be 2.40,
which is greater than the Shannon entropy value of the signal filtered by the method in this paper 2.01,
indicating that the signal noise component after wavelet soft threshold noise reduction is more. The
envelope analysis of the filtered signal is performed and the results are shown in Figure 6.
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Figure 5. Signal square envelope spectrum after improved Morlet wavelet filtering.
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Figure 6. Signal square envelope spectrum after wavelet soft.

The difference between the base frequency of the actual outer ring fault eigenfrequency (116.4 Hz)
and the theoretical fault frequency (115.6 Hz) is 0.8 Hz, while the base frequency of the outer ring
fault eigenfrequency (115.2 Hz) obtained by the method of this paper differs from the theoretical fault
frequency only by 0.4 Hz, which further demonstrates that the method of this paper has better filtering

and noise reduction filtering effect.
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4.1.2. All data sample experiment

Using the rolling bearing vibration signal filtering method based on improved Morlet wavelet
proposed in this paper, all the data samples selected in Table 2 are sequentially subjected to noise
reduction filtering and the results are shown in Table 3. In order to further verify the applicability of
this method for different fault types and fault degrees of rolling bearings, the signal Shannon entropy
before and after filtering is subjected to the calculation of impairment, and the formula is shown in Eq (13).
When the rolling bearing’s calculated S value is larger in a certain kind of fault period, that in this case
the method of bearing vibration signal contains noise elimination is better. It also shows that the less
noise the signal contains after filtering, the better the filtering noise reduction effect.

SE .
S — (1 _ SE After filtering ]XIOO% (13)

Before filtering

Table 3. Noise reduction filtering results of different fault types and fault degrees.

Data set and Selected csv [/ optimal, f Optimal] SE Before  SE After S
Failure location  files filtering filtering
Bearing2 1 EF: 418.csv; [3.8464¢-3, 1419.5204]  3.0839 2.9927 2.96%
inner ring MF: 451.csv; [2.9960e-3, 2059.1770]  2.9559 2.7446 7.15%
TF: 476.csv; [6.1656¢-4, 4058.7670]  2.8998 2.3868 17.69%
Bearing2 2 EF: 136.csv; [1.7853¢-3, 7621.4035]  2.7099 2.0108 25.80%
outer ring MF: 148.csv; [7.3316e-4, 9719.7542]  2.7018 2.0500 24.12%
TF: 156.csv; [2.1630e-3, 12210.3952] 3.1519 2.1851 30.67%
Bearing2 3 EF: 453.csv; [2.3897¢-3, 12174.4453] 2.6797 2.4388 8.99%
cage MF: 489.csv; [1.1186¢-3, 9726.5546]  2.7697 2.4038 13.21%
TF: 517.csv; [7.5635¢-4, 3430.0532] 2.8322 2.1330 24.69%

From Table 3, it can be seen that whether it is an inner ring fault, outer ring fault or cage fault,
the Shannon entropy of the signal after filtering is smaller than the Shannon entropy before filtering,
that is to say, the filtered signal noise is reduced and the signal-to-noise ratio is increased. The Shannon
entropy impairment value after filtering for all fault degrees of each type is greater than zero, i.e., it
shows that this method has noise reduction filtering effect for all fault types of vibration signals and
can effectively improve the signal-to-noise ratio of bearing vibration signals.

Observing S in Table 3, it is found that the impairment value of this method after filtering the data
of various types of bearing failures in various periods varies from 2.96-30.67%. Among them, the
vibration signal impairment value of bearing outer ring terminal failure (TF) is 30.67%, which
indicates that this method has the best filtering effect on this signal and improves the signal-to-noise
ratio of the signal the most, which can provide a high-quality data source for the subsequent feature
extraction and fault diagnosis. The impairment value for the outer ring early failure signal is 25.80%,
which is combined with the analysis of the results before and after filtering of the outer ring early
failure signal in Section 4.1.1 to conclude that after filtering the signal compared with the original
signal vibration shock components increased significantly and the vibration shock of the signal has a
certain periodicity. The signal noise after filtering is significantly reduced compared to the original
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signal noise. The difference between the actual fault frequency and the theoretical fault frequency of
the signal after filtering is significantly reduced. It can be shown that the Shannon entropy and Shannon
entropy impairment value can have a certain assessment of the bearing signal filtering effect.

