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Abstract: Given certain set K and functions q and h, we study geometric properties of the set ∂{x ∈
Ω : u(x) > 0} for non-negative minimizers of the functional J(u) =

∫
Ω

(
1
p |∇u|p + q(u+)γ + hu

)
dx over

K , where Ω ⊂Rn(n ≥ 2) is an open bounded domain, p ∈ (1,+∞) and γ ∈ (0, 1] are constants, u+ is
the positive part of u and ∂{x ∈ Ω : u(x) > 0} is the so-called free boundary. Such a minimum problem
arises in physics and chemistry for γ = 1 and γ ∈ (0, 1), respectively. Using the comparison principle
of p-Laplacian equations, we establish first the non-degeneracy of non-negative minimizers near the
free boundary, then prove the local porosity of the free boundary.
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1. Introduction

Let Ω be an open bounded domain in Ω ⊂ Rn(n ≥ 2), and p ∈ (1,+∞) and γ ∈ (0, 1] be constants.
Given functions q ∈ L∞(Ω), h ∈ L∞(Ω) and φ ∈ W1,p(Ω) ∩ L∞(Ω) with

q ≥ q0 and h ≥ 0 a.e. in Ω, and φ ≥ 0 on ∂Ω,

where q0 is a positive constant, we consider the following minimum problem governed by the p-
Laplacian

J(u) =
∫
Ω

(
1
p
|∇u|p + q(u+)γ + hu

)
dx→ min (1.1)

over the closed and convex set

K =
{
u ∈ W1,p(Ω) : u − φ ∈ W1,p

0 (Ω), u ≥ 0 a.e. in Ω
}
,

where u+ is the positive part of u.
The problem (1.1) is known as one-phase free boundary problem, which is often used to model the

problems arising in physics or chemistry. For example,
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(i) the case of γ = 1 corresponds to the obstacle problem, describing the problems of equilibrium of
elastic membranes, fluid filtration in porous media and control of temperature; see [1–3], etc.

(ii) the case of γ ∈ (0, 1) can be used to model the density of certain chemical species in reaction with
a porous catalyst pellet; see [4–6], etc.

(iii) the limit case of γ → 0 is reduced to the problem of jets and cavities, which arises in the contexts
of combustion theory [7], dams [8] and heat flow [9], etc.

In the past decades, great efforts have been devoted to investigating the existence and regularities
of minimizers of J(u) (see [5, 10–12]), as well as the study of geometric properties of free boundaries
with different γ ∈ (0, 1] (see [4, 6, 13–17]), among which the latter brings more difficulties due to the
fact that specific estimates of minimizers (or solutions to the corresponding Euler-Lagrange
equations) are needed. In general, based on the existence and regularity of minimizers, the local
porosity and finite (n − 1)-dimensional Hausdorff measure of free boundaries can be established only
after the optimal growth and non-degeneracy of minimizers are addressed. For example, the porosity
of the free boundary in the homogeneous (i.e., h = 0) obstacle problem of p-Laplacian types was
obtained in [15, 18]; the Hausdorff measure of the free boundary in the homogeneous p-obstacle
problem when p > 2 and p ∈ (1, 2) was derived in [16] and [19], respectively; and the Hausdorff
measure in the minimum problem (1.1) with γ ∈ (0, 1) and p = 2 was established in [4, 6]. It should
be mentioned that the authors of [13, 14] proved the porosity and Hausdorff measure of free
boundaries in the obstacle problem in the setting of Orlicz-Sobolev spaces. For γ → 0, the authors
of [20] considered the Hausdorff measure of free boundaries in the homogeneous minimum problem
(1.1), while the authors of [21] and [22] studied regularity of free boundaries in the framework of
Sobolev spaces with variable exponents and Orlicz-Sobolev spaces, respectively.

