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Abstract: The eigenvalues and eigenvectors of a normalized gaussian operator do not seem to have
been previously considered. I solve this problem for 1-dimensional translational systems. I also address
the question as to whether a gaussian operator is a density operator. To answer that question, it is
first necessary to be sure what conditions must be satisfied, so a short review of density operators is
given. Since position and momentum do not commute in quantum mechanics, it is useful to start with
the consequences of the noncommutation, which is generally the Schrödinger-Robertson uncertainty
relation, which is also briefly reviewed. It is found that the question of whether a gaussian operator is
a density operator is directly tied to this uncertainty relation. Since the Wigner function is the phase
space representation of a translational density operator, it is natural to consider the gaussian phase space
function associated with a gaussian operator and to compare the phase space and operator properties.
Throughout such discussions, the independent parameters in these functions are the first and second
moments of position and momentum. The application of this formalism to the free translation and
spreading of a gaussian packet is given and shows the formal similarity between classical and quantum
behavior, whereas the literature standardly only considers the pure state case (equivalent to a single
wavefunction).
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1. Introduction

Gaussians play an important role in various aspects of physics as well as in the development of
physical principles. In quantum mechanics, gaussian wavefunctions are used in a variety of ways,
ranging from being a useful computational tool [1, 2] to being the structure of coherent states [3].
However, seemingly no or negligible use of gaussians in the structure of density operators appears in
the literature. Here, this is explored to the extent of asking when a hermitian gaussian function ⟨x|G|y⟩
in two positions x, y (which can be interpretated as the matrix representation of some quantum operator

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023281


5542

G) is the representation of a density operator. What criterion is involved? Clearly it should have
unit trace but is that enough? It is shown that the condition is whether expectations calculated when
treating the matrix as a density matrix satisfies the Schrödinger-Robertson uncertainty principle [4–7].
Since the required expectation values for the uncertainty are moments of the position and momentum
operators, it is useful to consider the phase-space representation of G, obtained by the inverse of the
Weyl quantization [8,9], which defines the Wigner function [10] if G is a density operator. The relations
and properties of these different representations of G are discussed in this paper.

The basic properties of density operators [11] is reviewed in the following subsection while the
basic properties of the Schrödinger-Robertson uncertainty relation is reviewed in the subsequent
subsection. These cover the technical aspects of these topics that are used in this paper. Section 2
discusses the relations between the different representations for the gaussian function and those
position and momentum moments that parameterize the gaussian. It also classifies whether the
gaussian has a quantum interpretation and if so, whether it is a pure or mixed density operator.
Section 3 finds the eigenvalues and eigenvectors for the gaussian. This does not seem to have
previously been done in the literature and some comment on related work is made. Section 4 explores
the free particle time evolution of the gaussian and explores how, as a packet, it behaves as it passes
past a fixed position. This has recently been considered by detailed computation [12, 13], which
showed that, for certain parameterizations, the passage of the packet decreases with time during initial
times. Here, the equation for the evolving packet is explicitly written down and it shows that a
reversal of evolution can occur near the end of the packet’s motion as well as at initial times. Only the
latter was considered in [12, 13], and then only for a wave function.

1.1. Review of density operators

Von Neumann [14] recognized that the proper mathematical formulation of wave functions was as
elements of hilbert space and also introduced density operators as linear functionals (mappings) of
quantum mechanical observables to their expectation values. Fano’s paper [11] gives an elementary
presentation of these ideas. Since quantum observables are hermitian (more correctly self-adjoint)
operators, and thus have real eigenvalues, a density operator ρ must be a positive hermitian operator
with unit trace, so that an expectation value ⟨A⟩ρ = TrAρ of A is real [Tr stands for trace and the
calculation is the same as if A and ρwere matrices]. In detail, if A has eigenvalues a j and corresponding
eigenvectors |a j⟩ with position representation ψa j(x) ≡ ⟨x|a j⟩, that is

A|a j⟩ = a j|a j⟩, (1.1)

then A has the spectral representation

A =
∑

j

|a j⟩a j⟨a j|, (1.2)

or in position representation

⟨x|A|y⟩ =
∑

j

⟨x|a j⟩a j⟨a j|y⟩ =
∑

j

ψ j(x)a jψ
∗(y), (1.3)

on the basis that the eigenvectors are orthonormal, namely

⟨a j|ak⟩ =

∫
ψ∗j(x)ψk(x)dx = δ jk. (1.4)

Electronic Research Archive Volume 31, Issue 9, 5541–5558.



5543

Then the expectation of A in state (density operator) ρ is

TrAρ = ⟨A⟩ρ = Tr
∑

j

|aj⟩aj⟨aj|ρ

=
∑

j

a j⟨a j|ρ|a j⟩ =
∑

j

a j pa j (1.5)

where the last form introduces the probability pa j = ⟨a j|ρ|a j⟩ of the system (that which is described
by ρ) is in the jth eigenstate of A. To be a probability pa j must be positive and less than 1. Since this
has to be valid for any observable A, it is equivalent to the requirement that

1 ≥ ⟨ϕ|ρ|ϕ⟩ =
"

ϕ∗(x)⟨x|ρ|y⟩ϕ(y)dxdy ≥ 0, (1.6)

for any normalized (⟨ϕ|ϕ⟩ = 1) square integrable wavefunction (element of hilbert space). An alternate
way of viewing this is that, if A = P j ≡ |a j⟩⟨a j| is the projection observable P j that asks what part of
the state ρ of the system is in state |a j⟩, then the expectation of this observable is

