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Abstract: Dynamic mathematics software, such as GeoGebra, is a kind of subject-specific digital tool 

used for enabling users to create mathematical objects and operate them dynamically and interactively, 

which is very suitable for mathematics teaching and learning at all school levels, especially at the 

secondary school level. However, limited research has focused on how multiple influencing factors of 

secondary school teachers’ usage behavior of dynamic mathematics software work together. Based on 

the unified theory of acceptance and use of technology (UTAUT) model, combined with the concept 

of self-efficacy, this study proposed a conceptual model used to analyze the factors influencing 

secondary school teachers’ usage behavior of dynamic mathematics software. Valid questionnaire data 

were provided by 393 secondary school mathematics teachers in the Hunan province of China and 

analyzed using a partial least squares structural equation modeling (PLS-SEM) method. The results 

showed that social influence, performance expectancy and effort expectancy significantly and 

positively affected secondary school teachers’ behavioral intentions of dynamic mathematics software, 

and social influence was the greatest influential factor. In the meantime, facilitating conditions, self-

efficacy and behavioral intention had significant and positive effects on secondary school teachers’ 

usage behavior of dynamic mathematics software, and facilitating conditions were the greatest 

influential factor. Results from the multi-group analysis indicated that gender and teaching experience 

did not have significant moderating effects on all relationships in the dynamic mathematics software 

usage conceptual model. However, major had a moderating effect on the relationship between self-

efficacy and usage behavior, as well as the relationship between behavioral intention and usage 

behavior. In addition, training had a moderating effect on the relationship between social influence and 

behavioral intention. This study has made a significant contribution to the development of a conceptual 
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model that could be used to explore how multiple factors affected secondary school teachers’ usage 

behavior of dynamic mathematics software. It also benefits the government, schools and universities 

in enhancing teachers’ digital teaching competencies. 

Keywords: secondary school teacher; dynamic mathematics software; GeoGebra; influential factors; 

UTAUT; self-efficacy; PLS-SEM 

 

1. Introduction  

Education is experiencing a profound digital transformation in the era of the relentless pursuit of 

technological advancement [1–6], and the importance of integrating information technology into 

mathematics teaching has been widely recognized by educational systems around the world [7,8]. 

Technology-based models for mathematics teaching have received considerable critical attention, and 

they can help teachers create engaging mathematics classrooms that are more effective for teaching 

and learning [9–16]. Applying digital technologies in the mathematics classroom has been recognized 

as a high-potential teaching pattern [17–19], and dynamic mathematics software, as a kind of subject-

specific digital technology, is vitally important for mathematics teaching and learning [20–23]. 

Dynamic mathematics software, such as The Geometer’s Sketchpad, GeoGebra, Desmos, Netpad, 

Cabri 3D and Fathom dynamic data software, is a kind of subject-specific digital tool used for enabling 

users to create mathematical objects and operate them dynamically and interactively [24–27]. The use 

of dynamic mathematics software is a key issue in mathematics education. Relevant national and 

international studies have shown that at the secondary school level, the use of dynamic mathematical 

software helps students achieve individual and collective understanding of mathematics [28,29], make 

connections between mathematical objects and graphical representations [30,31], and explore real-

world mathematical problems [32,33]. It has the ability to make active constructions of mathematical 

knowledge in a dynamic learning environment [34,35], and it facilitates students’ mathematical 

problem-solving [36–41]. Thus, it improves mathematical learning performance [42,43]. In a word, 

dynamic mathematics software is necessary for effective mathematics teaching and learning, so it 

needs further in-depth research. 

Although there have been many previous studies conducted on dynamic mathematics software, 

most of the studies in this field focus on its concrete use in teaching and learning [32,36, 44–48], its 

effects on students’ mathematics learning [10–16,49,50], its influence on the professional development 

of mathematics teachers [51–56], and so on. Several literature reviews and a meta-analysis 

[18,25,57,58] also confirmed that the existing studies overlooked the importance of teachers’ 

acceptance and adoption of dynamic mathematics software [27,59]. The factors that influence 

secondary school mathematics teachers’ behavioral intentions and usage behavior of dynamic 

mathematics software and the method applied in research remain unclear. Therefore, this study aimed 

to address these gaps in the existing literature through a quantitative approach based on the extended 

UTAUT model and the PLS-SEM method. The following two research questions were investigated. 

1) What factors positively affect secondary school teachers’ behavioral intentions and usage 

behavior of dynamic mathematics software based on an extended unified theory of acceptance and use 

of technology (UTAUT) model? 
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2) Does gender, teaching experience, major, or training moderate each relationship in the extended 

UTAUT model?  

In the following sections, most related previous studies on dynamic mathematics software are 

described first. Then, a secondary school teachers’ dynamic mathematics software usage conceptual 

model is proposed based on the UTAUT model and integrated with the concept of self-efficacy, along 

with the relevant hypotheses. In the methodology section, the method and process for instrument 

development, data collection and data analysis are described in detail. After that, the results are shown 

based on the standard procedure on how to report the results of partial least squared structural equation 

modeling, and the main findings are interpreted and highlighted. Finally, the implications, limitations 

and future research are discussed. 

2. Literature review and hypothesis development 

2.1. Dynamic mathematics software at the secondary school level 

Dynamic mathematics software is suitable for teaching and learning at the secondary school level. 

Owing to the various affordances, such as calculating, generating accurate diagrams, making 

measurements, and dragging elements of a drawing [60,61], dynamic mathematics software can be 

used in arithmetic, algebra, geometry, functions, probability, statistics, calculus and so forth [62,63]. It 

provides opportunities for positive changes to teaching and learning [64]. Principally, dynamic 

mathematics software can support the creation of meaningful learning environments that allow 

problem-solving and cultivation of creativity, thus aiding in a better understanding of mathematics. 

For instance, Oner [29] analyzed the mathematical discourse of a group of middle school students 

within a virtual collaborative dynamic mathematics environment (GeoGebra), finding that students 

gradually moved from a visual discourse to a more formal discourse, which is beneficial to construct 

geometric dependencies. Dogru and Akyuz [28] explored the mathematical practices of eighth grade 

students’ learning about prisms, cylinders and their surface areas with the help of dynamic mathematics 

software (GeoGebra), which enriches the instruction by assisting students in visualizing and reasoning 

about 3D shapes, and the results revealed that students’ understanding improved. In addition, there 

were some systematic reviews and meta-analyses indicating that the instruction by use of dynamic 

mathematics software can effectively improve students’ mathematics achievement, compared with 

traditional instruction [18,42,43]. This is probably because dynamic mathematics software states or 

verifies conjectures much more easily than in other computational environments or in the more 

traditional setting of paper and pencil in mathematics class [65]. Overall, dynamic mathematics 

software can not only help secondary school mathematics teachers to discern, discuss and reason with 

the invariant properties of mathematics objects [66], but also have a positive effect on secondary school 

students’ mathematical reasoning [13], helping them develop academic achievement and ensuring the 

survival of the learning impact of mathematics [67]. 

2.2. UTAUT and digital teaching 

Several models were put forward to investigate individuals’ behavioral intention and usage 

behavior of new technology. For example, Davis et al. [68,69] proposed the first-generation technology 

acceptance model (TAM) in 1989, which was designed to predict new technology acceptance and 
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usage on the job and suggested two main cognitive beliefs that influence users’ technology acceptance: 

perceived usefulness and perceived ease of use. Venkatesh and Davis [70] proposed the second-

generation technology acceptance model (TAM2) in 2000, which explored the influence of factors 

such as social and cognitive processes on the perceived usefulness, behavioral intention and usage 

behavior of specific technologies. Since then, Venkatesh and his colleagues continually explored better 

models to improve the explanatory power. After reviewing some popular models and theoretical 

frameworks related to technology acceptance, such as the technology acceptance model [69,70], theory 

of planned behavior [71] and innovation diffusion theory [72], they found that none of the models 

involved in the research had more than 50% explanatory power for the user’s behavior. Based on these 

theories and models, the unified theory of acceptance and use of technology (UTAUT) model was 

proposed [73].  