In addition, the Shannon entropy impairment value of the bearing outer ring fault signal after
filtering in each period is greater than the maximum of other fault types, indicating that the filtering
effect of the outer ring fault signal is the most obvious and the cage fault signal is the second. For the
same fault type, the Shannon entropy reduction of terminal failure is greater than that of other periods,
which is due to the fact that the vibration signal of terminal failure contains more noise. Also, the
vibration amplitude of the bearing is larger, which is also in line with the actual working condition
of the bearing, so the method in this paper is more effective for noise reduction filtering of strong
noise signals.

In summary, the method in this paper has a certain effect on the rolling bearing fault vibration
signal noise reduction filtering, which can effectively reduce the invalid signal and a large number of
noise signals in the fault signal. It can effectively improve the signal-to-noise ratio of the signal and
accurately obtain high-quality and reliable rolling bearing fault signals. For the next rolling bearing
feature extraction, providing a high-quality signal source will improve the accuracy of fault
identification and the reliability of life prediction.

4.2. Experimental validation of the Case Western Reserve University (CWRU) bearing dataset

In order to further validate the practical effectiveness of the present methodology, the proposed
methodology will be validated again by utilizing the drive-end bearing fault data from the CWRU
bearing dataset [44] at a sampling frequency of 12 kHz (fs = 12 kHz), using the fault data shown in
Table 4. The rolling bearing type is 6205-2RS JEM SKF and its geometrical parameters are shown in
Table 5.

Table 4. Drive end bearing failure data at 12k sampling frequency.

Fault width (mm) Motor load (HP) Shaft speed (rpm) Inner ring ~ Outer ring
0.007” 1 1772 IR007 1 ORO07@6 1

Table 5. Bearing parameters (6205-2RS JEM SKF).

Bearing type  Inside Outside Ball Number of  Angle of load Pitch
diameter  diameter diameter  rolling from radial diameter
(DrYmm) (Do/mm) (d/mm) elements (Z) plane (a/rad)  (D/mm)
6205-2RS 25 52 7.94 9 0 39.04
JEM SKF

The rolling bearing failure data in Table 4 are used to re-validate the effectiveness of the noise
reduction filtering of this paper’s method. According to Eqgs (5), (10) and (11), the theoretical fault
frequency of the bearing, the search range of the improved Morlet wavelet width 4 and the search
range of the center frequency fare calculated respectively, as shown in Table 6. The remaining marine
predation algorithm related parameter settings are consistent with Section 4.1.1. According to the
waveform matching optimization process of rolling bearing vibration signal based on improved Morlet
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wavelet, the noise reduction filtering operation is performed on the rolling bearing fault data in Table 4,
and the filtering results are shown in Table 6 and Figure 7.

Table 6. Correlation filtering parameters and filtering results.

Fault Theoretical Waveform  Center [hoptimal, SE Before SE Afier S
type  failure frequency  width frequency foptimal] filtering filtering

(f2/Hz) (h/s) (f/Hz)
Inner 159.91 [8.3e-5, [0, 6000]  [5.42¢-3, 2.63 1.65 37.26%
ring 1.25¢-2] 5875.72]
Outer 105.86 [8.3e-5, [0, 6000]  [3.83e-3, 2.36 1.59 32.63%
ring 1.89¢-2] 2891.39]
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Figure 7. Raw signal and filtered signal result (inner ring and outer ring).

Observing Table 6, the inner ring signal Shannon entropy decreases from 2.63 to 1.65 with a
Shannon entropy impairment value of 37.26% and the outer ring signal Shannon entropy decreases
from 2.36 to 1.59 with a Shannon entropy impairment value of 32.63%. It shows that the signal noise
is effectively reduced after filtering, which also reflects that the signal-to-noise ratio is enhanced, i.e.,
the invalid signal and noise signal are effectively filtered out, the distribution of the bearing fault signal
becomes sparse and orderly and the fault characteristics are more obvious. Similarly, comparing the
original signal and the signal after filtering in Figure 7, it can be clearly seen that the fault
characteristics of the signal after filtering are prominent and the periodicity of the vibration impact
signal is more obvious.
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Figure 8. Squared envelope spectrum of the inner ring signal after filtering.
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Figure 9. Squared envelope spectrum of the outer ring signal after filtering.

