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Abstract: Cross-view data correlation analysis is a typical learning paradigm in machine learning and
pattern recognition. To associate data from different views, many approaches to correlation learning
have been proposed, among which canonical correlation analysis (CCA) is a representative. When data
is associated with label information, CCA can be extended to a supervised version by embedding the
supervision information. Although most variants of CCA have achieved good performance, nearly all
of their objective functions are nonconvex, implying that their optimal solutions are difficult to obtain.
More seriously, the discriminative scatters and manifold structures are not exploited simultaneously.
To overcome these shortcomings, in this paper we construct a Discriminative Correlation Learning
with Manifold Preservation, DCLMP for short, in which, in addition to the within-view supervision
information, discriminative knowledge as well as spatial structural information are exploited to benefit
subsequent decision making. To pursue a closed-form solution, we remodel the objective of DCLMP
from the Euclidean space to a geodesic space and obtain a convex formulation of DCLMP (C-DCLMP).
Finally, we have comprehensively evaluated the proposed methods and demonstrated their superiority
on both toy and real datasets.

Keywords: canonical correlation analysis; cross-view data correlation analysis; convex discriminative
correlation learning; cross-view representation

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023275


5426

1. Introduction

Correlation analysis deals with data with cross-view feature representations. To handle such
tasks, many correlation learning approaches have been proposed, among which canonical correlation
analysis (CCA) [1–5] is a representative method and has been widely employed [6–11] . To be specific,
given training data with two or more feature-view representations, the traditional CCA method comes
to seek a projection vector for each of the views while maximizing the cross-view correlations. After
the data are mapped along the projection directions, subsequent cross-view decisions can be made [4].
Although CCA yields good results, a performance room is left since the data labels are not incorporated
in learning.

When class labels information is also provided or available, CCA can be remodeled to its discrimi-
nant form by making use of the labels. To this end, Sun et al. [12] proposed a discriminative variant of
CCA (i.e., DCCA) by enlarging distances between dissimilar samples while reducing those of similar
samples. Subsequently, Peng et al. [13] built a locally-discriminative version of CCA (i.e., LDCCA)
based on the assumption that the data distributions follow low-dimensional manifold embedding. Be-
sides, Su et al. [14] established a multi-patch embedding CCA (MPECCA) by developing multiple
metrics rather than a single one to model within-class scatters. Afterwards, Sun et al. [15] built a
generalized framework for CCA (GCCA). Ji et al. [16] remodeled the scatter matrices by deconstructing
them into several fractional-order components and achieved performance improvements.

In addition to directly constructing a label-exploited version of CCA, the supervised labels can be
utilized by embedding them as regularization terms. Along this direction, Zhou et al. [17] presented
CECCA by embedding LDA-guided [18] feature combinations into the objective function of CCA.
Furthermore, Zhao et al. [19] constructed HSL-CCA by reducing inter-class scatters within their local
neighborhoods. Later, Haghighat et al. [20] proposed the DCA model by deconstructing the inter-class
scatter matrix guided by class labels. Previous variants of CCA were designed to cater for two-view
data and cannot be used directly to handle multi-view scenarios. To overcome this shortcoming, many
CCA methods have been proposed, such as GCA [21] , MULDA [22] and FMDA [23] .

Although the aforementioned methods have achieved successful performances of varying extent,
unfortunately, the objective functions of nearly all of them are not convex [14, 24, 25]. Although
CDCA [26] yields closed-form solutions and better results than the previous methods.

To overcome these shortcomings, we firstly design a discriminative correlation learning with manifold
preservation, coined as DCLMP, in which, not only the cross-view discriminative information but also
the spatial structural information of training data is taken into account to enhance subsequent decision
making. To pursue closed-form solutions, we remodel the objective of DCLMP from the Euclidean
space to a geodesic space. In this way, we obtain a convex formulation of DCLMP (C-DCLMP). Finally,
we comprehensively evaluated the proposed methods and demonstrated their superiority on both toy
and real data sets. To summarize, our contributions are three-fold as follows:

1. A DCLMP is constructed by modelling both cross-view discriminative information and spatial
structural information of training data.

2. The objective function of DCLMP is remodelled to obtain its convex formulation (C-DCLMP).
3. The proposed methods are evaluated with extensive experimental comparisons.

This paper is organized as follows. Section 2 reviews related theories of CCA. Section 3 presents
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models and their solving algorithms. Then, experiments and comparisons are reported to evaluate the
methods in Section 4. Section 5 concludes and provides future directions.