⟨P j⟩ρ = Tr|aj⟩⟨aj|ρ = ⟨aj|ρ|aj⟩, (1.7)

namely is the probability of being in |a j⟩ and as a probability must be ≥ 0.
As a hermitian operator ρ has eigenvalues ρ j and eigenvectors |χ j⟩. namely

ρ|χ j⟩ = ρ j|χ j⟩. (1.8)

The eigenvectors must be orthogonal for different eigenvalues

⟨χ j|χk⟩ = 0 for ρ j , ρk, (1.9)

but generally eigenvalues may be degenerate, that is, two or more eigenvectors may have the same
eigenvalue and can, for convenience, be chosen to be orthogonal, but this is not discussed further
here. More important is that the expectation of the identity ⟨1⟩ρ must be 1 so that the trace of ρ is 1.
Mathematically, this implies that ρ must be of “trace class” and the spectrum of ρ must be discrete (no
continuous range of eigenvalues) [15]. Thus, its spectral representation is

ρ =
∑

j

|χ j⟩ρ j⟨χ j|, (1.10)

or in position representation (density matrix)

⟨x|ρ|y⟩ =
∑

j

χ j(x)ρ jχ
∗
j(y) (1.11)

where χ j(x) = ⟨x|χ j⟩ is the position representation of |χ j⟩. Equation (1.10) describes ρ as being
represented by a diagonal matrix whose trace is

Trρ =
∑

j

ρj = 1, (1.12)

Electronic Research Archive Volume 31, Issue 9, 5541–5558.



5544

and interprets the eigenvalues ρ j of ρ as the probabilities ρ j = p j of the system being in the respective
eigenstates |χ j⟩, equivalently eigenfunctions χ j(x), of ρ, again assuming the eigenvectors are
normalized, ⟨χ j|χ j⟩ = 1. Note the difference between the probabilities p j and pa j . Returning to the
positivity condition of Eq (1.6), for any ϕ, this condition is

⟨ϕ|ρ|ϕ⟩ =
∑

j

⟨ϕ|χ j⟩ρ j⟨χ j|ϕ⟩ =
∑

j

ρ j|⟨χ j|ϕ⟩|
2 ≥ 0, (1.13)

requiring ρ j ≥ 0 for all eigenvalues ρ j. Thus knowing the eigenvalues of ρ is a method of verifying
whether ρ is a valid density operator.

1.2. Review of the Schrödinger-Robertson uncertainty relation

The uncertainty relation is due to the commutation relation of momentum and position, namely
[p, x] ≡ (px − xp) = ℏ/i. Here, p and x are quantum mechanical operators and no particular notation
will be used to distinguish them from their classical analogs so it is only in the context of how they are
used that distinguishes whether a quantum or classical meaning applies. The first and second moments
of p and x are the expectation values

⟨p⟩, ⟨x⟩, σ(02) ≡ ⟨(p − ⟨p⟩)2⟩, σ(20) ≡ ⟨(x − ⟨x⟩)2⟩,

σ(11) ≡ ⟨
1
2

[(p − ⟨p⟩)(x − ⟨x⟩) + (x − ⟨x⟩)(p − ⟨p⟩)]⟩. (1.14)

These are also referred to as respectively, the mean momentum, mean position, momentum variance,
position variance and the position-momentum covariance. It is the anticommutator of momentum and
position that appears in the latter so that all moments are real valued. The standard deviations of
momentum and position are σp ≡

√
σ(02) and σx ≡

√
σ(20) and are the quantities usually referred to

in statistical arguments. Note that all second order moments involve differences of the variable from
its corresponding mean value. All these quantities could be applied to 2- or 3-dimensional systems but
for simplicity only the 1-dimensional case is discussed here.

The expectation value of the nonhermitian operator (x − ⟨x⟩)(p − ⟨p⟩) can be arranged into
antihermitian and hermitian contributions [4, 6, 7, 16]

⟨(x − ⟨x⟩)(p − ⟨p⟩)⟩ =
1
2
⟨(x − ⟨x⟩)(p − ⟨p⟩) − (p − ⟨p⟩)(x − ⟨x⟩)⟩

+
1
2
⟨(x − ⟨x⟩)(p − ⟨p⟩) + (p − ⟨p⟩)(x − ⟨x⟩)⟩

= iℏ/2 + σ(11), (1.15)

with useful evaluations. Schwartz’s inequality for states,

⟨ϕ|ψ⟩ ≤
√
⟨ϕ|ϕ⟩⟨ψ|ψ⟩ (1.16)

can be generalized to mixed states with hermitian operators A and B,
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⟨AB⟩ρ ≡
∑

j

p j⟨χ j|AB|χ j⟩ =
∑

j

p j⟨Aχ j|Bχ j⟩

≤
∑

j

p j

√
⟨χ j|A2|χ j⟩⟨χ j|B2|χ j⟩ ≤

√
⟨A2⟩ρ⟨B2⟩ρ, (1.17)

using the hermiticity of each of A and B, and finally putting p j into the square root and allowing the
independent sums over the index j within the square root [16]. Combining the absolute square values
of Eqs (1.15) and (1.17) while using A = x − ⟨x⟩ and B = p − ⟨p⟩ in the latter gives the Schrödinger-
Robertson uncertainty relation [4, 6, 7, 16]

|⟨(x − ⟨x⟩)(p − ⟨p⟩)⟩|2 =
ℏ2

4
+ [σ(11)]2 ≤ σ(20)σ(02). (1.18)

There are different ways of writing this inequality. What is found particularly useful when finding
the eigenvalues and eigenvectors of a gaussian operator is

U ≡
√
σ(20)σ(02) − [σ(11)]2 ≥

ℏ

2
. (1.19)

This is referred to as the “covariance-free uncertainty relation” in the following sections of this
paper. Note that if there is no position-momentum covariance, this reduces to the standard Heisenberg
uncertainty relation

U = σxσp ≥
ℏ

2
(1.20)

involving the standard deviations rather than the variances. The latter is the uncertainty relation that is
usually quoted for all cases by ignoring the possible role of the covariance.

