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Abstract: The mean value problems of exponential sums play a very important role in the research
of analytic number theory, and many famous number theory problems are closely related to them.
The main purpose of this paper is using some elementary methods and the number of the solutions of
the congruence equations to study the calculating problem of some fourth power means of two-term
exponential sums, and give exact calculating formulae and asymptotic formula for them.
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1. Introduction

As usual, let p be an odd prime. For any integers h > r ≥ 1 and integers m and n, the two-term
exponential sum S (m, n, h, r; p) is defined as

S (m, n, h, r; p) =
p−1∑
a=0

e
(
mah + nar

p

)
,

where e(y) = e2πiy and i is the imaginary unit. That is, i2 = −1.
These sums play very important role in the study of analytic number theory, so many number the-

orists have studied the various properties of S (m, n, h, r; p) and obtained some meaningful research
results. Here we give a few examples. W. P. Zhang and D. Han [1] used analytic methods to study the
sixth power mean of S (1,m, 3, 1; p), and proved the following result:

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
a3 + ma

p

)∣∣∣∣∣∣∣
6

= 5p4 − 8p3 − p2, (1.1)

where p denotes an odd prime with 3 ∤ (p − 1).
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Recently, W. P. Zhang and Y. Y. Meng [2] also studied the sixth power mean of S (m, n, 3, 1; p),
and obtained some new identities. In fact, they proved that for any odd prime p and integer n with
(n, p) = 1, one has

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + na

p

)∣∣∣∣∣∣∣
6

=

 5p3 · (p − 1) if p ≡ 5 mod 6;
p2 ·

(
5p2 − 23p − d2

)
if p ≡ 1 mod 6.

(1.2)

here, 4p = d2 + 27 · b2, and d is uniquely determined by d ≡ 1 mod 3.
On the other hand, L. Chen and X. Wang [3] proved

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣∣∣
4

=



2p2(p − 2) if p ≡ 7 mod 12,
2p3 if p ≡ 11 mod 12,
2p(p2 − 10p − 2α2) if p ≡ 1 mod 24,
2p(p2 − 4p − 2α2) if p ≡ 5 mod 24,
2p(p2 − 6p − 2α2) if p ≡ 13 mod 24,
2p(p2 − 8p − 2α2) if p ≡ 17 mod 24,

(1.3)

where the character sums α = α(p) =

p−1
2∑

a=1

(
a3 + a

p

)
is an integer satisfying the identity (see Theorem

4–11 in [4]):

p = α2 + β2 =


p−1

2∑
a=1

(
a3 + a

p

)
2

+


p−1

2∑
a=1

(
a3 + ra

p

)
2

.

(
∗

p

)
denotes the Legendre symbol, and r is a quadratic non-residue modulo p.

In addition, some related papers can also be found in [5-11].
From the formulae (1.1)–(1.3), it is not difficult to see that the content of all these papers only in-

volves r = 1 in S (m, n, h, r; p). For the case r > 1 in S (m, n, h, r; p), we have not found a corresponding
conclusion, at least not so far. Therefore, when h > r = 2, the research is difficult, and it is difficult to
obtain some ideal results.

In this paper, we use elementary methods and results on the number of solutions to study the calcu-
lating problem of the 2k-th power mean

S 2k(p) =
p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a2

p

)∣∣∣∣∣∣∣
2k

,

and give an exact calculating formula for S 4(p) with p ≡ 3 mod 4. That is, we will prove the following
two main results:

Theorem 1. Let p be a prime with p ≡ 3 mod 4. Then, we have the identity

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a2

p

)∣∣∣∣∣∣∣
4

= p2 · (7p − 10) .
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Theorem 2. Let p be a prime with p ≡ 1 mod 4. Then, we have the identity

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 = p2 + 13p + 4(−1)
p−1

4 p − 2α(p) − 4(−1)
p−1

4 α(p) + 4α2(p),

where α = α(p) is defined in (1.3).
Some notes: In Theorem 1, we only discussed a prime p in the case p ≡ 3 mod 4. If p ≡ 1 mod 4,

then the situation is much more complicated. We cannot calculate the exact value of S 4(p), and we
cannot even get a valid asymptotic formula for S 4(p). The reason is that we do not know the exact
value of

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

(
a2 + b2 − c2 − 1

p

)
(1.4)

and do not know a valid asymptotic formula for it.
However, if p ≡ 1 mod 4, we give some ideas and methods of studying S 4(p) (see Lemma 3 and

Lemma 4 below). We even have the following:
Conjecture. If prime p ≡ 1 mod 4, then there is an asymptotic formula

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a2

p

)∣∣∣∣∣∣∣
4

= 7p3 + O
(
p

5
2
)
.