Although geometric properties of free boundaries in the minimum problem (1.1) have been well
studied in different cases, however, there is no result reported on the porosity of the free boundary
for the problem (1.1) with a general γ ∈ (0, 1] and in inhomogeneous case, i.e., the case of h , 0.
Indeed, it is very meaningful to study porosity of free boundaries, either based on the practical needs of
engineering or problems in physics or from mathematical perspectives. For example, the porosity of a
free boundary has a significant impact on the dynamics of a free boundary, and has many applications
in context of fluid flow in porous media [23–25]. From a mathematical point of view, the study of
porosity of a set arises naturally in some problems in real analysis, especially in the differentiation
theory; see [26,27] for comprehensive surveys. As indicated in [27], the notion of a porous set E ⊂ Rn

at a point x ∈ Rn characterize the size of “hole” in the set E near to x. In particular, for a porous set
E, it is not only nowhere dense but is “small” due to the fact that “holes” near to each point x ∈ E are
“big” in a certain sense; see Definition 3.1 in Section 3. Thus, the notion of porosity provides a kind
of geometric characterization of a set.

In this paper, based on the results of existence, regularity and optimal growth of minimizers
obtained in [11], we establish first the non-degeneracy of minimizers near the free boundary for the
inhomogeneous minimum problem (1.1) and then establish a local porosity property of the free
boundary whenever γ ∈ (0, 1]. The main technical tool used in this paper is the comparison principle
of p-Laplacian equations.

In the rest of the paper, we introduce first basic notations. In Section 2, we introduce some technical
lemmas that are needed in the proof of the main result. In Section 3, we state the definition of porosity
and present the main result obtained in this paper, as well as its proof. Concluding remarks are given
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in Section 4.

Notation In this paper, for a positive constant r, Br(x) denotes a ball in Rn with center x ∈ Ω and
radius r. For simplicity, we write Br := Br(0). Let Ω+ := {x ∈ Ω : u(x) > 0} and ∂Ω+ denote
the boundary of Ω+, i.e., ∂Ω+ := ∂{x ∈ Ω : u(x) > 0}, which is known as the free boundary of the
minimum problem (1.1).

2. Auxiliary results

We present first the results on the existence of a non-negative minimizer of the functionalJ(u) over
the set K .

Lemma 2.1. [11, Lemma 4.2] The function J(u) admits at least one non-negative minimizer u over
the set K . Moreover, u is a weak solution of the equation

∆pu := div
(
|∇u|p−2∇u

)
= qγuγ−1 + h in Ω+. (2.1)

The following lemma, which was proved in [11] by using the De Giorgi iteration, is concerned with
the local C1,α-regularity of minimizers and will be applied to the proof of main result obtained in this
paper.

Lemma 2.2. [11, Theorem 3.1] If u is a non-negative minimizer of J(u) over the set K , then, u ∈
C1,α

loc (Ω) with some α ∈ (0, 1). More precisely, for any Ω′ ⫋ Ω, there exists a positive constant C1

depending only on n, p, γ, ∥q∥L∞(Ω), ∥h∥L∞(Ω), ∥φ∥L∞(Ω), ∥φ∥W1,p(Ω) and the diameter of Ω such that
∥u∥C1,α(Ω′) ≤ C1.

As mentioned in Section 1 that geometric properties are established based on specific estimates
of minimizers, we need the following optimal growth result to prove the main result obtained in this
paper. It indicates that non-negative minimizers can not grow too fast near the free boundary.

Lemma 2.3. [11, Theorem 4.1] Let x0 ∈ ∂Ω
+ and Br0(x0) ⫋ Ω with some r0 > 0. For any non-negative

minimizer u of J(u) over the set K , there exists a positive constant C2 depending only on n, p, γ,
∥q∥L∞(Ω), ∥h∥L∞(Ω), ∥φ∥L∞(Ω), ∥φ∥W1,p(Ω) and the diameter of Ω such that

|u(x)| ≤ C2|x − x0|
p

p−γ ,∀x ∈ Br(x0)

holds true for all r ∈ (0, r0).

In addition to the aforementioned lemmas, we need the following weak comparison principle of
p-Laplacian equations.

Lemma 2.4. [28, Lemma 4.1] If u, v ∈ W1,p(Ω) satisfy −∆pu ≤ −∆pv in Ω and u ≤ v on ∂Ω, then,
u ≤ v in Ω.