The UTAUT model involves four main factors that influence users’ acceptance and use of 

technology: performance expectancy (PE), effort expectancy (EE), social influence (SI) and 

facilitating conditions (FC). It also includes four moderators involving individual differences: gender, 

age, experience and voluntariness of use. This model is widely used because its explanatory power 

for the user’s behavior far exceeds that of other technology acceptance models. Besides, Venkatesh 

et al. [74] pointed out that adding new constructs can help expand the theoretical horizon of the 

UTAUT model. To compensate for the lack of focus in the UTAUT model on specific tasks, some 

researchers would use it in conjunction with the task-technology fit model [75,76]. From previous 

literature reviews, it is evident that self-efficacy is the most frequently added external variable [77]. 

Some researchers believe that self-efficacy may influence teachers’ use of technology while teaching 

[78,79]. Therefore, this study adds self-efficacy to the original UTAUT model to explore its influence 

on secondary school mathematics teachers’ intentions and behavior toward the use of dynamic 

mathematics software.  

The success of digital teaching and learning largely depends on its acceptance and use by 

teachers [80]. The UTAUT model can be an important theoretical framework for assessing the 

acceptance and use of digital teaching tools. Several studies have used the UTAUT model to investigate 

the adoption of digital technologies, such as the use of digital mathematics textbooks [81] and 

interactive whiteboards [82]. At the same time, digital technology is not only a tool for teaching and 

learning but also for teacher education, so the results of research based on the UTAUT model can 

provide guidance for the development and implementation of digital teaching and learning. For 

example, if teachers have low performance expectancy for digital teaching, the usefulness and 

effectiveness of digital teaching can be improved by enriching the content and enhancing the 

affordance of the tools, thereby increasing teacher satisfaction and usage behavior. Thus, digital 

teaching and learning have the potential to change the way of teaching and provide new ideas for 

teaching and learning for teachers. The UTAUT model can help us better understand teachers’ 

acceptance and use of digital technologies, thus improving the usefulness and effectiveness of digital 

teaching and learning.  

2.3. Formulation of hypothesis 

In this study, the UTAUT model was chosen as the grounded model for developing a conceptual 

model to investigate the factors that influence secondary school teachers’ usage behavior of dynamic 

mathematics software. In this conceptual model, self-efficacy was added as a new construct, which 
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may influence the usage behavior of teachers. In order to analyze the individual differences in how to 

moderate the path relationships in the model, this study retained gender as a moderating variable, 

removed voluntariness of use, replaced age with teaching experience, replaced experience with training, 

and added major as a new moderating variable. Figure 1 illustrates this conceptual model. 

 

Figure 1. Secondary school teachers’ dynamic mathematics software usage conceptual model. 

2.3.1. Performance expectancy 

Performance expectancy (PE) is defined as “the degree to which an individual believes that using 

the system will help him or her to attain gains in job performance” [73] (pp. 447). This definition 

implies that if a system component were not useful, the user would not have any motivation to use that 

part of the system. Therefore, performance expectancy often appears as perceived usefulness in the 

TAM model [68,69,83]. In the context of this study, performance expectancy is regarded as the teachers’ 

belief that dynamic mathematics software can improve teaching quality at the secondary school level. 

Research relating to performance expectancy for digital technologies has indicated that it can positively 

affect the user’s adoption of new technology [84,85]. Accordingly, the following hypothesis is 

formulated: 

H1: Performance expectancy affects secondary school teachers’ behavioral intentions of dynamic 

mathematics software. 

2.3.2. Effort expectancy 

According to UTAUT, effort expectancy (EE) is interpreted as “the degree of ease associated with 

the use of the system” [73] (pp. 450). This definition implies that when users feel that a system is easy 

to use and does not require much effort, they will have a high intention of using it to acquire the 

expected performance. Therefore, effort expectancy often appears as perceived ease of use in the TAM 

model [68,69,83]. In this study, effort expectancy represents teachers’ belief about the ease of use of 
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dynamic mathematics software. Previous studies have demonstrated that effort expectancy is a vital 

factor and significantly affects the users’ adoption of new technology [85,86]. Therefore, this study 

proposes the following hypothesis: 

H2: Effort expectancy affects secondary school teachers’ behavioral intentions of dynamic 

mathematics software. 

2.3.3. Social influence 

Social influence is defined as “the degree to which an individual perceives that important others 

believe he or she should use the new system” [73] (pp. 451), which is similar to subjective norms of 

the theory of reasoned action [87]. In the context of this study, social influence stands for teachers’ 

perceptions about how school leaders, colleagues, and students believe they should use dynamic 

mathematics software. Venkatesh et al. [73] stated that social influence was a significant determinant 

of behavioral intention. Moreover, several empirical studies showed that social influence greatly 

affects someone to adopt new tools [88,89]. Accordingly, the following hypothesis is proposed: 

H3: Social influence affects secondary school teachers’ behavioral intentions of dynamic 

mathematics software. 

2.3.4. Facilitating conditions 

Facilitating conditions are interpreted as “the degree to which an individual believes that an 

organizational and technical infrastructure exists to support the use of the system” [73] (pp. 453). 

According to the UTAUT model, facilitating conditions have an influence on usage behavior, and 

several articles related to technology acceptance also show that facilitating conditions significantly 

influence people’s adoption of new technologies [27,90,91]. In this study, facilitating conditions are 

defined as hardware and software facilities of the classroom, curriculum resources related to dynamic 

mathematics software, and on-time professional support when secondary school teachers have trouble 

in using dynamic mathematics software. Therefore, this study makes the following hypothesis: 

H4: Facilitating conditions affect secondary school teachers’ usage behavior of dynamic 

mathematics software. 

2.3.5. Self-efficacy 

According to the study conducted by Bandura [92], self-efficacy is people’s judgments of their 

capabilities to organize and execute courses of action required to attain designated types of 

performances (pp. 391), which is concerned not with the skills one has but with judgments of what one 

can do with whatever skills one possesses. Based on the concept of dynamic mathematics software, 

self-efficacy is regarded as the individual’s judgmental analysis of the use of dynamic mathematics 

software to accomplish a specified type of task. Moreover, self-efficacy and usage behavior have been 

empirically supported based on causal interlinks between them [78,79]. Therefore, the following 

hypothesis is formulated by this research: 

H5: Self-efficacy affects secondary school teachers’ usage behavior of dynamic mathematics 

software. 
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2.3.6. Behavioral intention and usage behavior 

Behavioral intention (BI) is defined as “the extent to which individuals are willing to use the new 

system in the future” [73] (pp. 456). Usage behavior (UB) refers to the patterns, habits, and actions of 

users when interacting with a system, which is usually measured using their duration and frequency of 

using a target system [93]. Now, there is a growing corpus of research suggesting that behavioral 

intention predicts the actual usage behavior with regard to technology use [94]; for example, Sumak 

et al.’s study [89] found that the usage behavior is positively affected by behavioral intention. Therefore, 

this study will also test the effect of behavioral intention on usage behavior, as suggested by the original 

UTAUT model. 

H6: Secondary school teachers’ behavioral intentions of dynamic mathematics software affect 

their usage behavior. 

2.3.7. Gender as a moderating variable  

Venkatesh et al. [73] reported that gender can play a moderating role in the path relationships in 

the UTAUT model. Recent studies continue to confirm this finding [95,96]. In the educational context, 

male teachers typically master computer-based instructional media more quickly and use subject-

specific tools more frequently in their teaching than female teachers [97]. Therefore, this study 

hypothesizes that gender is a potential moderating variable in the secondary school teachers’ dynamic 

mathematics software usage conceptual model. 

H7: Gender moderates all relationships in the secondary school teachers’ dynamic mathematics 

software usage conceptual model. 

2.3.8. Teaching experience as a moderating variable 

A teacher with more years of teaching experience may have a unique perspective on a certain 

technology. In the original UTAUT model, the variable of age is used as a moderating factor. However, 

in the context of education, age does not reflect a person’s work experience as a teacher. Therefore, 

this study introduced the variable of teaching experience and divided it into three groups according to 

the years of teaching, namely, less than 5 years, 6–15 years, and over 15 years. Hu et al.’s study [98] 

showed that years of teaching positively moderate the acceptance of emerging mobile technologies 

among academic faculties. Therefore, the study proposes that teaching experience is a potential 

moderating variable in the secondary school teachers’ dynamic mathematics software usage conceptual 

model. 