2. Related work

2.1. Multi-view learning

In this section, we briefly review the works on multi-view learning, which aims to study how to
establish constraints or dependencies between views by modeling and discovering the interrelations
between views. There exist studies about multi-view learning. Tang et al. [27] proposed a multi-view
feature selection method named CvLP-DCL, which divided the label space into a consensus part and
a domain-specific part and explored the latent information between different views in the label space.
Additionally, CvLP-DCL explored how to combine cross-domain similarity graph learning with matrix-
induced regularization to boost the performance of the model. Tang et al. [28] also proposed UoMvSc
for multi-view learning, which mined the value of view-specific graphs and embedding matrices by
combining spectral clustering with k-means clustering. In addition, Wang et al. [29] proposed an
effective framework for multi-view learning named E2OMVC, which constructed the latent feature
representation based on anchor graphs and the clustering indicator matrix about multi-view data to
obtain better clustering results.

2.2. Canonical correlation analysis

We briefly review related theories of CCA [1, 2]. Given two-view feature representations of training
data, CCA seeks two projection matrices respectively for the two views, while preserving the cross-view
correlations. To be specific, let X = [x1, ..., xN] ∈ Rp×N and Y = [y1, ..., yN] ∈ Rq×N be two view
representations of N training samples, with xi and yi denoting normalized representations of the ith
sample. Besides, let Wx ∈ R

p×r and Wy ∈ R
q×r denote the projection matrices mapping the training data

from individual view spaces into a r-dimensional common space. Then, the correlation between WT
x xi

and WT
y yi should be maximized. Consequently, the formal objective of CCA can be formulated as

max
{Wx,Wy}

WT
x CxyWy√

WT
x CxxWxWT

y CyyWy

, (2.1)

where Cxx =
1
N

∑N
i=1(xi − x)(xi − x)T , Cyy =

1
N

∑N
i=1(yi − y)(yi − y)T , and Cxy =

1
N

∑N
i=1(xi − x)(yi − y)T ,

where x = 1
N

∑N
i=1 xi and y = 1

N

∑N
i=1 yi respectively denote the sample means of the two views. The

numerator describes the sample correlation in the projected space, while the denominator limits the
scatter for each view. Typically, Eq (2.1) is converted to a generalized eigenvalue problem as XYT

YXT

 Wx

Wy

 = λ XXT

YYT

 Wx

Wy

. (2.2)

Then,
Wx

Wy

 can be achieved by computing the largest r eigenvectors of

XXT

YYT

−1  XYT

YXT

 .
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After Wx and Wy are obtained, xi and yi can be concatenated as WT
x xi +WT

y yi =

Wx

Wy

T xi

yi

. With

the concatenated feature representations are achieved, subsequent classification or regression decisions
can be made.

2.3. Variants of CCA

The most classic work of discriminative CCA is DCCA [12] , which is shown as follows:

max
wx,wy

(
wT

x Cwwy − η · wT
x Cbwy

)
s.t. wT

x XXT wx = 1,wT
y YYT wy = 1

(2.3)

It is easy to find that DCCA is discriminative because DCCA needs instance labels to calculate the
relationship between each class. Similar to DCCA, Peng et al. [13] proposed LDCCA which is shown
as follows:

max
wx,wy

wT
x Cxywy√(

wT
x C̃xxwx

) (
wT

y Cyywy

)
s.t. wT

x XXT wx = 1,wT
y YYT wy = 1

(2.4)

where C̃xy = Cw − ηCb · Cw. Compared with DCCA, LDCCA consider the local correlations of the
within-class sets and the between-class sets. However, these methods do not consider the problem of
multimodal recognition or feature level fusion. Haghighat et al. [20] proposed DCA which incorporates
the class structure, i.e., memberships of the samples in classes, into the correlation analysis. Additionally,
Su et al. [14] proposed MPECCA for multi-view feature learning, which is shown as follows:

max
u,v,w(χ)

j ,w
(y)
r

uT

 N∑
i=1

M∑
j=1

M∑
r=1

(
w(x)

j w(y)
r

)
XS (x)

i j LiS
(y)T
ir YT

 v

s.t. uT S wxu = 1, vT S wyv = 1
M∑
j=1

w(x)
j = 1,w(x)

j ⩾ 0

M∑
r=1

w(y)
r = 1,w(y)

r ⩾ 0

(2.5)

where u and v means correlation projection matrices. Considering combining LDA and CCA, CECCA
was proposed [17] . The optimization objective of CECCA was shown as follows:

max
wx,wy

wT
x X(I + 2A)YTwy + wT

x X ATTwx + wT
y Y AXTwy

s. t. wT
x XXTwx + wT

y YYTwy = 2
(2.6)

where A = 2U − I, I means Identity matrix. On the basis of CCA, CECCA combined with discriminant
analysis to realize the joint optimization of correlation and discriminant of combined features, which
makes the extracted features more suitable for classification. However, these methods cannot achieve
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the closed form solution. CDCA [26] combined GMML and discrimative CCA and then achieve the
closed form solution in Riemannian manifold space, the optimization objective was shown as follows:

min
A≻0
γ tr(AC) + (1 − γ)