3. Local porosity of the free boundary

In this section, we state and prove the main result obtained in this paper, namely, the local porosity
of the free boundary. We introduce first the notion of porosity.
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Definition 3.1. A set E is said to be porous with porosity constant δ, if there exist constants r1 > 0 and
δ > 0 such that

∀x ∈ E, ∀r ∈ (0, r1) ⇒ ∃y ∈ Rn s.t. Bδr(y) ⊂ Br(x) \ E.

It is well-known that a porous set has Hausdorff dimension not exceeding n −Cδn, where C = C(n)
is a constant depending only on n. In particular, the n-dimensional Lebesgue measure of a porous set
is zero; see [15, 29, 30].

The following theorem is main result obtained in this paper.

Theorem 3.1. Let u be a non-negative minimizer of J(u) over the set K , then for every compact set
D ⫋ Ω, the intersection D ∩ ∂Ω+ is porous with porosity constant δ depending only on q0, n, p, γ,
∥q∥L∞(Ω), ∥h∥L∞(Ω), ∥φ∥L∞(Ω), ∥φ∥W1,p(Ω) and the diameter of Ω.

In order to prove Theorem 3.1, we need to prove a non-degeneracy property of non-negative
minimizers, which indicates that non-negative minimizers can not grow too slowly near the free
boundary.

Lemma 3.1. Let u be a non-negative minimizer of J(u) over the set K , then for every y ∈ ∂Ω+

satisfying Br2(y) ⫋ Ω with some r2 > 0, there exists a positive constant C3 depending only on q0, n, p
and γ such that

sup
Ω+∩Br(y)

u ≥ C3r
p

p−γ (3.1)

holds true for all r ∈ (0, r2).

Proof. Let y ∈ Ω+ and Br2(y) ⫋ Ω with some r2 > 0. Define

w(x) := |u(x)|
p−γ
p−1 and v(x) := c|x − y|

p
p−1 ,

where c := p−γ
p

(
q0γ

n

) 1
p−1 .

It follows that

∇w =
p − γ
p − 1

|u|
2−p−γ

p−1 u∇u and ∇v = c
p

p − 1
|x − y|

2−p
p−1 (x − y).

Furthermore, it holds that

∆pv = div
cp−2

(
p

p − 1

)p−2

|x − y|
p−2
p−1 c

p
p − 1

|x − y|
2−p
p−1 (x − y)


=cp−1

(
p

p − 1

)p−1

div (x − y)

=ncp−1
(

p
p − 1

)p−1

.

For any r ∈ (0, r2), we deduce by (2.1) that in Ω+ ∩ Br(y):

∆pw = div
( p − γ

p − 1

)p−1

|u|−γu|∇u|p−2∇u
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=

(
p − γ
p − 1

)p−1 (
|∇u|p−2∇u∇

(
|u|−γu

)
+ |u|−γu · div

(
|∇u|p−2∇u

))
=

(
p − γ
p − 1

)p−1 (
∇u|u|γ − γ∇u|u|γ

|u|2γ
|∇u|p−2∇u + |u|−γu∆pu

)
=

(
p − γ
p − 1

)p−1 (
(1 − γ)

|∇u|p

|u|γ
+ |u|−γu∆pu

)
=

(
p − γ
p − 1

)p−1 (
(1 − γ)

|∇u|p

|u|γ
+ qγ + hu|u|−γ

)
≥

(
p − γ
p − 1

)p−1

q0γ

=ncp−1
(

p
p − 1

)p−1

=∆pv,

namely, −∆pw ≤ −∆pv in Ω+ ∩ Br(y).
By the definitions of w(x) and v(x), and the fact that u(x) = 0 on ∂Ω+ ∩ Br(y), we have

w(x) = 0 ≤ v(x) on ∂Ω+ ∩ Br(y).

If w(x) ≤ v(x) on Ω+ ∩ ∂Br(y), then by the comparison principle (Lemma 2.4), we have

w(x) ≤ v(x) in Ω+ ∩ Br(y).