H8: Teaching experience moderates all relationships in the secondary school teachers’ dynamic 

mathematics software usage conceptual model. 

2.3.9. Major as a moderating variable 

Considering China’s teacher education system, it is hypothesized that teachers who graduated 

from a mathematics major are more receptive to dynamic mathematics software than those who 

graduated from a non-mathematics major. When pre-service mathematics teachers study in a teacher 

training program, they learn not only subject knowledge, pedagogical knowledge and pedagogical 

content knowledge, but also the knowledge on how to use subject-specific digitalization tools [99], 
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which leads them to exposure to dynamic mathematics software much earlier. Therefore, the potential 

moderating variable of major is introduced. In summary, the study hypothesizes that the major is a 

potential moderating variable in the secondary school teachers’ dynamic mathematics software usage 

conceptual model. 

H9: Major moderates all relationships in the secondary school teachers’ dynamic mathematics 

software usage conceptual model. 

2.3.10. Training as a moderating variable 

People’s perspectives can be influenced by training [100,101]. The original UTAUT model 

considered experience as the key moderating variable, while this study argues that trained teachers, 

who can gain insight into dynamic mathematics software, increase their proficiency in its use, which 

will influence teachers’ actual usage behavior of dynamic mathematics software. Therefore, training is 

substituted for the original experience, and the study hypothesizes that the training is a potential 

moderating variable in the secondary school teachers’ dynamic mathematics software usage conceptual 

model. 

H10: Training moderates all relationships in the secondary school teachers’ dynamic 

mathematics software usage conceptual model. 

3. Methodology 

This study used a quantitative method to explore factors that positively affect secondary school 

teachers’ usage behavior of dynamic mathematics software. It also examined the moderating effects of 

gender, teaching experience, major and training on all relationships in the secondary school teachers’ 

dynamic mathematics software usage conceptual model. With six constructs, namely, performance 

expectancy, effort expectancy, social influence, facilitating conditions, behavioral intention and usage 

behavior in a standard UTUAT model, self-efficacy was also added to the model. Based on the 

conceptual model developed from a literature review, the data were collected by a self-designed 

questionnaire. Three hundred ninety-three secondary school mathematics teachers in Hunan, a south-

central province of China, provided valid questionnaire data. The PLS-SEM method [102–109] was 

used to analyze these data. 

3.1. Instrument development 

The instrument in this study is a questionnaire on secondary school teachers’ usage behavior of 

dynamic mathematics software, which contains two parts. One part is the personal information of 

secondary school teachers, including gender, nationality, professional title, level of education, major, 

teaching experience, school location, school level, training on dynamic mathematics software and 

dynamic mathematics software mastery, etc. The other part is the factors that may influence secondary 

school teachers’ usage behavior of dynamic mathematics software, which involves 24 items that 

focused on performance expectancy, effort expectancy, social influence, facilitating conditions, self-

efficacy, behavioral intention and usage behavior. These items were adopted from the relevant 

instruments of acceptance and use of technology [27,73,74], combined with the characteristics of 

dynamic mathematics software [110–112]. Particularly, the items that measure performance 
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expectancy were designed according to the affordances of dynamic mathematics software [113,114].  

Table 1. Constructs and indicators used in the instrument. 

Constructs Indicators Content 

Performance 

Expectancy 

(PE) 

PE1 Dynamic mathematics software helps students to understand the relationships 

between geometry figures. 

PE2 Dynamic mathematics software helps students to develop reasoning and 

conjecture ability. 

PE3 Dynamic mathematics software helps students to develop algebra concepts. 

PE4 Dynamic mathematics software helps students to understand the graphs and 

properties of functions. 

PE5 Dynamic mathematics software helps students to experience the randomness of 

data. 

PE6 Dynamic mathematics software helps students to develop the ability for data 

analysis. 

Effort 

Expectancy 

(EE) 

EE1 I find dynamic mathematics software is easy to use. 

EE2 I find the illustration of dynamic mathematics software is easy to understand. 

EE3 I can flexibly use dynamic mathematics software according to my wishes. 

Social Influence 

(SI) 

SI1 I believe the school leaders will encourage me to use dynamic mathematics 

software at the right time. 

SI2 I believe my fellow teachers will encourage me to use dynamic mathematics 

software at the right time. 

SI3 I believe my students will be happy and encourage me to use dynamic 

mathematics software at the right time. 

Facilitating 

Conditions 

(FC) 

FC1 The school has good hardware facilities for me to use dynamic mathematics 

software. 

FC2 I can easily get curriculum resources for using dynamic mathematics software. 

FC3 When I have problems using dynamic mathematics software, some colleagues or 

experts are ready to help me. 

Self-Efficacy 

(SE) 

SE1 I can smoothly use dynamic mathematics software to teach. 

SE2 I can solve the technical problems when I use dynamic mathematics software to 

teach. 

SE3 I am confident of my ability to use the computer. 

Behavioral 

Intention (BI) 

BI1 I would like to use dynamic mathematics software if I can get it. 

BI2 I would like to use dynamic mathematics software to teach if the content is 

appropriate. 

BI3 If I have facilitating conditions, I plan to use dynamic mathematics software in 

the next 12 months. 

Usage Behavior 

(UB) 

UB1 In the last year, I often use dynamic mathematics software to teach. 

UB2 I am very satisfied with the effectiveness of myself in using dynamic 

mathematics software. 

UB3 I have rich experience in using dynamic mathematics software to teach. 

Two pilot studies were conducted before the final version of the questionnaire was obtained. One 

was conducted in a group of secondary school mathematics teachers from a western province of China 
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on August 5, 2022, and the other was also conducted in a group of secondary school mathematics 

teachers on August 11, 2022, but these teachers came from an eastern province of China. The structure 

and several items were modified according to the results of the pilot studies. Then, the questionnaire 

items were considered by three professors and four other researchers for the assessment of content 

validity. The final version of the questionnaire was obtained after being revised due to suggestions for 

improvement. 

All measurement items used a 5‑point Likert scale ranging from strongly disagree (1 point) to 

strongly agree (5 points). The 0–1 coding scheme was used for gender (male: 0, female: 1), major (non-

mathematics: 0, mathematics: 1) and training on dynamic mathematics software (training_no: 0, 

training_yes: 1), and the 0–1–2 coding scheme was used for teaching experience (less than 5 years: 0; 

6–15 years: 1; over 15 years: 2). The specific items are shown in Table 1. In addition, an open-ended 

question was set: Could you talk about the factors that influence secondary school mathematics 

teachers’ usage behavior of dynamic mathematics software according to your experience?  

3.2. Data collection 

The questionnaire was first shown onsite to a group of secondary school mathematics teachers 

from rural areas in the Hunan province of China using a 2-dimensional bar code created by the 

Wenjuanxing application (https://www.wjx.cn) on August 22, 2022. A total of 62 responses were 

collected. The instrument had a good reliability and validity according to the initial analysis. Then, the 

2-dimensional bar code of the questionnaire was sent to many secondary school mathematics teachers 

by WeChat with the help of several leaders of master teachers’ studios and leaders of teaching research 

groups in Hunan province. The questionnaire was anonymous, and the respondents didn’t have to 

provide names and contact information. Data were collected using a convenient sampling technique. 

In the preface of the questionnaire, we announced that this study aimed to explore factors that may 

affect secondary school teachers’ usage behavior of dynamic mathematics software. We also 

announced that this study was voluntary and would not have any negative influences on the 

respondents. All data that were collected were used only for this study. 

A total of 393 secondary school mathematics teachers (128 males and 265 females) provided valid 

data. These teachers are distributed in 13 of 14 prefecture-level cities of Hunan, China. Most of them 

(244) come from the capital city, Changsha, of Hunan province. More than 90% of them are Han 

nationality. Over half (50%) of them have an intermediate professional title. There are 352 and 41 

teachers with undergraduate and master’s degrees, respectively. More than four fifths of the teachers 

graduated from a mathematics major, while less than one fifth of them graduated from a non-

mathematics major. Most teachers have rich teaching experience; for example, 45% of them have 

taught for more than 15 years. A total of 227 and 166 teachers work in cities and villages, respectively. 