To prove this conjecture, we can convert (1.4) to the estimate for character sums

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ab(a + b − c − 1)

p

)

or character sums

D(p) =
p−1∑
a=0

p−1∑
c=0

(
ac(a − c − 1)(a2 − c2 − 1)

p

)
.

If one can give a non-trivial upper bound estimate for D(p), such as |D(p)| ≪ p, then we can prove
that the conjecture is correct.

For any odd prime p with p ≡ 3 mod 4 and integer k ≥ 3, whether there exists an exact calculating
formula for

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a2

p

)∣∣∣∣∣∣∣
2k

is an open problem. Interested readers can continue this research.
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2. Several lemmas

To complete the proofs of our main results, we need some simple lemmas. Of course, the proofs of
all these lemmas need some knowledge of elementary number theory and analytic number theory, and
all these can be found in [12, 13], so we do not have to repeat them here. First, we have the following:

Lemma 1. For any odd prime p, we have the identities
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p
a2+b2≡c2+1 mod p

1 = 4(2p − 3) and
p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p
a2+1≡c2 mod p

1 = 2.

Proof. It is clear that
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p
a2+b2≡c2+1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(a2+b2)2
−a4−b4≡(c2+1)2

−c4−1 mod p

a2+b2≡c2+1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2b2≡c2 mod p
a2+b2≡c2+1 mod p

1

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(a2−1)(b2−1)≡0 mod p

a2+b2≡c2+1 mod p

1 = 4(p − 3) + 2 + 4(p − 3) + 2 + 8 = 4(2p − 3). (2.1)

Similarly, we also have
p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p
a2+1≡c2 mod p

1 =
p−1∑
a=0

p−1∑
c=0

(a2+1)2
−a4−1≡c4−c4 mod p

a2+1≡c2 mod p

1 =
p−1∑
a=0

p−1∑
c=0

a2≡0 mod p
a2+1≡c2 mod p

1 = 2. (2.2)

Now Lemma 1 follows from (2.1) and (2.2). □
Lemma 2. Let p be a prime with p ≡ 3 mod 4. Then, we have the identities

p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p

1 = p − 1

and
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 = p2 + p.

Proof. First, we prove the second formula in Lemma 2. Let b denote the inverse of b mod p, i.e.,
bb ≡ 1(mod p). From the properties of a complete residue system modulo p, we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(a+c)2+(b+1)2≡c2+1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+2ac+b2+2b≡0 mod p

1
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=

p−1∑
a=0

p−1∑
b=1

p−1∑
c=0

a(a+2c)+1+2b≡0 mod p

1 +
p−1∑
a=0

p−1∑
c=0

a(a+2c)≡0 mod p

1

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

ac+b≡0 mod p

1 −
p−1∑
a=0

p−1∑
c=0

ac+1≡0 mod p

1 + (2p − 1) = p2 − (p − 1) + (2p − 1)

= p2 + p. (2.3)

Since p ≡ 3 mod 4, from the properties of the Legendre symbol modulo p, we have
(
−1
p

)
= −1 and

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(−a)2+b2≡c2+1 mod p

(
−a
p

)
= −

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a
p

)

or
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a
p

)
= 0. (2.4)

Similarly, we also have
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ab
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ac
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
abc

p

)
= 0. (2.5)

It is clear that we have the identity
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 =
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
1 +

(
a
p

)) (
1 +

(
b
p

)) (
1 +

(
c
p

))

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

1 + 2
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a
p

)
+

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
c
p

)

+2
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ac
p

)
+

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ab
p

)

+

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
abc

p

)
. (2.6)

Combining (2.3)–(2.6), we have the identity
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 = p2 + p.
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Similarly, we can also deduce the first formula in Lemma 2, which is

p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p

1 =
p−1∑
a=0

p−1∑
c=0

a2+1≡c2 mod p

(
1 +

(
a
p

)) (
1 +

(
c
p

))

=

p−1∑
a=0

p−1∑
c=0

a2+1≡c2 mod p

1 + 2
p−1∑
a=0

p−1∑
c=0

a2+1≡c2 mod p

(
a
p

)
+

p−1∑
a=0

p−1∑
c=0

a2+1≡c2 mod p

(
ac
p

)
.

Using the method (2.3)–(2.6) and removing element b, we immediately get

p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p

1 = p − 1.