2. When is a Gaussian operator a density operator

It is to be understood that a hermitian gaussian operator G is an operator whose position
representation ⟨x|G|y⟩ is a gaussian in x and y. An obvious choice of writing this is as a linear
combination of x, y, x2, y2 and xy in the exponent but the calculation of the moments relative to the
mean position and momentum is lengthy with this choice. A more convenient choice is to expand
using the powers of the differences x − ⟨x⟩ and y − ⟨x⟩ in the exponent, thus

⟨x|G|y⟩ = N exp
[
−g(x − ⟨x⟩)2 − g∗(y − ⟨x⟩)2 − g1(x − ⟨x⟩)(y − ⟨x⟩) − ig2(x − y)

]
. (2.1)

Note, there is only one mean position ⟨x⟩ and the difference x − y could be written with the mean
position subtracted for each x and y, but these cancel out. This involves 5 real parameters since g =
gR + igI has independent real and imaginary parts, while g1, g2 and ⟨x⟩ are real and the manner in
which the equation is written is to be consistent with hermiticity, namely ⟨x|G|y⟩ = ⟨y|G|x⟩∗. The
normalization constant N is determined to make the trace of G, equivalent to the integral over the
diagonal elements of G, equal to 1, namely∫ ∞

−∞

⟨x|G|x⟩dx = 1, (2.2)
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it being assumed that the range of positions is [−∞,∞]. The integral is easily evaluated since the
integrand is just a Gaussian,

N
∫ ∞

−∞

exp[−(2gR + g1)(x − ⟨x⟩)2]dx = N
√

π

2gR + g1
= 1, (2.3)

implying

N =

√
2gR + g1

π
. (2.4)

The moments are given by

⟨x⟩ =
∫ ∞

−∞

x⟨x|G|x⟩dx = ⟨x⟩, σ(20) =

∫ ∞

−∞

(x − ⟨x⟩)2⟨x|G|x⟩dx =
1

2(2gR + g1)
,

⟨p⟩ =
∫ ∞

−∞

ℏ

i
∂

∂x
⟨x|G|y⟩

∣∣∣∣
y=x

dx =
ℏ

i

∫ ∞

−∞

[−2g(x − ⟨x⟩) − g1(y − ⟨x⟩) − ig2]⟨x|G|y⟩
∣∣∣∣
y=x

dx = −ℏg2,

σ(02) = ⟨p2⟩ − ⟨p⟩2 = −ℏ2
∫ ∞

−∞

∂2

∂x2 ⟨x|G|y⟩
∣∣∣∣
y=x

dx − ℏ2g2
2

= −ℏ2
∫ ∞

−∞

∂

∂x

[
{−2g(x − ⟨x⟩) − g1(y − ⟨x⟩) − ig2}⟨x|G|y⟩

]∣∣∣∣∣∣
y=x

dx − ℏ2g2
2

= −ℏ2
[
−2g + g2

2 +

∫ ∞

−∞

{−(2g + g1)(x − ⟨x⟩) − ig2}
2⟨x|G|x⟩dx

]
= −ℏ2

[
−2g + g2

2 +
(2g + g1)2

2(2gR + g1)
− g2

2

]
= ℏ2

[
gR −

1
2

g1 +
2g2

I

2gR + g1

]
,

σ(11) =
1
2
⟨xp + px⟩ − ⟨x⟩⟨p⟩ =

ℏ

i

∫ ∞

−∞

[
1
2
+ x

∂

∂x

]
⟨x|G|y⟩

∣∣∣∣∣∣
y=x

dx + ℏg2⟨x⟩

=
ℏ

2i
+ ℏg2⟨x⟩ +

ℏ

i

∫ ∞

−∞

x[−2g(x − ⟨x⟩) − g1(y − ⟨x⟩) − ig2]⟨x|G|y⟩

∣∣∣∣∣∣
y=x

dx

=
ℏ

2i
+ ℏg2⟨x⟩ −

ℏ(2g + g1)
2i(2gR + g1)

− ℏg2⟨x⟩ = −
ℏgI

2gR + g1
= −2ℏgIσ

(20). (2.5)

In the momentum moment calculations, it is indicated how all the position derivatives are to be
calculated before setting y = x and then doing the position integral.

These equations can be used to evaluate the “g” coefficients but it is more useful to first look at the
square of the covariance-free uncertainty, Eq (1.19),

M ≡ U2 = σ(20)σ(02) − [σ(11)]2 =
2gR − g1

2gR + g1

ℏ2

4
=
ℏ2

2
(2gR − g1)σ(20)

=
ℏ2

2
(2gR + g1 − 2g1)σ(20) =

ℏ2

4
− ℏ2σ(20)g1. (2.6)

This identifies g1 as

g1 =
ℏ2/4 − M
ℏ2σ(20) , (2.7)
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from which one of the previous identities gives

gR =
ℏ2/4 + M
2ℏ2σ(20) . (2.8)

From Eq (2.5) the other two coefficients are

gI = −
σ(11)

2ℏσ(20) and g2 = −
⟨p⟩
ℏ
. (2.9)

Thus the complex coefficient is given in terms of the moments as

g =
ℏ2/4 + M − iℏσ(11)

2ℏ2σ(20) . (2.10)

The position representation of the gaussian operator then has the form

⟨x|G|y⟩ =
1

√
2πσ(20)

exp
[
−
ℏ2/4 + M − iℏσ(11)