More than 85% of them were teaching in junior high school when the study was conducted. More than 

70% of the teachers do not experience systematic training on dynamic mathematics software. About 

one third of the teachers do not know how to use any kind of dynamic mathematics software. Table 2 

shows the demographics of the teachers in more detail. The average time for completing the 

questionnaire was 7 minutes, indicating that these teachers had a good attitude and took the 

questionnaire seriously. 
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Table 2. Demographics data of the secondary school mathematics teachers. 

Demographic Type Number (N = 393) Percentage (%) 

Gender Male 128 32.6 

Female 265 67.4 

Nationality Han  360 91.6 

Minor 33 8.4 

Professional title Primary 126 32.1 

Intermediate 216 55.0 

Senior 51 13.0 

Level of education Bachelor’s or associate degree 352 89.6 

Master’s degree 41 10.4 

Major Mathematics 327 83.2 

Non-Mathematics 66 16.8 

Teaching experience Less than 5 years 90 22.9 

6–15 years 126 32.1 

Over 15 years 177 45.0 

School location Urban 227 57.8 

Rural 166 42.2 

School level Junior high school 336 85.5 

Senior high school 57 14.5 

Training on dynamic 

mathematics software  

Yes 114 29.0 

No 279 71.0 

Dynamic mathematics 

software mastery 

At least one kind of software 261 66.4 

None 132 33.6 

3.3. Data analysis 

SPSS 26 and SmartPLS 4 were used to analyze the quantitative data. First, SPSS 26 was used for 

the preliminary analysis of the data. The specific steps are as follows: (1) data clearing; (2) using the 

Kolmogorov-Smirnov test [115] to examine the normality of each item of the instrument, where the 

results showed that all data were not normally distributed. It can be concluded that the evaluation of 

the conceptual model is not appropriate to use the covariance-based structural equation modeling (CB-

SEM) approach [116] but should use the PLS-SEM approach [105,106]. This approach has limited 

restrictions on sample size and distributional assumptions, which is suitable for non-normal data and 

small sample size [108,117–120]. In addition, PLS-SEM is suitable for explanation and prediction, 

which are the objects of this study. Next, the conceptual model was assessed by using the SmartPLS 4 

in two stages: (1) executing the PLS-SEM algorithm, Bootstrapping, and PLSpredict algorithm to 

obtain the results of the measurement model evaluation and structural model evaluation; (2) using the 

Bootstrap multigroup analysis to test whether teachers’ gender, teaching experience, major and training 

have moderating effects on all path relationships in the conceptual model.  

Since a reflective measurement model was used in this study, the evaluation of this model involves 

four aspects, namely, indicator reliability, internal consistency reliability, convergent validity and 

discriminant validity [106] (pp. 116–126). The specific methods are as follows: (1) evaluating the 

indicator reliability by calculating the outer loadings and the t value of each indicator; (2) evaluating 
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the internal consistency reliability by calculating the values of Cronbach’s Alpha [121], exact reliability 

coefficient (ρA) [122] and composite reliability (ρC) [123] of each construct; (3) evaluating the 

convergent validity by calculating the values of average variance extraction (AVE) [124] of each 

construct; (4) evaluating the discriminant validity by using the Fornell-Larcker criterion [124] and the 

Heterotrait-Monotrait (HTMT) ratio of correlations [125].  

Henseler et al. [126] argued that the overall goodness of fit of the model should be considered as 

a starting point in the structural model evaluation, which is especially necessary when the measurement 

model is reflective. The standardized root mean square residual (SRMR) [127] and the normed fit index 

(NFI) [128] are commonly used to assess the suitability and robustness of the structural models [129]. 

Hair et al. [106] (pp. 187–205) argued that the structural model evaluation should focus on the model’s 

capability to explain and predict one or more target constructs. The specific steps are as follows: (1) 

assessing the structural model for collinearity by examining the variance inflation factor (VIF) values 

of all sets of predictor constructs in the structural model; (2) assessing the significance and relevance 

of the structural model relationships by calculating the path coefficients (β), t values, p values, 95% 

confidence intervals and total effects; (3) assessing the model’s explanatory power by calculating the 

coefficients of determination (R2) and the f2 effect sizes; (4) assessing the model’s predictive power by 

using the PLSpredict procedure [130]. 

The analysis of moderating effects of categorical variables can be implemented through several 

approaches [106] (pp. 287–290). Since the partial least squares structural equation modeling method 

does not rely on distribution assumptions, two non-parametric approaches, the PLS‑MGA [131], and 

the permutation test [132], are often used in research. Although the permutation test is recommended 

by Hair et al. [106] (pp. 289), the application of this approach may be influenced by highly unequal 

group-specific sample sizes, which is the fact in this study. Therefore, the PLS-MGA approach was 

used to implement multi-group analysis. This approach derives a probability value for a one-tailed test. 

If the one-tailed p value is less than 0.05, or larger than 0.95, the parameter values of two groups of 

data will have statistically significant differences, which means the moderating effect exists in this path 

relationship. For the situation that needs to compare a parameter across more than two groups, the 

omnibus test of group differences (OTG) [133] was often recommended. However, the OTG approach 

has not yet been included in SmartPLS4. Considering this fact, the moderating effect of teaching 

experience was analyzed by conducting three pairwise comparisons: over 15 years vs. 1–5 years, 6–

15 years vs. 1–5 years and over 15 years vs. 6–15 years. The Bonferroni correction approach [134] 

was used to control for the familywise error rate. The significance level of 0.05/3≈0.017 instead of 

0.05 was used. For a one-tailed test, if the p value is less than 0.017, or larger than 0.983, the parameter 

values of two groups of data will have statistically significant differences.  

According to Hair et al. [105,106,135] and Henseler et al. [126], the reflective measurement 

model and structural model evaluation criteria for this study are presented in Table 3. 
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Table 3. Evaluation criteria for the results of partial least squares structural equation modeling. 

Model 

evaluation 

Indicators Criteria for evaluation 

Reflective 

measurement 

model 

evaluation 

Indicator 

reliability 

Outer Loading 0.708 ≤ loading < 1 

(Minimum 0.6 in exploratory research) 

Significance The critical t values for a two-tailed test are: 

1.65 (significance level = 0.1)  

1.96 (significance level = 0.05) 

2.57 (significance level = 0.01) 

Internal 

consistency 

reliability 

Cronbach’s 

Alpha (α) 

0.7 ≤ α, ρA, ρC ≤ 0.95 

(Minimum 0.6 in exploratory research;  

Maximum 0.95 to avoid indicator redundancy) 
Exact Reliability 

Coefficient (ρA) 

Composite 

Reliability (ρC) 

Convergent 

validity 

Average Variance 

Extracted (AVE) 

AVE ≥ 0.5 

Discriminant 

validity 

Fornell–Larcker 

criterion 

The square root of AVE of each construct should be 

greater than the inter-construct correlation coefficients. 

Heterotrait-

Monotrait (HTMT) 

ratio of correlations 

HTMT < 0.85 

(HTMT < 0.9 for similar constructs） 

Structural 

model 

evaluation 

Overall model 

fit 

Standardized Root 

Mean square 

Residual (SRMR) 

SRMR < 0.08  

(SRMR < 0.1, acceptable)  

Normed Fit Index 

(NFI)  

NFI>0.9  

(NFI>0.8, acceptable) 

Collinearity Variance Inflation 

Factor (VIF) 

VIF < 3  

(VIF < 5, acceptable)  

Path 

relationships 

Significance and 

Relevance 

The critical t values for a two-tailed test are: 

1.65 (significance level = 0.1)  

1.96 (significance level = 0.05) 

2.57 (significance level = 0.01) 

Explanatory 

power   

Coefficients of 

Determination (R2) 

R2 < 0.25, very small 

0.25 ≤ R2 < 0.50, small 

0.5 ≤ R2 < 0.75, medium 

0.75 ≤ R2 < 0.90, large 

R2 ≥ 0.90, overfit 

f2 Effect Sizes f2 < 0.02, no effect 

0.02 ≤ f2 < 0.15, small 

0.15 ≤ f2 < 0.35, medium 

f2 ≥ 0.35, large 

 Continued on next page 
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Model 

evaluation 

Indicators Criteria for evaluation 

Predictive 

power 

PLSpredict For those indicators with Q2
predict > 0, it should compare 

the root mean square error (RMSE) values with the 

naïve linear regression model (LM) benchmark. 