(
tr (ASZ) + tr

(
A−1 DZ

))
=

tr (A (γC + (1 − γ)SZ)) + tr
(
A−1(1 − γ)DZ

) (2.7)

From Eq (2.7) and CDCA [26] we can find with the help of discrimative part and closed form solution,
the multi-view learning will easily get the the global optimality of solutions and achieve a good result.

3. Proposed method

CCA suffer from three main problems: (1) the similarity and dissimilarity across views are not
modeled; (2) although the data labels can be exploited by imposing supervised constraints, their objective
functions are nonconvex; (3) the cross-view correlations are modeled in Euclidean space through RKHS
kernel transformation [30, 31] whose discriminating ability is obviously limited.

We present a novel cross-view learning model, called DCLMP, in which not only the with-class and
between-class scatters are characterized, but also the similarity and dissimilarity of the training data
across views are modelled for utilization. Although many preferable characteristics are incorporated
in DCLMP, it still suffers from non-convexity for its objective function. To facilitate pursuing global
optimal solutions, we further remodel DCLMP to the Riemannian manifold space to make the objective
function convex. The proposed method is named as C-DCLMP.

Assume we are given N training instances sampled from K classes with two views of feature
representations, i.e., X = [X1,X2, · · ·,XK] ∈ Rp×N with Xk = [xk

1, x
k
2, · · ·, x

k
Nk

] being Nk x-view instances
from the k-th class and Y = [Y1,Y2, ···,YK] ∈ Rq×N with Yk = [yk

1, y
k
2, ···, y

k
Nk

] being Nk y-view instances
from the k-th class, where yk

1 and xk
1 stand for two view representations from the same instance. In

order to concatenate them for subsequent classification, we denote U ∈ Rp×r and V ∈ Rq×r as projection
matrices for the two views to transform their representations to a r-dimensional common space.

3.1. Discriminative correlation learning with manifold preservation (DCLMP)

To perform cross-view learning while exploring supervision knowledge in terms of similar and
dissimilar relationships among instances in each view and across the views, as well as sample distribution
manifolds, we construct DCLMP. To this end, we should construct the model by taking into account
the following aspects: 1) distances between similar instances from the same class should be reduced
while those among dissimilar from different classes should be enlarged, in levels of intra-view and
inter-view; 2) manifold structures embedded in similar and dissimilar instances should be preserved.
These modelling considerations are intuitively demonstrated in Figure 1.
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(a) Original Space (b) Projected Space

Figure 1. Modelling strategy of DCLMP. Here, circular and triangular shapes represent
samples from two different classes, while filling in different colors represents different view
representations. The samples are distributed dispersedly in original feature representation
space (a); however, in DCLMP projection space (b), similar samples are pushed nearer while
dissimilar from different classes are pulled apart from each other, while their manifold relations
are preserved.

Along this line, we construct the objective function of DCLMP as follows:

min
{U,V}

1
N

N∑
i=1

1
N

N∑
j=1

∥UT xi − VT y j∥
2
2 · Li j

+
λ1

K

K∑
k=1

1
Nk

Nk∑
i=1

1
kn

kn∑
j=1

{
∥UT xk

i − UT xk
j∥

2
F · S

wx
i j

+ ∥VT yk
i − VT yk

j∥
2
F · S

wy

i j

}
−
λ2

K

K∑
k=1

∑
h,k

1
Nk

Nk∑
i=1

1
kn

kn∑
j=1

{
∥UT xk

i − UT xh
j∥

2
F · S

bx
i j

+ ∥VT yk
i − VT yh

j∥
2
F · S

by

i j

}

(3.1)

where U and V denote the projection matrices in the r-dimensional common space of two views and kn

denotes the k-nearest neighbors of an instance. L is the discriminative weighting matrix. Swx and Swy

stand for the within-class manifold weighting matrices of two different views of feature representations,
and Sbx and Sby stand for the between-class manifold weighting matrices of two different views of
feature representations. Their elements are defined as follows

Li j =

 1
Nk

xi and y j are from the same class
0 xi and y j are from different classes

(3.2)
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Swx
i j =

exp
(
−
∥xk

i −xk
j∥

2

σ2
x

)
xk

j ∈ KNNkn (xk
i )