2ℏ2σ(20) (x − ⟨x⟩)2 −
ℏ2/4 + M + iℏσ(11)

2ℏ2σ(20) (y − ⟨x⟩)2

−
ℏ2/4 − M
ℏ2σ(20) (x − ⟨x⟩)(y − ⟨x⟩) + i

⟨p⟩
ℏ

(x − y)
]
. (2.11)

For G to be a density operator, at least the Schrödinger- Robertson uncertainty, equivalently U ≥
ℏ/2, should be satisfied. However, fundamentally, G must be a positive operator. That this is satisfied
if U ≥ ℏ/2 is proven in Section 3 by finding the eigenvalues of G and showing that this condition is
sufficient to show that all eigenvalues are positive. If this condition is not satisfied, then G is not a
density operator but could be a quantum operator with some other meaning, just not a density operator.
The remainder of this section assumes that this condition is satisfied so that G is replaced by ρ to
designate that the gaussian operator is now a density operator.

It is noticed that if g1 = 0 in Eq (2.1), then the gaussian factors, namely

⟨x|ρ|y⟩ = χ(x)χ∗(y), (2.12)

indicate that now ρ is a pure state with wavefunction

χ(x) =
eiϕ

(2πσ(20))1/4 exp[−g(x − ⟨x⟩)2 + ig2(x − ⟨x⟩)]. (2.13)

An arbitrary phase factor eiϕ has been inserted, the normalization constant of ρ factored between
χ(x) and χ∗(y) and a term proportional to ⟨x⟩ inserted in each to retain the x dependence of χ(x) to be of
the form x − ⟨x⟩. The inserted terms are phase factors so cancel out between χ(x) and χ∗(y). Since the
factorization requires g1 = 0, equivalently M = ℏ2/4 and thus U = ℏ/2, this means that the covariant-
free uncertainty is a minimum for a quantum gaussian density operator and such a density operator is a
pure state (the density operator associated with a wavefunction). Another way of classifying this is to
say that the Schrödinger-Robertson uncertainty relation is an equality, equivalently that the covariance-
free uncertainty is ℏ/2.

Using the particular value of M that allows factorization,

g =
1 − 2iσ(11)/ℏ

4σ(20) and g2 = −⟨p⟩/ℏ, (2.14)
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so the main position dependence of χ(x) not only is gaussian but has oscillations of both the quadratic
and the linear term in x. If the covariance vanishes, then the position dependence has a gaussian form
with oscillations associated with the mean momentum, namely

χ(x) =
eiϕ

(2πσ(20))1/4 exp
[
−

(x − ⟨x⟩)2

4σ(20) + i
⟨p⟩(x − ⟨x⟩)

ℏ

]
. (2.15)

This is known as a coherent state and satisfies the minimum Heisenberg uncertainty σxσp = ℏ/2
because it has no position-momentum covariance.

2.1. Phase space equivalence

For translational degrees of freedom, an operator can be represented by a function in phase space [8,
10] and arose in early quantum theory when finding the operator equivalent to a phase space observable
[8] and, conversely, the definition of the Wigner function as the phase space representation of the
density operator [10]. This is mentioned here since the phase space function is best expressed with
coefficients expressed in terms of the moments, and connects with the classical equivalence of the free
motion of a gaussian density operator described in Section 4.

For 1-dimension, the phase space function f (x, p) for an operator A expressed in position
representation is obtained by the Fourier transform

f (x, p) =
1
h

∫ ∞

−∞

e−ipX/ℏ⟨x + X/2|A|x − X/2⟩dX. (2.16)

Essentially, the phase space position x is the average of the bra and ket positions of the operator,
while the phase space momentum is the Fourier transform of the difference. In the present case, the
operator is the gaussian G with position representation given by Eq (2.1), thus squaring the terms of
the independent variables x and X,

f (x, p) =
N
h

∫ ∞

−∞

exp
[
−(2gR + g1)(x − ⟨x⟩)2 −

(2gR − g1)
4

(X − X0)2 +
(2gR − g1)

4
X2

0

]
dX (2.17)

where
X0 =

−2i
2gR − g1

[
2gI(x − ⟨x⟩) + g2 +

p
ℏ

]
. (2.18)

On carrying out the X integral and grouping the various terms

f (x, p) =
2N
h

√
π

2gR − g1
exp

[
−

(
2gR + g1 +

4g2
I

2gR − g1

)
(x − ⟨x⟩)2

−
(g2 + p/ℏ)2 + 4gI(g2 + p/ℏ)(x − ⟨x⟩)

2gR − g1

]
=

1

2π
√

M
exp

[
−σ(02)(x − ⟨x⟩)2 − σ(20)(p − ⟨p⟩)2 + 2σ(11)(x − ⟨x⟩)(p − ⟨p⟩)

2M

]
, (2.19)

where the last form has put in the values of the “g” s in terms of the moments. This could also be
derived by starting with an arbitrary phase space gaussian and then evaluating the various constants
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in terms of the moments, similar to the derivation of Eq (2.11) from Eq (2.1). Essentially, this means
by a purely classical method. Thus, if ℏ is set to 0, the expectation arguments of Section 1.2 are
still valid, requiring M ≥ 0 rather than ℏ2/4. As mentioned earlier, if M ≥ ℏ2/4, then the gaussian,
whether written in position representation or as a phase space function has a quantum interpretation as
representing a density operator, but if ℏ2/4 > M > 0, then the gaussian cannot be a density operator
but could represent some other quantum operator. On the other hand, as long as M > 0, Eq (2.19) is a
valid classical distribution function, including the case M ≥ ℏ2/4, so that classical and quantum results
are the same in the latter case.