Counting the number of the indicators with PLS-

SEM_RMSE−LM_RMSE < 0,    

(1) all indicators, high predictive power; 

(2) a majority (or the same number) of the indicators, 

medium predictive power; 

(3) a minority of the indicators, low predictive power; 

(4) none of the indicators, lacks predictive power. 

(If the prediction error distribution is highly non-

symmetric, the mean absolute error (MAE) will replace 

RMSE).  

4. Results 

The results are divided into three parts. First, the reflective measurement model evaluation 

showed indicator reliability, internal consistency reliability, convergent validity and discriminant 

validity. Second, the structural model evaluation showed the overall goodness of fit of the model, the 

result of examining collinearity, the significance and relevance of the structural path relationships, the 

coefficients of determination (R2), the f2 effect sizes and the PLSpredict results. Finally, the partial 

least squares multi-group analysis (PLS-MGA) showed the results of the moderating effect analysis of 

gender, teaching experience, major and training on all relationships in the secondary school teachers’ 

dynamic mathematics software usage conceptual model. 

4.1. Measurement model evaluation 

The evaluation of a reflective measurement model consists of four dimensions, namely, indicator 

reliability, internal consistency reliability, convergent validity and discriminant validity. The 

standardized outer loadings of all indicators were between 0.789 and 0.949, which were greater than 

the critical value of 0.708. The smallest t value of 28.729 was bigger than the critical value of 2.57, 

indicating that the outer loadings of all indicators were statistically significant at the 0.01 level. The 

values of Cronbach alpha of all constructs ranged from 0.838 to 0.935, and the values of the composite 

reliability (ρC) of all constructs were between 0.902 and 0.958, while those of the exact reliability 

coefficient (ρA) were between 0.842 and 0.935. Since Cronbach’s alpha was too conservative, and the 

composite reliability (ρC) was too liberal, the exact reliability coefficient (ρA) was typically viewed as 

the constructs’ true reliability [106] (pp. 119), and all were greater than the critical value of 0.7 and 

smaller than the value of 0.95. These showed the measurement model had a good indicator reliability 

and a high internal consistency reliability. The values of average variance extracted (AVE) of all 

constructs were between 0.686 and 0.885, which were larger than the critical value of 0.5. Therefore, 

the measurement model had a good convergent validity (Table 4). 
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Table 4. Results of the reliability and convergent validity test. 

Constructs Indicators Outer 

Loadings 

t 

Values 

Cronbach’s 

Alpha 

(α) 

Exact  

Reliability 

coefficient 

(ρA) 

Composite 

Reliability 

(ρC) 

Average 

Variance 

Extracted 

(AVE) 

Performance 

Expectancy 

(PE) 

PE1 0.837 43.260 0.909 0.914 0.929 0.686 

PE2 0.836 35.657 

PE3 0.789 31.056 

PE4 0.849 41.512 

PE5 0.846 38.477 

PE6 0.813 28.729 

Effort 

Expectancy 

(EE) 

EE1 0.915 77.574 0.870 0.897 0.920 0.792 

EE2 0.910 87.972 

EE3 0.843 32.972 

Social 

Influence 

(SI) 

SI1 0.940 75.606 0.935 0.935 0.958 0.885 

SI2 0.949 72.950 

SI3 0.933 70.899 

Facilitating 

Conditions 

(FC) 

FC1 0.835 38.937 0.851 0.864 0.909 0.769 

FC2 0.905 77.162 

FC3 0.890 62.799 

Self-Efficacy 

(SE) 

SE1 0.868 42.739 0.838 0.842 0.902 0.755 

SE2 0.897 74.268 

SE3 0.842 32.061 

Behavioral 

Intention (BI) 

BI1 0.890 64.600 0.851 0.852 0.910 0.771 

BI2 0.871 51.975 

BI3 0.872 49.179 

Usage 

Behavior 

(UB) 

UB1 0.876 68.075 0.864 0.868 0.917 0.787 

UB2 0.933 107.449 

UB3 0.852 43.275 

Table 5. Results of the Fornell-Larcker test for assessing discriminant validity. 

 BI EE FC PE SE SI UB 

Behavioral Intention (BI) 0.878       

Effort Expectancy (EE) 0.403 0.890      

Facilitating Conditions (FC) 0.246 0.544 0.877     

Performance Expectancy (PE) 0.518 0.293 0.232 0.829    

Self-Efficacy (SE) 0.339 0.677 0.684 0.220 0.869   

Social Influence (SI) 0.700 0.345 0.278 0.504 0.269 0.941  

Usage Behavior (UB) 0.339 0.505 0.644 0.222 0.637 0.269 0.887 

The discriminant validity of the model was evaluated mainly based on the Fornell-Larcker 

criterion and the Heterotrait-Monotrait (HTMT) ratio of correlations. The Fornell-Larcker criterion 

requires that the square root of each construct’s average variance extracted (AVE) should be greater 

than its highest correlation with any other construct. As shown in Table 5, the values of the square root 

of the AVE of each construct for the bold marked on the diagonal were greater than all other values in 
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the same row and column. Namely, each of them was greater than the correlation between this construct 

and the other constructs, indicating that the measurement model had a good discriminant validity. 

The Heterotrait-Monotrait (HTMT) ratio of correlations is defined as the ratio of the mean of all 

correlations of indicators across constructs measuring different constructs (i.e., the heterotrait-

heteromethod correlations) relative to the geometric mean of the average correlations of indicators 

measuring the same construct (i.e., the monotrait-heteromethod correlations). In short, HTMT is the 

ratio of the between-trait correlations to the within-trait correlations [106] (pp. 122). In principle, the 

HTMT value should be less than 0.85. If there are similar constructs in the model, the corresponding 

HTMT value cannot exceed 0.9. As shown in Table 6, the biggest HTMT value was 0.808, which failed 

to exceed the critical value of 0.85. This further confirmed that the measurement model had undoubted 

discriminant validity. 

Table 6. Results of the HTMT test for assessing discriminant validity. 

 BI EE FC PE SE SI UB 

Behavioral intention (BI)        

Effort Expectancy (EE) 0.459       

Facilitating Conditions (FC) 0.290 0.636      

Performance Expectancy (PE) 0.585 0.328 0.269     

Self-Efficacy (SE) 0.402 0.808 0.806 0.259    

Social Influence (SI) 0.783 0.372 0.315 0.538 0.307   

Usage Behavior (UB) 0.395 0.589 0.743 0.255 0.744 0.303  

4.2. Structural model evaluation 

The starting point of the structural model assessment is to examine the overall goodness of fit of 

the model in this study. The overall model had a good fit and robustness because the SRMR 

(standardized root mean square residual) value was 0.056 < 0.08, and the NFI (normed fit index) value 

was 0.835 > 0.8. As can be seen in Table 7, the VIF (variance inflation factor) values of all sets of 

predictor constructs in the structural model were clearly below the threshold of 3, which meant the 

structural model did not have a collinearity problem.  

Table 7. Results of evaluating the collinearity problem (inner model’s VIF values). 
 

BI EE FC PE SE SI UB 

Behavioral Intention (BI) 

      

1.131 

Effort Expectancy (EE) 1.160 

      

Facilitating Conditions (FC) 

      

1.878 

Performance Expectancy (PE) 1.369 

      

Self-Efficacy (SE) 

      

1.995 

Social Influence (SI) 1.421 

      

Usage Behavior (UB) 
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Table 8. Significance testing results of the structural model path coefficients. 

Relationships Path  

coefficients (β) 

t 

Values 

p 

Values 

95%  

Confidence Intervals  

Significance 

(p < 0.05) 

H1: Performance Expectancy 

→Behavioral Intention 

0.197 3.871 0.000 [0.101,0.303] Yes 

H2: Effort Expectancy  

→Behavioral Intention  

0.157 3.957 0.000 [0.079,0.233] Yes 

H3: Social Influence 

→Behavioral Intention 

0.547 10.515 0.000 [0.438,0.644] Yes 

H4: Facilitating Conditions 

→Usage Behavior 

0.388 7.225 0.000 [0.283,0.492] Yes 

H5: Self-Efficacy 

→Usage Behavior 

0.327 5.652 0.000 [0.212,0.438] Yes 

H6: Behavioral Intention 

→Usage Behavior 

0.132 3.409 0.001 [0.057,0.209] Yes 

Table 9. Significance testing results of the total effects. 