0 xk
j < KNNkn (xk

i )
(3.3)

Swy

i j =

exp
(
−
∥yk

i −yk
j∥

2

σ2
y

)
yk

j ∈ KNNkn (yk
i )

0 yk
j < KNNkn (yk

i )
(3.4)

Sbx
i j =

exp
(
−
∥xk

i −xh
j∥

2

σ2
x

)
xh

j ∈ KNNkn (xk
i )

0 xh
j < KNNkn (xk

i )
(3.5)

Sby

i j =

exp
(
−
∥yk

i −yh
j∥

2

σ2
y

)
yh

j ∈ KNNkn (yk
i )

0 yh
j < KNNkn (yk

i )
(3.6)

where KNNkn denotes the kn-nearest neighbors of an instance. σx and σy stand for width coefficients to
normalize the weights.

In Eq (3.1), the first part characterizes the cross-view similarity and dissimilarity discriminations,
the second part preserves the manifold relationships within each class scatters, while the third part
magnifies the distribution margins for a dissimilar pair of instances. In this way, both the discriminative
information and the manifold distributions can be modelled in a joint objective function.

For convenience of solving Eq (3.1), we transform it as the following concise form

min
A≻0

tr
(
A(C + λ1Sz − λ2Dz)

)
(3.7)

with

A =
UV
 UV
T (3.8)

C =
1p×p

0q×p

XMLXT [0p×q, 1q×q] +
0p×q

1q×q

YMLYT [0q×p, 1q×q]−1p×p

0q×p

XLYT [0q×p, 1q×q] −
0p×q

1q×q

YLXT [1p×p, 0p×q]

(3.9)

Sz =

K∑
k=1

{ 1p×p

0q×p

Xk
(
Mwx +Mwx T

− Swx − Swx T
)

XkT
[1p×p, 0p×q]

+

0p×q

1q×q

Yk
(
Mwy +Mwy T

− Swy − Swy T
)

YkT
[0q×p, 1q×q]

} (3.10)

Dz =

{ 1p×p

0q×p

X (Mbx +Mbx T
− Sbx − Sbx T )XT [1p×p, 0p×q]

+

0p×q

1q×q

Y (Mby +Mby T
− Sby − Sby T )YT [0q×p, 1q×q]

} (3.11)

where Mwx
ii =
∑N

j=1 Swx
i j , Mwy

ii =
∑N

j=1 Swy

i j , Mbx
ii =
∑N

j=1 Sbx
i j , Mby

ii =
∑N

j=1 Sby

i j , and ML
ii =
∑N

j=1 Li j.
We let J record the objective function value of Eq (3.7) and introduce QT Q = I to replace A and Λ

to rewrite Eq (3.7) as

J{Q,Λ} = tr
(
QT (C + λ1Sz − λ2Dz) Q

)
− tr
(
Λ(QT Q − I)

)
. (3.12)
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Calculating the partial derivative of J{Q,Λ} with regard to Q and making it to zero yields

(C + λ1Sz − λ2Dz)Q = QΛ, (3.13)

The projection matrix Q can be obtained by calculating a required number of smallest eigenvectors
of C+ λ1Sz − λ2Dz. Finally, we can recover A = QQT . Then, U and V can be obtained through Eq (3.8).

3.2. C-DCLMP

We find that such a objective function may be not convex [32, 33] . The separability of nonlinear
data patterns in the geodesic space can be significantly improved and thus benefits their subsequent
recognitions. Referring to minA≻0 tr(A−1•)⇔ maxA≻0 tr(A•) [34] , we reformulate DCLMP in (3.7)
equivalently as

min
A≻0

tr
(
AC + λ1ASz + λ2A−1Dz

)
⇔ min

A≻0
tr(AC) + λ1tr(ASz) + λ2tr(A−1Dz), (3.14)

Minimizing the third term λ1tr(A−1Dz) is equivalent to minimizing −λ1tr (ADz) of Eq (3.7). Al-
though the last term is nonlinear, it is defined in the convex cone space [35] and thus is still convex. As
a result, Eq (3.14) is entirely convex regarding A. It enjoys closed-form solution [36–38] . To distinguish
Eq (3.14) from DCLMP, we call it C-DCLMP.

For convenience of deriving the closed-form solution, we reformulate Eq (3.14) as

min
A≻0
γtr(A−1Dz) + (1 − γ) (tr(ASz) + αtr (AC)) , (3.15)

where we set γ ∈ (0, 1) [34] . Let J(A) := γtr(A−1Dz) + (1 − γ) (tr (ASz) + αtr (AC)).