However, w(y) > 0 = v(y), which is a contradiction. Therefore, there exists y0 ∈ Ω
+ ∩ ∂Br(y) such

that w(y0) ≥ v(y0). Then we have

|u(y0)|
p−γ
p−1 = w(y0) ≥ v(y0) = cr

p
p−1 ,

or, equivalently,
|u(y0)| ≥ c

p−1
p−γ r

p
p−γ ,

which implies that
sup
Ω+∩Br(y)

u ≥ c
p−1
p−γ r

p
p−γ := C3r

p
p−γ .

Finally, for y ∈ ∂Ω+, due to the continuity of minimizers (Lemma 2.2), we can take first y j ∈ ∂Ω
+

such that y j → y, and then conclude (3.1) by taking limits. The proof is complete.

Now we are ready for the proof of Theorem 3.1, which is guaranteed by the optimal growth
(Lemma 2.3) and non-degeneracy (Lemma 3.1) of non-negative minimizers near the free boundary.

Proof. [Proof of Theorem 3.1] Since local properties of the free boundary are considered in this paper,
without loss of generality, we assume that B3 ⫋ Ω, and that the compact set D is the closed unit ball
B1. We apply the techniques of [14, 15] to the proof.

For any z ∈ ∂Ω+ ∩ B1, let r < min
{

2
3 , r0, r2

}
be a positive constant, where r0 and r2 are determined

by Lemma 2.3 and Lemma 3.1, respectively.
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By Lemma 3.1, there exists a point Y ∈ Ω+ ∩ Br(z) such that

u(Y) ≥ C3r
p

p−γ . (3.2)

For Y ∈ Ω+ ∩ Br(z), define dY := dist(Y, Br(z) \ Ω+) and take zY ∈ ∂Ω
+ ∩ Br(z) with dY = |Y − zY |.

We claim that Br(zY) ⫋ Ω. Indeed, for any x ∈ Br(zY), it holds that

|x| ≤ |x − zY | + |zY − Y | + |Y − z| + |z| ≤ r + dY + r + 1 ≤ 3r + 1 < 3.

Therefore, Br(zY) ⊂ B3 ⫋ Ω.
By Lemma 2.3, we obtain

u(x) ≤ C2|x − zY |
p

p−γ ,∀x ∈ Br(zY). (3.3)

We infer from (3.2) and (3.3) that

C3r
p

p−γ ≤ u(Y) ≤ C2d
p

p−γ

Y .

Setting δ =
(

C3
C2

) p−γ
p , we have δr ≤ dY . Therefore, Bδr(Y) ∩ Br(z) ⊂ Ω+.

Selecting a point y on the line with z and Y as endpoints such that |y − Y | = δr2 , we claim that

B δr
2
(y) ⊂ Bδr(Y) ∩ Br(z) ⊂ Br(z) \ ∂Ω+ ⊂ Br(z) \

(
∂Ω+ ∩ B1

)
, (3.4)

which shows that ∂Ω+ ∩ B1 is porous with the porosity constant δ2 . Indeed, for every point y0 ∈ B δr
2
(y),

on one hand, it holds that

|y0 − Y | ≤ |y0 − y| + |y − Y | <
δr
2
+
δr
2
= δr.

On the other hand, since |y − z| = |z − Y | − |y − Y |, it holds that

|y0 − z| ≤ |y0 − y| + |y − z| ≤ |y0 − y| + (|z − Y | − |y − Y |) <
δr
2
+

(
r −
δr
2

)
= r.

Therefore, (3.4) holds true and the proof is complete.

4. Conclusions

As stated in the introduction, the regularity of free boundaries is based on the regularity of
minimizers. In this paper, we first proved non-degeneracy of non-negative minimizers near the free
boundary by using the comparison principle. Then, based on this result and the optimal growth of
non-negative minimizers, we proved that the free boundary is locally porous, which indicates that the
n-dimensional Lebesgue measure of the free boundary is zero. In future work, we will study the finite
dimensional Hausdorff measure of the free boundary, so as to provide more geometrical
characterizations for the free boundary.
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