3. Eigenvalues and eigenvectors for a hermitian gaussian operator

The method used here was motivated by the analogous problem of finding the eigenvalues and
eigenvectors for the gaussian Keilson-Storer collision kernel [17]. That was done for both 1 and 3-
dimensional variables.

Since the operator is a gaussian, it is reasonable to assume that at least one of the eigenvectors
is a gaussian. For convenience in writing, ⟨x⟩ is set equal to 0 in this section, equivalently that x is
shorthand for x − ⟨x⟩. Thus, write

χ0(x) = exp(−c2x2 − c1x − c0) (3.1)

with unknown constants c2, c1, c0. If this is an eigenvector of G, then it should satisfy

λ0χ0(x) =
∫ ∞

−∞

⟨x|G|y⟩χ0(y)dy, (3.2)

with its eigenvalue λ0. The integral in this equation is evaluated according to∫ ∞

−∞

⟨x|G|y⟩χ0(y)dy =
1

√
2πσ(20)

exp
[
−gx2 − ig2x − c0

] ∫ ∞

−∞

exp
[
−g∗y2 − g1xy + ig2y − c2y2 − c1y

]
dy

=
1

√
2πσ(20)

exp
[
−gx2 − ig2x − c0

] ∫ ∞

−∞

exp
−(g∗ + c2)

(
y +

A
2(g∗ + c2)

)2 dy exp
A2

4(g∗ + c2)

=
1

√
2πσ(20)

exp
[
−gx2 − ig2x − c0

] √
π

|g∗ + c2|
exp

A2

4(g∗ + c2)
, (3.3)

where
A = g1x + c1 − ig2. (3.4)

The integral should be equal to λ0 exp[−c2x2 − c1x − c0], so by equating terms in the exponent, the
equality of the coefficients of x2 implies

−c2 = −g +
g2

1

4(g∗ + c2)
(3.5)

and of the x coefficients implies

−c1 = −ig2 + g1
c1 − ig2

2(g∗ + c2)
(3.6)
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while the equality of the constants imply the equality

λ0e−c0 =
e−c0√

2σ(20)|g∗ + c2|
exp

[
(c1 − ig2)2

4(g∗ + c2)

]
. (3.7)

The equation for c2 is equivalent to

c2
2 + (g∗ − g)c2 = c2

2 +
iσ(11)

ℏσ(20) c2 = gg∗ −
g2

1

4
=

σ(02)

4ℏ2σ(20) . (3.8)

Completing the square of the first term gives(
c2 +

iσ(11)

2ℏσ(20)

)2

=
σ(02)

4ℏ2σ(20) −
(σ(11))2

4ℏ2(σ(20))2 =
M

4ℏ2(σ(20)2 . (3.9)

There are two roots to this equation

c2 =
±
√

M − iσ(11)

2ℏσ(20) =
±U − iσ(11)

2ℏσ(20) . (3.10)

The − choice is unphysical since it leads to an infinite norm for χ0. Thus it is only the root with +U
that is allowed. The important combination g∗ + c2 is

g∗ + c2 =
U2 + ℏ2/4 + ℏU

2ℏ2σ(20) =
(U + ℏ/2)2

2ℏ2σ(20) . (3.11)

It is noticed that this is real and positive. The equation for c1 clearly implies that

c1 = ig2 = −i⟨p⟩/ℏ. (3.12)

This simplifies the equation for the eigenvalue λ0 so that c0 is arbitrary (suitably chosen to normalize
and add an arbitrary constant phase factor to χ0). The eigenvalue is

λ0 =
1√

2σ(20|g∗ + c2|
=

ℏ

U + ℏ/2
. (3.13)

For the special case that U = ℏ/2, then λ0 = 1 and χ0(x) ∝ χ(x), Eq (2.13), the pure state into
which ρ factors. Thus this makes connection to the general discussion of the gaussian given in Eqs
(2.12)–(2.15).

For general U, the gaussian eigenvector is [Note x is short for x − ⟨x⟩ in this section.]

χ0(x) = eiϕ
[ U
πℏσ(20)

]1/4

exp
[
−

U − iσ(11)

2ℏσ(20) x2 +
i⟨p⟩x
ℏ

]
(3.14)

where −c0 has been replaced by iϕ to allow for an arbitrary phase factor of the wavefunction and the
normalization has been chosen as

∫
|χ0(x)|2dx = 1.

Since the operator is a gaussian with one eienvector a gaussian, it is reasonable to assume that the
other eigenvectors should involve Hermite polynomials Hn as the Hermites are generated by a gaussian.
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That that is the case is proven by introducing the generating function for the Hermite polynomials
[18, 19]

e2αxz−z2
=

∞∑
n=0

Hn(αx)
zn

n!
. (3.15)

This is done with χ0(x) acting as the gaussian weight function for the orthogonalization of the
Hermite polynomials. Thus the generating function for the eigenvectors Xn(x) of ⟨x|G|y⟩ is expected to
be

G(x, z) = e2αxz−z2
χ0(x) =

∞∑
n=0

Xn(x)
zn

n!
(3.16)

with a suitably chosen α. The orthogonality and normalization of the Xn(x) follow from∫ ∞

−∞

G∗(x, z)G(x, s)dx =
∫ ∞

−∞

e2αx(z+s)−z2−s2
|χ0(x)|2dx=

√
U

πℏσ(20) e−z2−s2
∫ ∞

−∞

exp
(
2αx(z + s) −

Ux2

ℏσ(20)

)
dx

= exp
(
−z2 − s2 +

α2ℏσ(20)

U
(z + s)2

)
= e2zs =

∑
n

(2zs)n

n!
=

∑
n,m

znsm

n!m!