In order to verify that the after filtering signal is valid, the envelope analysis of the filtered signal
is performed and the results are shown in Figures 8 and 9. The actual fault eigenfrequency fundamental
frequencies of the inner and outer rings (159.6 Hz and 106.4 Hz respectively) are similar to the
theoretical fault frequencies (159.91 Hz and 105.86 Hz respectively) and the fault eigenfrequency 2-
fold frequencies (319.2 Hz and 212.4 Hz respectively) can also be clearly seen.

In summary, the results corroborate each other and jointly show that the method in this paper is
effective for rolling bearing fault signal noise reduction filtering and also verifies the reliability of the
proposed method in this paper.

5. Conclusions and future research directions
For the problems of unclear physical significance of traditional Morlet wavelet waveform factors

and complicated optimization process, this paper applied the improved Morlet wavelet to the noise
reduction filtering of rolling bearing vibration signals and put forward a rolling bearing vibration signal
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noise reduction filtering method based on the improved Morlet wavelet. The improved Morlet wavelet
utilizes the Gaussian waveform width to replace the traditional wavelet shape factor, and its physical
meaning is clear, which is more conducive to determining the optimization range of the wavelet
parameters. Optimization of the improved Morlet wavelet width and center frequency using the marine
predation algorithm achieved the best match between the improved Morlet wavelet and rolling bearing
fault signal waveforms. Then, completing the rolling bearing fault vibration signal in the invalid
signal and noise signal effective filtering, highlighted the bearing fault impact characteristics,
improved the signal-to-noise ratio and accurately obtained high-quality and reliable rolling bearing
fault characteristics of the signal. In this paper, the proposed method was validated using two
bearing datasets:

1) XJTU-SY rolling bearing accelerated life test dataset was used to experimentally verify the
method of this paper. First, the outer ring early failure vibration data was taken as an example and the
validity of the method of this paper was verified through the comparison of the bearing signal
waveforms before and after filtering, as well as the analysis of the signal envelope after filtering.
Second, experiments were carried out on the bearing vibration signal data of different fault types and
different fault periods, and at the same time, the Shannon entropy impairment value was used as the
evaluation index of the filtering noise reduction effect, and the results showed that the method in this
paper has an effect on the rolling bearing fault vibration signal noise reduction filtering, which can
effectively reduce the invalid signal and a large number of noise signals in the fault signal. It can
effectively improve the signal-to-noise ratio of the signal. Among them, for the rolling bearing outer
ring fault vibration signal, the filtering noise reduction effect is better than other types of faults, and at
the same time, for various types of terminal failure vibration signals, the filtering noise reduction effect
is better than that of early failure and mid-term failure.

2) The methodology proposed in this paper was again validated using the Case Western Reserve
University bearing dataset of drive-end bearing inner and outer ring failure data. The results of the
experiment showed that the signal noise is effectively reduced after filtering and the signal-to-noise
ratio is enhanced. That is, invalid signals and noise signals are effectively filtered out, the distribution
of bearing fault signals becomes sparse and orderly, the fault characteristics become more obvious and
the periodicity of vibration impact signals becomes more obvious.

In conclusion, the method of this paper is effective, reliable and practical for noise reduction
filtering of rolling bearing fault vibration signals.

The method of this paper can be used in the future to process vibration signals of mechanical
equipment faults in rolling bearings and gears. It can be applied in the fields of bearing health
monitoring, fault diagnosis, predictive maintenance, etc., providing strong support for improving
equipment reliability and safety.

Research on this topic will continue in the future. Subsequent research will further introduce other
types of signal-to-noise evaluation indexes, combined with Shannon entropy, to realize the
optimization of improved Morlet wavelet parameters under the combination of multiple evaluation
indexes of signal-to-noise ratio and provide the best filtering and noise reduction filtering technical means
for rolling bearing signal preprocessing, feature extraction and accurate identification of fault states.
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