This proves Lemma 2. □
Lemma 3. Let p be a prime with p ≡ 1 mod 4. Then, we have the identity

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 = p2 + 13p + 4(−1)
p−1

4 p − 2α(p) − 4(−1)
p−1

4 α(p) + 4α2(p).

Proof. The proof of the lemma is mainly divided into three parts:
(i) Summing Legendre symbols containing one variable, we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
b
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2+2bc≡1 mod p

(
a
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b(b+2c)≡1 mod p

(
a
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+bc≡1 mod p

(
a
p

)

= 2p +
p−1∑
a=0

p−1∑
b=1

p−1∑
c=0

a2+c≡1 mod p

(
a
p

)
= 2p + (p − 1)

p−1∑
a=1

(
a
p

)
= 2p. (2.7)

Note the identities

p−1∑
b=0

(
b2 + n

p

)
=

{
p − 1 if p | n,
−1 if p ∤ n.

We have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
c
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a+b2≡c2+1 mod p

(
c
p

) (
1 +

(
a
p

))
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=

p−1∑
b=0

p−1∑
c=0

(
c
p

)
+

p−1∑
b=0

p−1∑
c=0

(
c
p

) (
c2 + 1 − b2

p

)

=

p−1∑
c=0

(
c
p

) p−1∑
b=0

(
b2 − c2 − 1

p

)
= (p − 1)

p−1∑
c=0

p|(c2+1)

(
c
p

)
−

p−1∑
c=0

p∤(c2+1)

(
c
p

)

= p
p−1∑
c=0

p|(c2+1)

(
c
p

)
−

p−1∑
c=0

(
c
p

)
= 2(−1)

p−1
4 · p. (2.8)

(ii) Summing Legendre symbols containing two variables, we can get

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ab
p

)
=

p−1∑
a=0

p−1∑
b=1

p−1∑
c=0

(ab)2+b2≡(cb)2+1 mod p

(
ab2

p

)
=

p−1∑
a=0

p−1∑
b=1

p−1∑
c=0

a2+1≡c2+b
2

mod p

(
a
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

b2+c2≡a2+1 mod p

(
a
p

)
−

p−1∑
a=0

p−1∑
c=0

c2≡a2+1 mod p

(
a
p

)

= 2(−1)
p−1

4 · p −
p−1∑
a=0

(
a
p

) (
1 +

(
1 + a2

p

))
= 2(−1)

p−1
4 · p −

p−1∑
a=1

(
a + a

p

)
= 2(−1)

p−1
4 · p − 2α(p). (2.9)

and
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
bc
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ac
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=1

(ac)2+(bc)2≡c2+1 mod p

(
ac2

p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=1

a2+b2≡1+c2 mod p

(
a
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡1+c2 mod p

(
a
p

)
−

p−1∑
a=0

p−1∑
b=0

a2+b2≡1 mod p

(
a
p

)

= 2p −
p−1∑
a=0

(
a
p

) (
1 +

(
1 − a2

p

))
= 2p − 2(−1)

p−1
4 α(p). (2.10)

(iii) Summing Legendre symbols containing three variables, we can obtain

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
abc

p

)
=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

b2a2+b2≡c2+1 mod p

(
ab2c

p

)
=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

b2(a2+1)≡c2+1 mod p

(
ac
p

)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

a2+1≡0 mod p

(
ac
p

)
+

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

(b(a2+1))2
≡(a2+1)(c2+1) mod p

(a2+1,p)=1

(
ac
p

)
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= (p − 1)


p−1∑
a=1

a2+1≡0 mod p

(
a
p

)
2

+

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

b2≡(a2+1)(c2+1) mod p

(
ac
p

)

= 4(p − 1) +
p−1∑
a=1

p−1∑
b=0

p−1∑
c=1

b2≡(a2+1)(c2+1) mod p

(
ac
p

)
−

p−1∑
a=1

p−1∑
c=1

(a2+1)(c2+1)≡0 mod p

(
ac
p

)

= 4p +
p−1∑
a=1

p−1∑
c=1

(
ac
p

) (
1 +

(
(a2 + 1)(c2 + 1)

p

))
− 2(−1)

p−1
4

p−1∑
c=1

(
c
p

)

= 4p +

 p−1∑
a=1

(
a + a

p

)
2

= 4p + 4α2(p). (2.11)

Combining (2.3), (2.6)–(2.11) we have the identity

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 = p2 + 13p + 4(−1)
p−1

4 p − 2α(p) − 4(−1)
p−1

4 α(p) + 4α2(p).