∫ ∞

−∞

X∗n(x)Xm(x)dx, (3.17)

which implies ∫ ∞

−∞

X∗n(x)Xm(x)dx = 2nn!δnm. (3.18)

In the above, the exponent was organized to complete the square in x, after which the x integration
was straightforward. It was then required to set α2 = U/ℏσ(20) in order to simplify the expression in
terms of zs, thus identifying a proper choice for α in order to make the eigenvectors orthogonal. The
normalization of Eq (3.18) is natural for the generating function but inappropriate for expressing the
spectral properties of an operator, (compare Section 1.1) so the renormalized set of eigenvectors

χn(x) ≡
1
√

2nn!
Xn(x) (3.19)

is introduced for later use.
Provided the Xn(x) are eigenvectors of the gaussian G, the action of G on the generator G should

reproduce the eigenvectors together with their eigenvalues. To see that this works out, the above action
is formally

G1(x, z) ≡
∫ ∞

−∞

⟨x|G|y⟩G(y, z)dy (3.20)

and the detailed form of the resulting generator G1 examined. Carrying out the integral gives

G1(x, z) =
e−gx2−ig2 x

√
2πσ(20)

∫ ∞

−∞

e−g∗y2−g1 xy+ig2y+2αyz−z2
χ0(y)dy

=
e−gx2−ig2 x−z2+iϕ

√
2πσ(20)

[ U
πℏσ(20)

]1/4∫ ∞

−∞

e−B(y−D/2B)2
dy eD2/4B =

e−gx2−ig2 x−z2+iϕ

√
2σ(20)B

[ U
πℏσ(20)

]1/4

eD2/4B,(3.21)

where

B = g∗ +
U − iσ(11)

2ℏσ(20) =
(U + ℏ/2)2

2ℏ2σ(20) (3.22)

Electronic Research Archive Volume 31, Issue 9, 5541–5558.



5552

is the same as g∗ + c2, Eq (3.11), and D = −g1x + 2αz. The exponent that appears in G1 is

−gx2 − ig2x − z2 + iϕ +
2ℏ2σ(20)

(U + ℏ/2)2

(
g2

1x2

4
− g1αzx + α2z2

)
= −

U − iσ(11)

2ℏσ(20) x2 +

[
i⟨p⟩
ℏ
+ 2

(U − ℏ/2)
U + ℏ/2

αz
]

x +
(U − ℏ/2)2

(U + ℏ/2)2 z2 + iϕ. (3.23)

It is seen that the z independent terms are what appear in the exponent of χ0(x) while the z dependent
terms are what appear in the Hermite polynomial generating function except that z is multiplied by the
factor

U − ℏ/2
U + ℏ/2

≡ γ. (3.24)

Furthermore, the prefactor in front of the exponent appears different. Thus it appears that G1(x, z)
has the structure N′G(x, γz), in terms of a scaled version of Eq (3.16). Since the [· · · ]1/4 factor appears
in χ0(x), the prefactor N′ in G1(x, z) is

N′ =
1

√
2σ(20)B

=
ℏ

U + ℏ/2
. (3.25)

Now expand the generating function equality, namely

N′G(x, γz) =
∫ ∞

−∞

⟨x|G|y⟩G(y, z)dy (3.26)

in powers of z, which shows that

N′γnXn(x) =
∫ ∞

−∞

⟨x|G|y⟩Xn(y)dy (3.27)

and thus that
Xn(x) = Hn(αx)χ0(x) (3.28)

is an eigenvector of G with eigenvalue

λn = N′γn =
ℏ

U + ℏ/2

(
U − ℏ/2
U + ℏ/2

)n

. (3.29)

This also includes n = 0 since H0(αx) = 1. These eigenvalues sum to 1, namely

∞∑
n=0

λn =
ℏ

U + ℏ/2

∞∑
n=0

γn =
ℏ

U + ℏ/2
1

1 − γ
= 1, (3.30)

which is consistent with TrG =
!

f (x, p)dxdp = 1. This verifies that all eigenvalues have been found.
Note that the Xn are normalized according to Eq (3.18). Renormalizing them according to Eq (3.19),
the spectral representation of G can be written

⟨x|G|y⟩ =
∞∑

n=0

⟨x|χn⟩λn⟨χn|y⟩ =
∞∑

n=0

χn(x)λnχ
∗
n(y). (3.31)
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These results are valid for arbitrary U > 0. If U < ℏ/2, then γ < 0 and the eigenvalues λn alternate
in sign as n varies. Clearly not all eigenvalues are positive so G cannot be a density operator, but could
represent some other quantum operator. Provided U > ℏ/2 then all eigenvalues are positive and G
could be interpreted as a mixed state density operator with an infinite number of eigenfunctions χn(x).
As U → ℏ/2 all eigenvalues approach 0 except for λ0 → 1, and G approaches the pure state density
operator associated with wavefunction χ0(x).

4. Free motion time dependence of a gaussian operator

This is a classic topic in quantum mechanics in that the free motion of a gaussian wave packet
spreads out with time, see e.g., [20]. Gaussian wave functions have been used to computationally model
the motion of a wave packet. In particular, the penetration of a 1-dimensional barrier was first discussed
by Heller [21] using classical mechanics to determine the time dependence of the coefficients in the
wave packet. The present author [22] emphasized an approximation of the quantum time dependence
of the position and momentum moments to determine the time dependence of the coefficients of a
gaussian pure state density matrix. Actually, it was an earlier examination [16] of a moment method
for classical and quantal dynamics that drew the authors attention to what is here called the covariance-
free uncertainty, but unfamiliarity with the Schrödinger- Robertson uncertainty relation and the lack of
knowing how to determine whether a gaussian operator was a density operator necessitated using pure
states for the barrier penetration mentioned earlier.