Relationships 
Total Effects 

(β) 

t 

Values 

p 

Values 

95%  

Confidence Intervals 

Significance 

(p < 0.05) 

Performance Expectancy 

→Behavioral Intention 
0.197 3.871 0.000 [0.101,0.303] Yes 

Effort Expectancy  

→Behavioral Intention  
0.157 3.957 0.000 [0.079,0.233] Yes 

Social Influence 

→Behavioral Intention 
0.547 10.515 0.000 [0.438,0.644] Yes 

Facilitating Conditions 

→Usage Behavior 
0.388 7.225 0.000 [0.283,0.492] Yes 

Self-Efficacy 

→Usage Behavior 
0.327 5.652 0.000 [0.212,0.438] Yes 

Behavioral Intention 

→Usage Behavior 
0.132 3.409 0.001 [0.057,0.209] Yes 

Performance Expectancy 

→Usage Behavior 
0.026 2.390 0.017 [0.009,0.005] Yes 

Effort Expectancy  

→Usage Behavior  
0.021 2.545 0.011 [0.007,0.039] Yes 

Social Influence 

→Usage Behavior 
0.072 3.428 0.001 [0.031,0.114] Yes 

After using the Bootstrap technique with 5000 samples in SmartPLS4, the path coefficients, t 

values, p values, 95% confidence intervals and total effects were obtained, which indicated that all 

hypothesized path relationships were supported (Table 8). Specifically, social influence was the most 

important factor that affected secondary school mathematics teachers’ behavioral intentions of 

dynamic mathematics software (β = 0.547, p < 0.001), followed by performance expectancy (β = 0.197, 

p < 0.001) and effort expectancy (β = 0.157, p < 0.001). Facilitating conditions greatly affected 
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secondary school mathematics teachers’ usage behavior of dynamic mathematics software (β = 0.388, 

p < 0.001), followed by self-efficacy (β = 0.327, p < 0.001) and behavioral intention (β = 0.132, p = 

0.001). In addition, performance expectancy (β = 0.026, p = 0.017), effort expectancy (β = 0.021, p = 

0.011), and social influence (β = 0.072, p = 0.001) significantly and indirectly affected secondary 

school mathematics teachers’ usage behavior of dynamic mathematics software via behavioral 

intention. The significance testing results of the total effects are showed in Table 9. 

The explanatory power of a model relates to its ability to fit the data at hand by quantifying the 

strength of association indicated by the PLS path model. The most commonly used measure to evaluate 

the structural model’s explanatory power is the coefficient of determination (R2) value, which 

represents the amount of variance in the endogenous construct explained by all of the exogenous 

constructs linked to it [106] (pp. 195). The R2 values of behavioral intention and usage behavior were 

0.547 and 0.503, respectively, which means the model had a moderate explanatory power for these two 

endogenous constructs. The f2 effect size expresses the change in the R2 value when a specific 

predecessor construct is omitted from the model. As can be seen in Table 10, social influence (f2 = 

0.464) had a large effect size on behavioral intention, and performance expectancy (f2 = 0.062) and 

effort expectancy (f2 = 0.047) had small effect sizes on behavioral intention. Facilitating conditions (f2 

= 0.162) had a medium effect size on usage behavior, and self-efficacy (f2 = 0.108) and behavioral 

intention (f2 = 0.031) had small effect sizes on usage behavior.  

Table 10. Results of calculating f2 effect sizes. 

Endogenous Construct Predictor Construct 

Performance 

Expectancy 

Effort 

Expectancy 

Social 

Influence 

Facilitating 

Conditions 

Self-

Efficacy 

Behavioral 

Intention 

Behavioral Intention 

(R2 = 0.547) 

0.062 0.047 0.464    

Usage Behavior 

(R2 = 0.503) 

   0.162 0.108 0.031 

According to Hair et al. [106] (pp. 196–205), the best approach for assessing the predictive power 

of a PLS path model is by means of Shmueli et al.’s [130] PLSpredict procedure. After running the 

PLSpredict algorithm with 10 folds and 10 repetitions in SmartPLS4, the Q2
predict values, the RMSE 

values of PLS-SEM analysis and the naïve linear regression model (LM) benchmark for all indicators 

of the endogenous constructs were obtained (Table 11). Since all indicators got negative values after 

calculating the differences of PLS-SEM_RMSE and LM_RMSE, the model had high predictive power.  

Table 11. Results of assessing the model’s predictive power by using PLSpredict. 

Indicator Q2
predict PLS-SEM_RMSE LM_RMSE PLS-SEM_RMSE−LM_RMSE 

BI1 0.390 0.468 0.483 –0.015 

BI2 0.410 0.416 0.425 –0.009 

BI3 0.431 0.490 0.507 –0.017 

UB1 0.434 0.888 0.897 –0.009 

UB2 0.369 0.849 0.884 –0.035 

UB3 0.331 0.833 0.869 –0.036 
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The final model with R2, path coefficients and p values is shown in Figure 2. 

 

Figure 2. Final model with R2, path coefficients and p values. 

4.3. Multi-group analysis 

Multigroup analysis allows testing whether differences between group-specific path coefficients 

are statistically significant. This study used a nonparametric multigroup analysis approach, the partial 

least squares multi‑group analysis (PLS‑MGA), to examine whether gender, teaching experience, 

major and training can moderate the path relationships in the secondary school teachers’ dynamic 

mathematics software usage conceptual model. An outline of the steps is given here: (1) generating 

data groups, (2) evaluating categorical moderator variable by Bootstrap multiple group analysis 

procedure, and (3) analyzing different groups’ path coefficients (β) and p values.  

In turn, the groups of gender (female vs. male), teaching experience 1 (over 15 years vs. 1–5 

years), teaching experience 2 (6–15 years vs. 1–5 years), teaching experience 3 (over 15 years vs. 6–

15 years), major (mathematics vs. non-mathematics) and training (training_yes vs. training_no) were 

set up, and the results of the analysis of moderating effects were obtained by a Bootstrap multiple 

group analysis procedure (Tables 12–17). The results suggested that gender and teaching experience 

did not have moderating effects on all path relationships in the conceptual model. This means that the 

hypotheses H7 and H8 were rejected.  

However, different types of majors of secondary school mathematics teachers had a moderating 
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effect on “H5: self-efficacy (SE)→usage behavior (UB)” (Δβ = 0.461, p = 0.001). Specifically, self-

efficacy had a positive direct effect on the dynamic mathematics software’s usage behavior of 

secondary school mathematics teachers who graduated from a mathematics major (β = 0.406, p < 

0.001), while it had no direct effect for those who graduated from a non-mathematics major (β = –

0.055, p = 0.727) (Table 16). Therefore, it could be noted that self-efficacy may lead to the active use 

of dynamic mathematics software, and the effect of self-efficacy is more salient for teachers who 

graduated from a mathematics major. 

There was also a moderating effect of major on “H6: behavioral intention (BI)→usage behavior 

(UB)” (Δβ = –0.326, p = 0.999). There was no direct effect of behavioral intention on the usage 

behavior of dynamic mathematics software of secondary school mathematics teachers who graduated 

from a mathematics major (β = 0.066, p = 0.089), while there was a positive direct effect for those who 

graduated from a non-mathematics major (β = 0.392, p < 0.001) (Table 16). Therefore, it could be 

noted that teachers who graduated from a non-mathematics major were more influenced by behavioral 

intention to usage behavior. 

In addition, there was a moderating effect of training on “H3: social influence (SI)→behavioral 

intention (BI)” (Δβ = –0.184, p = 0.959). Specifically, social influence had a positive direct effect on 

behavioral intention of secondary school mathematics teachers who have been trained for using 

dynamic mathematics software (β = 0.406, p < 0.001). Meanwhile, social influence had a larger 

positive direct effect on behavioral intention of those who did not get a chance for training (β = 0.589, 

p < 0.001) (Table 17). Therefore, teachers who have not been trained were more influenced by social 

influence to behavioral intention. 

Table 12. Results of moderating effect analysis of gender. 