This proves Lemma 3. □
Lemma 4. Let p be a prime with p ≡ 1 mod 4. Then, we have the identities

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

(
a2 + b2 − c2 − 1

p

)
= 4

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ab(a + b − c − 1)

p

)
+ O(p).

Proof. Let

S =
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

)
.

The proof of the lemma is divided into the following four parts:
(i) There is no Legendre symbol after S . From a complete residue system modulo p, we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

(a+c)2+(b+1)2≡c2+1 mod p

(
a + b

p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a(a+2c)+b2+2b≡0 mod p

(
a + b

p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

ac+b2+2b≡0 mod p

(
a + b

p

)

=

p−1∑
c=0

p−1∑
b=0

b2+2b≡0 mod p

(
b
p

)
+

p−1∑
a=1

p−1∑
b=0

p−1∑
c=0

c+b2+2b≡0 mod p

(
a + b

p

)
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=

(
2
p

)
p +

p−1∑
a=1

p−1∑
b=0

(
a + b

p

)
=

(
2
p

)
p. (2.12)

(ii) Legendre symbol contains one variable after S . Then, we can get

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
b
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
a
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b(b+2c)≡1 mod p

(
a + b − 1

p

) (
a
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+bc≡1 mod p

(
a + b − 1

p

) (
a
p

)

=

p−1∑
a=0

p−1∑
c=0

a2≡1 mod p

(
a − 1

p

) (
a
p

)
+

p−1∑
a=0

p−1∑
b=1

p−1∑
c=0

a2+c≡1 mod p

(
a + b − 1

p

) (
a
p

)

=

(
2
p

)
p +

p−1∑
a=0

p−1∑
b=1

(
a + b − 1

p

) (
a
p

)
=

(
2
p

)
p + 1. (2.13)

From (2.11) we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
c
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=1

a2c2+b2c2≡c2+1 mod p

(
ac + bc − c − 1

p

) (
c
p

)
=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=1

a2+b2≡1+c2 mod p

(
a + b − 1 − c

p

)

=

(
2
p

)
p −

p−1∑
a=0

p−1∑
b=0

a2+b2≡1 mod p

(
a + b − 1

p

)
=

(
2
p

)
p −

p−1∑
a=0

p−1∑
b=0

a2+b2+2b≡0 mod p

(
a + b

p

)

=

(
2
p

)
p −

p−1∑
a=0

p−1∑
b=1

a2+1+2b≡0 mod p

(
a + 1

p

) (
b
p

)

=

(
2
p

)
p −

(
2
p

) p−1∑
a=0

p−1∑
b=1

a2+1+b≡0 mod p

(
a + 1

p

) (
b
p

)

=

(
2
p

)
p −

(
2
p

) p−1∑
a=0

(
a + 1

p

) (
a2 + 1

p

)
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=

(
2
p

)
p −

(
2
p

) p−1∑
a=1

(
a
p

) (
a2 − 2a + 2

p

)

=

(
2
p

)
p −

(
2
p

) p−1∑
a=1

(
2a − 2 + a

p

)
. (2.14)

(iii) Legendre symbol contains one variable after S . Then, we can get

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
ab
p

)

=

p−1∑
a=0

p−1∑
b=1

p−1∑
c=0

a2b2+b2≡c2b2+1 mod p

(
ab + b − cb − 1

p

) (
a
p

)

=

p−1∑
a=0

p−1∑
b=1

p−1∑
c=0

a2+1≡c2+b
2

mod p

a + 1 − c − b
p

 (ab
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
ac
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
bc
p

)
. (2.15)

(iv) Legendre symbol contains one variable after S . Then, we can get

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
abc

p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=1

a2c2+b2c2≡c2+1 mod p

(
ac + bc − c − 1

p

) (
abc3

p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=1

a2+b2≡1+c2 mod p

(
a + b − 1 − c

p

) (
ab
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
ab
p

)
−

p−1∑
a=1

p−1∑
b=1

a2+b2≡1 mod p

(
a + b − 1

p

) (
ab
p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
ab
p

)
+ O(p). (2.16)
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From (2.12)–(2.16) and the properties of the Legendre symbol modulo p, we have

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

(
a2 + b2 − c2 − 1

p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
a + b − c − 1

p

) (
1 +

(
a
p

)) (
1 +

(
b
p

)) (
1 +

(
c
p

))

= 4
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a2+b2≡c2+1 mod p

(
ab(a + b − c − 1)

p

)
+ O(p).

This proves Lemma 4. □

3. Proofs of the Theorems

Now, we apply Lemmas 1–4 in Section 2 to complete the proofs of our theorems. For any positive
integer q > 1 and integer n, note the trigonometric identities

q∑
a=0

e
(
na
q

)
=

{
q if q | n;
0 if q ∤ n.