Here it is only the free motion time dependence that is discussed and it is shown that a negative
value for the covariance can lead to non-intuitive time dependence. This was recently discovered for
pure states and short times after starting the motion by detailed computation [12, 13], but is shown
here to also occur at very large times, depending on the relative values of the initial moments. It is
also shown that these properties can arise for mixed gaussian states as well as for classical gaussian
distribution functions.

Free motion is governed in time t by the kinetic hamiltonian H = p2/2m, either classically via
Newton’s equations

dx
dt
=
∂H
∂p
=

p
m

and
dp
dt
=
∂H
∂x
= 0 (4.1)

or quantum mechanically [using the Heisenberg picture]

dx
dt
=

i
ℏ

[Hx − xH] =
p
m

and
dp
dt
=

i
ℏ

[Hp − pH] = 0, (4.2)

with an obvious dual use of terminology so as to avoid having to deal with any symbolism to distinguish
classical variables from quantum operators and explicitly writing out the commutator in the latter case.
This emphasizes the formal similarity of the equations of motion for the position and momentum
observables and shows that

x(t) = xo +
po

m
t and p(t) = po (4.3)

with the subscript o denoting their initial (t = 0) values. It follows that the equations of motion for the
position-momentum moments have analogous properties, namely for the pure momentum moments,
these are constant with time
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⟨p⟩(t) ≡ ⟨p(t)⟩ = ⟨po⟩ ≡ ⟨p⟩o,

σ(02)(t) = ⟨(p − ⟨p⟩)2⟩o ≡ σ
(02)
o . (4.4)

Note that these describe properties of the time constant distribution of the momentum. The position
dependent moments are

⟨x⟩(t) ≡ ⟨x(t)⟩ = ⟨xo +
po

m
t⟩ = ⟨x⟩o +

⟨p⟩o
m

t, (4.5)

σ(11)(t) = ⟨[x(t) − ⟨x⟩(t)](p − ⟨p⟩)⟩ = ⟨
(
xo +

p
m

t − ⟨x⟩o −
⟨p⟩
m

t
)

(p − ⟨p⟩)⟩

= ⟨(xo − ⟨x⟩o)(p − ⟨p⟩)⟩ + ⟨(p − ⟨p⟩)2⟩o
t
m
= σ(11)

o + σ(02)
o

t
m

(4.6)

and

σ(20)(t) = ⟨[x(t) − ⟨x⟩(t)]2⟩ = ⟨

[
xo +

po

m
t − ⟨x⟩o −

⟨p⟩ot
m

]2

⟩

= σ(20)
o + 2σ(11)

o
t
m
+ σ(02)

o
t2

m2 = σ
(02)
o

(
t
m
+
σ(11)

o

σ(02)
o

)2

+ σ(20)
o −

(σ(11)
o )2

σ(02)
o

, (4.7)

with the last form of σ(20)(t) showing that this is positive as long as M = U2 > 0, which is also a
condition for f (x, p), Eq (2.19), to have any meaning, even classically. It is noted that, as used in this
section, these relations use the gaussian density operator Eq (2.11), and/or its phase space equivalent,
Eq (2.19) for evaluating all the expectation values. In effect this is taken as the initial state for the time
evolution where its parameters could be listed with subscript o to emphasise that these are the initial
values of the parameters (expectation values). In quantum mechanics, this is the Heisenberg picture of
time evolution.

The Schrödinger picture leaves the observables constant and has the density operator evolving with
time. Because of the simple relation between the gaussian density operator and its expectation values
(moments), the time dependent density operator is just Eq (2.11) with the time dependent moments
replacing the initial moments. Such a result could also be obtained by solving the quantum Liouville
equation [also called the von Neumann equation] for the time evolution, equivalently the Liouville
equation in the classical case. But the simplicity of the gaussian is that the gaussian stays a gaussian
during free motion, both classically and quantum mechanically, just the values of the coefficients
change.

Since the momentum moments are constant in free motion, the description of the evolution is all in
the position dependence and needs only the position distribution function F(x, t), both classically and
also quantum mechanically since this is a diagonal part of the density matrix. This is obtained as

F(x, t) = ⟨x|G(t)|x⟩ =
∫

f (x, p, t)dp

=
1√

2πσ(20)(t)
exp

[
−

(x − ⟨x⟩(t))2

2σ(20)(t)

]
. (4.8)
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Note that a t dependence has been added to G and f to indicate that the coefficients are now time
dependent according to Eqs (4.5)–(4.7). To connect with [12, 13], the initial mean position ⟨x⟩o < 0
and momentum ⟨p⟩o > 0 are set so that the packet described by Eq (4.8) is expected to move from
a negative to a positive position on the basis of the mean position and momentum. To monitor what
happens, the fraction of the packet in the positive x half space is

F+(t) ≡
∫ ∞

0
F(x, t)dx =

1
√
π

∫ ∞

z(t)
e−u2

du =
1
2

erfc[z(t)] (4.9)

where erfc is the complementary error function,

u ≡
x − ⟨x⟩(t)√

2σ(20)(t)
and z(t) ≡

−⟨x⟩(t)√
2σ(20)(t)

. (4.10)

z(t) varies with time from its initial value at t = 0 to its final value at t = ∞ according to

z(0) =
−⟨x⟩o√
2σ(20)

o

to z(∞) =
−⟨p⟩o√
2σ(02)

o

. (4.11)

Note that the time dependence of ⟨x⟩(t) and
√
σ(20)(t) cancel out at large times and that the initial

and final z and consequently F+ values bear no relation to each other. It is also noted that z(0) > 0 and
z(∞) < 0 so that F+(0) is less than F+(∞) and there is a net accumulation of particles in the positive
half space as would be expected from the center of the packet moving to the right. These results follow
from the formalism but their rationalization depends on remembering that it is the packet that moves,
not the position in the packet that is used to divide the packet into what region is chosen to monitor.
The latter position has been chosen here as x = 0 whereas in [12] and [13] this was chosen as an
arbitrary q and adds another parameter, which is unecessary in this author’s opinion.