Relationships Female (β) Male (β) Difference 

(female vs. 

male) 

p Values 

1-tailed (female 

vs. male) 

Significance 

(p < 0.05, or 

p > 0.95) 

H1: Performance Expectancy 

→Behavioral Intention 

0.180** 0.268*** –0.088 0.820 No 

H2: Effort Expectancy 

→Behavioral Intention 

0.165*** 0.071n.s. 0.095 0.135 No 

H3: Social Influence 

→Behavioral Intention 

0.522*** 0.597*** –0.075 0.773 No 

H4: Facilitating Conditions 

→Usage Behavior 

0.417*** 0.294** 0.124 0.163 No 

H5: Self-Efficacy 

→Usage Behavior 

0.299*** 0.359** –0.060 0.668 No 

H6: Behavioral Intention 

→Usage Behavior 

0.154** 0.104n.s. 0.050 0.283 No 

*Notes: n.s. means not significant; *p<0.05; **p<0.01; ***p<0.001. 
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Table 13. Results of moderating effect analysis of teaching experience (over 15 years vs. 1–5 years). 

Relationships Over 15 

years (β) 

1–5 years 

(β) 

Difference 

(over 15 years 

vs. 1-5 years) 

p Values 

1-tailed (6–15 

years vs. 1–5 

years) 

Significance 

(p < 0.017, or 

p > 0.983) 

H1: Performance Expectancy 

→Behavioral Intention 

0.202** 0.236n.s. –0.034 0.585 No 

H2: Effort Expectancy  

→Behavioral Intention  

0.108* 0.272** –0.165 0.925 No 

H3: Social Influence 

→Behavioral Intention 

0.603*** 0.416** 0.187 0.096 No 

H4: Facilitating Conditions 

→Usage Behavior 

0.433*** 0.268* 0.165 0.138 No 

H5: Self-Efficacy 

→Usage Behavior 

0.330*** 0.325* 0.005 0.483 No 

H6: Behavioral Intention 

→Usage Behavior 

0.133** 0.200* –0.067 0.749 No 

Table 14. Results of moderating effect analysis of teaching experience (6–15 years vs. 1–5 years). 

Relationships 
6–15 years 

(β) 

1–5 years 

(β) 
 

Difference 

(6–15 years vs. 

1–5 years) 

p Values  

1-tailed  

(6–15 years 

vs. 1–5 

years) 

Significance 

(p < 0.017, or 

p > 0.983) 

H1: Performance Expectancy 

→Behavioral Intention 
0.171n.s. 0.236n.s.  –0.065 0.655 No 

H2: Effort Expectancy  

→Behavioral Intention  
0.183* 0.272**  –0.089 0.769 No 

H3: Social Influence 

→Behavioral Intention 
0.526*** 0.416**  0.110 0.258 No 

H4: Facilitating Conditions 

→Usage Behavior 
0.419*** 0.268*  0.151 0.183. No 

H5: Self-Efficacy 

→Usage Behavior 
0.327** 0.325*  0.002 0.491 No 

H6: Behavioral Intention 

→Usage Behavior 
0.070n.s. 0.200*  –0.129 0.857 No 

 

  



5670 

Electronic Research Archive  Volume 31, Issue 9, 5649-5684. 

Table 15. Results of moderating effect analysis of teaching experience (over 15 years vs. 

6–15 years). 

Relationships over 15 years 

(β) 

6–15 

years (β) 

Difference 

(over 15 years 

vs. 6–15 years) 

p Values 

1-tailed (over 

15 years vs. 

6–15 years) 

Significance 

(p < 0.017, 

or p > 

0.983) 

H1: Performance Expectancy 

→Behavioral Intention 

0.202** 0.171n.s. 0.031 0.385 No 

H2: Effort Expectancy  

→Behavioral Intention  

0.108* 0.183* –0.075 0.813 No 

H3: Social Influence 

→Behavioral Intention 

0.603*** 0.526*** 0.077 0.265 No 

H4: Facilitating Conditions 

→Usage Behavior 

0.433*** 0.419*** 0.014 0.457 No 

H5: Self-Efficacy 

→Usage Behavior 

0.330*** 0.327** 0.003 0.494 No 

H6: Behavioral Intention 

→Usage Behavior 

0.133** 0.070n.s. 0.062 0.260 No 

Table 16. Results of moderating effect analysis of major. 

Relationships Mathematics 

(β) 

Non-

mathematics 

(β) 

Difference 

(mathematics 

vs. non-

mathematics) 

p Values 

1-tailed 

(mathematics 

vs. non-

mathematics) 

Significance 

(p < 0.05, or 

p > 0.95) 

H1: Performance Expectancy 

→Behavioral Intention 

0.218*** 0.155n.s. 0.063 0.322 No 

H2: Effort Expectancy  

→Behavioral Intention  

0.139** 0.236* –0.097 0.794 No 

H3: Social Influence 

→Behavioral Intention 

0.565*** 0.418* 0.147 0.201 No 

H4: Facilitating Conditions 

→Usage Behavior 

0.376*** 0.542*** –0.165 0.846 No 

H5: Self-Efficacy 

→Usage Behavior 

0.406*** –0.055n.s. 0.461 0.001 Yes 

H6: Behavioral Intention 

→Usage Behavior 

0.066n.s. 0.392*** –0.326 0.999 Yes 
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Table 17. Results of moderating effect analysis of training. 

Relationships Training_yes 

(β) 

Training_no 

(β) 

Difference 

(training_yes 

vs. 

training_no) 

p Values 

1-tailed 

(training_yes vs. 

training_no) 

Significance 

(p < 0.05, or 

p > 0.95) 

H1: Performance Expectancy 

→Behavioral Intention 

0.278** 0.165** 0.113 0.145 No 

H2: Effort Expectancy  

→Behavioral Intention  

0.259** 0.133** 0.126 0.082 No 

H3: Social Influence 

→Behavioral Intention 

0.406*** 0.589*** –0.184 0.959 Yes 

H4: Facilitating Conditions 

→Usage Behavior 

0.476*** 0.338*** 0.138 0.135 No 

H5: Self-Efficacy 

→Usage Behavior 

0.238* 0.355*** –0.118 0.813 No 

H6: Behavioral Intention 

→Usage Behavior 

0.213** 0.122** 0.091 0.154 No 

5. Discussion 

Dynamic mathematics software, such as GeoGebra, is a kind of subject-specific digital tool used 

for enabling users to create mathematical objects and operate them dynamically and interactively. 

Using dynamic mathematics software to teach and learn can be highly effective for a lot of content of 

mathematics at the secondary school level. Although this kind of software has been used to teach by 

many secondary school mathematics teachers, and some researchers have paid attention to its 

application, few researchers have explored the factors influencing secondary school teachers’ usage 

behavior of dynamic mathematics software. This study performed this task by using a PLS-SEM 

method. This study proposed a conceptual model to explore the factors influencing secondary school 

teachers’ usage behavior of dynamic mathematics software, which was generated by adding self-

efficacy to the original UTAUT model. The results of the measurement model evaluation and structural 

model evaluation showed that this conceptual model was very plausible. The path relationships in the 

empirical model remained consistent with the conceptual model.  

The results of the quantitative analysis indicated that performance expectancy (β = 0.197, p < 

0.001) and effort expectancy (β = 0.157, p < 0.001) significantly affected secondary school teachers’ 

behavioral intentions of dynamic mathematics software. Previous studies showed that these two 

variables affected the desire and willingness to use new technology [75,86]. Therefore, if secondary 

school teachers can perceive the usefulness and master the basic functions of dynamic mathematics 

software, they may have intentions to use it in their classroom. Even so, these two independent 

variables were not the most important factors. Instead, social influence had the greatest impact on 

secondary school mathematics teachers’ behavioral intentions of dynamic mathematics software (β = 

0.547, p < 0.001), which was consistent with the findings of some previous studies. Lai [88] used a 

structural equation modeling method based on the UTAUT model and found that performance 

expectancy, social influence and facilitating conditions positively and significantly affected older 

adults’ intention to use mobile devices, and that social influence was the most significant factor. In a 
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study exploring teachers’ acceptance and use of interactive whiteboards, social influence was found to 

be the greatest predictor of behavioral intention [89]. It indicated that teachers’ behavioral intentions 

to adopt a new technological tool for teaching and learning was largely influenced by the school 

climate and surrounding people.  