(3.1)

If (n, p) = 1, then we have

p−1∑
a=0

e
(
na2

p

)
= 1 +

p−1∑
a=1

(1 + χ2(a)) e
(
na
p

)
= χ2(n) · τ (χ2) , (3.2)

where χ2 =
(
∗

p

)
denotes the Legendre symbol modulo p, and τ (χ) =

p−1∑
a=1

χ(a)e
(

a
p

)
denotes the classical

Gauss sums.
From (3.1), (3.2), and the properties of a reduced residue system modulo p, we have the identities

S 4(p) =
p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a2

p

)∣∣∣∣∣∣∣
4

=

p−1∑
m=0

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

e
(
m(a4 + b4 − c4 − d4) + a2 + b2 − c2 − d2

p

)

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
m=0

e
(
m(a4 + b4 − c4 − d4)

p

)
e
(
a2 + b2 − c2 − d2

p

)

= p ·
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

a4+b4≡c4+d4 mod p

e
(
a2 + b2 − c2 − d2

p

)
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= p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=1

a4+b4≡c4+1 mod p

e

d2
(
a2 + b2 − c2 − 1

)
p

 + p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4 mod p

e
(
a2 + b2 − c2

p

)

= p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

p−1∑
d=0

e

d2
(
a2 + b2 − c2 − 1

)
p


+p

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4 mod p

e
(
a2 + b2 − c2

p

)
− p

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1

= p2
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p
a2+b2≡c2+1 mod p

1 + p · τ (χ2)
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

(
a2 + b2 − c2 − 1

p

)

+p
p−1∑
a=0

p−1∑
b=1

p−1∑
c=0

a4+1≡c4 mod p

e
(
b2(a2 + 1 − c2)

p

)
− p

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1

+p
p−1∑
a=0

p−1∑
c=0

a4≡c4 mod p

e
(
a2 − c2

p

)

= p2
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p
a2+b2≡c2+1 mod p

1 + p · τ (χ2)
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

(
a2 + b2 − c2 − 1

p

)

+p2 ·

p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p
a2+1≡c2 mod p

1 + p · τ (χ2)
p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p

(
a2 + 1 − c2

p

)

−p
p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p

1 − p
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

1 + p
p−1∑
a=0

p−1∑
c=0

a4≡c4 mod p

e
(
a2 − c2

p

)
. (3.3)

Now, we prove Theorem 1. If p ≡ 3 mod 4, then S 4(p) is a real number, τ (χ2) = i ·
√

p (see Theo-
rem 9.13 in [1]) is a pure imaginary number, and

p−1∑
a=0

p−1∑
c=0

a4≡c4 mod p

e
(
a2 − c2

p

)
= 1 +

p−1∑
a=1

a4≡1 mod p

p−1∑
c=1

e

c2
(
a2 − 1

)
p


= 1 + 2(p − 1) = 2p − 1. (3.4)
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So, the sum of the coefficients of τ (χ2) in (23) must be zero. That is,
p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

(
a2 + b2 − c2 − 1

p

)
+

p−1∑
a=0

p−1∑
c=0

a4+1≡c4 mod p

(
a2 + 1 − c2

p

)
= 0. (3.5)

Combining (3.3)–(3.5), Lemma 1 and Lemma 2, we have

S 4(p) =
p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a2

p

)∣∣∣∣∣∣∣
4

= 4p2(2p − 3) + 2p2 − p(p − 1) − p
(
p2 + p

)
+ p(2p − 1)

= p2 (7p − 10) .

This proves Theorem 1. □
Theorem 2 and some notes follows from (3.3), Lemma 3 and Lemma 4.
This completes the proofs of all our results.

4. Conclusions

The main result of this paper is to give an exact calculating formula for the fourth power mean of
one special two-term exponential sum. That is,

S 4(p) =
p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a2

p

)∣∣∣∣∣∣∣
4

= p2 · (7p − 10)

with the case p ≡ 3 mod 4. If p ≡ 1 mod 4, then we cannot get any non-trivial results for S 4(p) yet.
We also point out the key to the problem, which is we do not know the exact value of

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

a4+b4≡c4+1 mod p

(
a2 + b2 − c2 − 1

p

)
(4.1)

and do not know a valid asymptotic formula for it. However, we get some periodic results. At the same
time, some problems to be further studied are also proposed.

In any case, our work provides a new method for the study of relevant problems. We have a reason
to believe that this work will play a positive role in promoting the study of relevant problems.
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