Since erfc(z) decreases with increasing z, it is useful to examine how −z(t) varies since this defines
how F+(t) increases. Using the detailed time dependence of the moments, this is

−z(t) =
⟨x⟩o + ⟨p⟩ot/m√

2σ(20)
o + 4σ(11)

o t/m + 2σ(02)
o t2/m2

. (4.12)

Its rate of change reflects the rate of change of F+(t) and is

−
dz(t)

dt
=

2

m[2σ(20)
o (t)]3/2

[
⟨p⟩oσ

(20)
o − ⟨x⟩oσ

(11)
o + (⟨p⟩oσ

(11)
o − ⟨x⟩oσ

(02)
o )

t
m

]
(4.13)

Note that ⟨x⟩o < 0, ⟨p⟩o > 0 and t ≥ 0 so the only quantity in the rate equation that can vary in
sign is σ(11)

o . Clearly, if σ(11)
o ≥ 0 then the rate of change is always positive as might be intuitively

considered, while if negative a variation in behavior occurs.

4.1. Rate of change of F+(t) when σ(11)
o < 0

At initial and small times the sign of the rate is determined by the combination ⟨p⟩oσ
(20)
o − ⟨x⟩oσ

(11)
o ,

so the rate is positive if
⟨x⟩oσ

(11)
o < ⟨p⟩oσ

(20)
o (4.14)
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and negative if the opposite inequality is valid. Note that both terms that are being compared are
positive. Effectively, if σ(11)

o has a small negative value, then F+(t) increases with time just as it would
if σ(11)

o was positive. F+(t) decreases only if σ(11)
o is sufficiently negative, namely

−σ(11)
o >

⟨p⟩oσ
(20)
o

−⟨x⟩o
. (4.15)

This is the case that was discovered in [12] and [13] and reflects how the packet spread decreases at
a rate fast enough so the translation of the packet cannot increase F+(t).

At sufficiently large times the second term in Eq (4.13) will dominate so that F+(t) increases with
time if

−⟨p⟩oσ
(11)
o < −⟨x⟩oσ

(02)
o (4.16)

and decreases with the opposite inequality. Note that the negative signs in this inequality have been
introduced so that each term is positive. Effectively this requires −σ(11)

o to be small for increasing F+(t)
while for decreasing F+(t) it must be sufficiently large, namely

−σ(11)
o >

−⟨x⟩oσ
(02)
o

⟨p⟩o
. (4.17)

An alternate and possibly clearer way of understanding this result is to expand the dependence of
−z(t) in powers of 1/t, thus

−z(t) =
⟨p⟩o + ⟨x⟩om/t√

2σ(02)
o + 4σ(11)

o m/t + 2σ(20)
o m2/t2

=
⟨p⟩o√
2σ(02)

o

[
1 +

(
⟨x⟩o
⟨p⟩o
−
σ(11)

o

σ(02)
o

)
m
t
+ O

(
m2

t2

)]
. (4.18)

If Eq (4.17) is satisfied the (· · · ) bracket is positive so that as t increases, 1/t decreases and so does
−z(t) and F+(t). This large time case was not considered in [12] or [13], presumably because neither
considered the asymptotic (large time) behavior.

Note that the conditions (4.15), (4.17) are different though both require −σ(11)
o to be large for

decreasing F+(t). Decreasing F+(t) for both cases cannot occur for the same set of moments because
the product of the inequalities, [

σ(11)
o

]2
> σ(20)

o σ(02) (4.19)

violates the normalization condition M > 0 of the phase space gaussian, Eq (2.19), which is required
both classically and quantally. This is consistent with the earlier comment that F+(∞) > F+(0)
associated with the final and initial values of z(t). That is, there is always a net increase in F+ and any
period of time during which F+(t) may decrease is a transient effect.

5. Discussion

An arbitrary normalized gaussian operator is rewritten with its independent parameters expressed
as functions of the position and momentum moments. The phase space equivalent, obtained by the
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Wigner-Weyl transformations, is also a gaussian expressed in terms of the same parameters. From
the review of density operators, Section 1.1, for an operator to be density operator, all its eigenvalues
must be positive. The condition that this is the case for a gaussian operator is shown in Section 3
to be that the Schrödinger-Robertson uncertainty (equivalently U ≥ ℏ/2) is satisfied. This result is
presumably new. Thus, gaussian operators are classified as to whether they cannot, U < ℏ/2, or can,
U ≥ ℏ/2, be considered a density operator. The equality implies that it can represent a pure state,
whereas inequality implies it can represent a mixed state with eigenvalues that are functions of U,
see Section 3. The corresponding eigenvectors are Hermite polynomials of a scaled position times a
particular gaussian weighting factor. As a related problem, the free motion evolution of a gaussian
operator, equivalently phase space function, has been classified as to whether the amount of the packet
in the positive half space as it moves forward continuously increases or whether there are periods of
time when it decreases. It is found that the latter can occur if the position-momentum covariance is
sufficiently negative, either at small or large times. This classification is valid whether the state obeys
classical or quantum mechanics and either a pure or mixed state in the latter case. Previous treatments
of such an evolution has been considered only for pure states and often with no position-momentum
covariance.
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