Facilitating conditions strongly influenced secondary school mathematics teachers’ usage 

behavior of dynamic mathematics software (β = 0.388, p < 0.001). Some research had shown that 

facilitating conditions were truly important factors influencing teachers’ adoption and use of 

information technology [90,91]. This finding was completely aligned with our previous study [27], 

which found that facilitating conditions were the biggest factor influencing elementary school teachers’ 

usage behavior of dynamic mathematics software. Therefore, a good technology environment is 

important, and appropriate curriculum resources and expert teachers’ support are also very important 

for using dynamic mathematics software. 

Self-efficacy also played an important role in determining secondary school mathematics teachers’ 

usage behavior of dynamic mathematics software (β = 0.327, p < 0.001). Self-efficacy had a direct 

positive effect on the usage behavior in this study, which meant that high levels of self-efficacy may 

enhance teachers’ usage behavior of dynamic mathematical software. This finding confirmed the 

outcomes of previous similar studies [79]. It suggested that when secondary school mathematics 

teachers have sufficient self-efficacy in using dynamic mathematics software during their pedagogical 

activities, they may actually use it. 

It is worth noticing that the strength of the relationship between behavioral intention and usage 

behavior of dynamic mathematics software, although statistically significant (β = 0.132, p = 0.001), 

was the weakest path relationship in this model. It was very different from the findings of Wijaya et 

al.’s study [86] on micro-lecture, in which the path coefficient from behavioral intention to usage 

behavior was the largest one. The possible reason may be because dynamic mathematics software is a 

kind of subject-specific teaching software. More than 70% of secondary school mathematics teachers 

in this study claimed that they had not learned dynamic mathematics software systematically, and one 

third of the teachers declared that they were unfamiliar with any kind of dynamic mathematics software. 

Under this situation, even if these secondary school mathematics teachers are willing to use dynamic 

mathematics software, it is difficult for them to produce actual usage behavior.  

By using the NVivo software, this study created a word cloud based on the open-ended question 

in the instrument. It was found that the most important influencing factors mentioned by secondary 

school mathematics teachers were the lack of hardware facilities and poor personal computer skills, 

which meant they felt a lack of facilitating conditions and self-efficacy. It further confirmed the results 

of the quantitative analysis. 

In addition to the analysis of the path relationships between the independent variables and 

dependent variables, this study also analyzed how individual differences among teachers affect the 

relationships between the variables. It has been identified in some studies, such as Jang et al.’s study [97] 

on elementary school teachers’ using interactive whiteboards, that gender may moderate the path 

relationships in the model. For a teacher, the years of teaching are more important than the age when 

we talk about his/her teaching. Therefore, teaching experience was used as the moderating variable 

instead of age. At the same time, systematic training on dynamic mathematics software is a very 

important experience in professional development, which may influence teachers’ behavioral 

intentions and usage behavior. Since most teachers who graduated from a mathematics major may have 

an opportunity to learn a course of technologies in mathematics education, and those who graduated 
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from a non-mathematics major may not have this opportunity, the major was also used as a moderating 

variable in this study. The results of the multi-group analysis on the teachers’ gender and teaching 

experience revealed that none of these variables was able to moderate the path relationships between 

the independent variables and dependent variables. However, the major will moderate the path 

relationship between self-efficacy and usage behavior, and between behavioral intention and usage 

behavior. The training will also moderate the path relationship between social influence and behavioral 

intention. Our findings may shed some light on the fact that teachers who graduated from a 

mathematics major do have an advantage in the acceptance and use of dynamic mathematics software. 

The teachers who got training on dynamic mathematics software may not be too ready to change their 

intentions by other peoples’ opinions. Therefore, it is necessary to make sure all pre-service 

mathematics teachers have opportunities to learn how to use dynamic mathematics software (such as 

GeoGebra). 

6. Implications 

6.1. Theoretical implications 

Based on the original UTAUT model, this study developed a conceptual model by adding a self-

efficacy construct. First, the model distinguished three independent variables (namely, performance 

expectancy, effort expectancy and social influence) that can significantly influence behavioral 

intention, as well as two independent variables (namely, facilitating conditions and self-efficacy) that 

can significantly influence usage behavior, and the behavioral intention can significantly influence 

secondary school teachers’ usage behavior of dynamic mathematics software. This is the first 

quantitative study on the factors influencing secondary school teachers’ usage behavior of dynamic 

mathematics software, and the conceptual model has more than 50% explanatory power for both 

behavioral intention and usage behavior, which means it is a good theoretical model. Second, the PLS-

SEM method was proven to be valid to explore the influential factors of secondary school teachers’ 

usage behavior of dynamic mathematics software, which is different from the method used by previous 

studies, for example, the pretest-posttest design method. Finally, this conceptual model can be applied 

to explore the influential factors of the behavioral intention or usage behavior of other digital 

technologies at K-12 school levels. 

6.2. Practical implications 

This study showed that the factors influencing secondary school mathematics teachers’ behavioral 

intentions of dynamic mathematics software were social influence, performance expectancy and effort 

expectancy, from the largest to the smallest, and the factors influencing the usage behavior were 

facilitating conditions, self-efficacy and behavioral intention. Among them, social influence, 

facilitating conditions and self-efficacy deserved our special attention.  

The implications to improve secondary school mathematics teachers’ behavioral intentions and 

usage behavior of dynamic mathematics software consist of the following: (1) offering a course based 

on dynamic mathematics software during pre-service or in-service teacher training, which can improve 

teachers’ self-efficacy, performance expectancy and effort expectancy; (2) providing good hardware 

and software facilities for using dynamic mathematics software at secondary schools, which can 
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improve facilitating conditions; (3) creating an atmosphere to encourage teachers to use dynamic 

mathematics software, for example, organizing various forms of competition activities, which can 

improve social influence; (4) developing some curriculum resources related to dynamic mathematics 

software; and (5) fostering some master teachers who are good at using dynamic mathematics software, 

which can also improve facilitating conditions for teachers to use dynamic mathematics software. 

7. Conclusions 

By using the PLS-SEM method, this study analyzed the factors influencing secondary school 

mathematics teachers’ usage behavior of dynamic mathematics software based on an extended UTAUT 

model. It was found that social influence, performance expectancy and effort expectancy significantly 

and positively affected secondary school mathematics teachers’ behavioral intentions of dynamic 

mathematics software, and social influence was the greatest influential factor. In addition, facilitating 

conditions, self-efficacy and behavioral intention had significant and positive effects on secondary 

school mathematics teachers’ usage behavior of dynamic mathematics software, and facilitating 

conditions were the greatest influential factors. There were no significant moderating effects of gender 

and teaching experience on all relationships in the dynamic mathematics software usage conceptual 

model, while major had a moderating effect on the relationship between self-efficacy and usage 

behavior, as well as the relationship between behavioral intention and usage behavior. Training also 

had a moderating effect on the relationship between social influence and behavioral intention. This 

study aimed at figuring out the important factors that need to be observed for the adoption of dynamic 

mathematics software at the secondary school level, which benefits the government, schools, and 

universities in enhancing teachers’ digital teaching competencies. In order to improve secondary 

school mathematics teachers’ usage behavior of dynamic mathematics software, the government 

should provide sufficient funds to make sure the schools have appropriate hardware and software 

facilities. The schools should develop more curriculum resources related to dynamic mathematics 

software, and the universities should provide appropriate courses to help pre-service and in-service 

mathematics teachers to grasp dynamic mathematics software. 

8. Limitations and future research 

This study had several limitations that needed to be considered with caution. First, it used a non-

random sample. Although the sample covered almost all prefecture-level cities of Hunan, China, most 

of them came from the capital city of this province. The regional and cultural characteristics may also 

have significant differences. Therefore, another examination is needed to confirm the results of this 

study. Second, the predictor constructs in this study can only explain the variance of the usage behavior 

construct up to 50.3%, indicating that some other factors still affect secondary school mathematics 

teachers’ usage behavior of dynamic mathematics software. Thus, further study may need to include 

other factors, such as technological pedagogical content knowledge (TPACK), or engagement. Finally, 

some qualitative methods like in-depth interviews should be included in future research. 
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