(1 − γ)A(Sz + αC)A = γDz, (3.16)

whose solution is the midpoint of the geodesic jointing ((1 − γ)(Sz + αC))−1 and γDz, that is

A =
(
(1 − γ)(Sz + αC)

)−1
♯1/2(γDz), (3.17)

(·)♯1/2(·) denotes the midpoint. We extend the geodesic mean solution (3.17) to the geodesic space
by replacing (·)♯1/2(·) with (·)♯t(·), 0 ⩽ t ⩽ 1.

We add a regularizer with prior knowledge to (3.15). Here, we incorporate symmetrized LogDet
divergence and consequently (3.15) becomes

min
A≻0
γtr(A−1Dz) + (1 − γ)(tr (ASz) + αtr (AC))

+ λDsld(A,A0),
(3.18)

Dsld(A,A0) = tr(AA−1
0 ) + tr(A−1A0) − 2(p + q), (3.19)

where (p+q) is the dimension of the data. Fortunately, complying with the definition of geometric
mean [36], Eq (3.18) is still convex. We let G(A) := γtr(A−1Dz) + (1 − γ)(tr (ASz) + αtr (AC)) +
λDsld(A,A0). Then we set the gradient of G(A) regarding to A to zero and obtain the equation as
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(1 − γ)A(Sz + αC)A + λAA−1
0 A = γDz + λA0, (3.20)

we calculate the closed-form solution as

A = ((1 − γ)(Sz + αC) + λA−1
0 )−1♯t(γDz + λA0). (3.21)

More precisely, according to the definition of (·)♯t(·), namely the geodesic mean jointing two matrices,
we can directly expand the final solution of our C-DCLMP in Eq (3.18) as

A = ((1 − γ)(Sz + αC) + λA−1
0 )−1♯t(γDz + λA0)

=
(
(1 − γ)(Sz + αC) + λA−1

0

)1/2( (
(1 − γ)(Sz + αC) + λA−1

0

)−1/2
(γDz + λA0)(

(1 − γ)(Sz + αC) + λA−1
0

)−1/2 )t(
(1 − γ)(Sz + αC) + λA−1

0

)1/2
.

(3.22)

where we set A0 to be a (p+q)-order identity matrix Ip+q. When obtaining A, U and V are recovered.

Its concatenated representation can be generated by UT x + VT y =
UV
T xy
 and the classification

decision using a classifier (e.g., KNN) can be made on this fused representation.

4. Experiment

To comprehensively evaluate the proposed methods, we first performed comparative experiments
on several benchmark and real face datasets. Besides, we also performed sensibility analysis on the
model parameters.

4.1. Setup

For evaluation and comparisons, CCA [1], DCCA [12], MPECCA [14], CECCA [17], DCA [20] and
CDCA [26] were implemented. All hyper-parameters were cross-validated in the range of [0, 0.1, ..., 1] for t
and γ, and [1e-7, 1e-6, ..., 1e3] for α and λ. For concatenated cross-view representations, a 5-nearest-
neighbors classifier was employed for classification. Additionally, recognition accuracy (%, higher is
better) and mean absolute errors (MAE, lower is better) were adopted as performance measures.

4.2. Comparisons on non-face datasets

We first performed experiments on several widely used non-face multi-view datasets, i.e., MFD [39]
and USPS [40], AWA [41] and ADNI [42]. We report the results in Table 1.

The proposed DCLMP method yielded the second-lowest estimation errors in most cases, slightly
higher than the proposed C-DCLMP. The improvement achieved by C-DCLMP method is significant,
especially on AWA and USPS datasets.
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Table 1. Recognition accuracy (%) comparison on the non-face datasets.
Dataset View Represenations CCA DCA MPECCA DCCA CECCA CDCA DCLMP (ours) C-DCLMP (ours)

MFD

fac fou 80.22 ± 0.9 80.00 ± 0.2 90.64 ± 1.3 95.15 ± 0.9 96.46 ± 2.4 98.11 ± 0.3 94.49 ± 1.7 98.03 ± 0.3
fac kar 92.12 ± 0.5 90.10 ± 0.8 95.39 ± 0.6 95.33 ± 0.7 96.52 ± 1.2 97.06 ± 0.4 96.86 ± 0.5 97.93 ± 0.6
fac mor 78.22 ± 0.8 63.22 ± 4.3 72.32 ± 2.4 95.22 ± 0.9 94.23 ± 1.0 98.13 ± 0.3 90.97 ± 2.5 97.63 ± 0.3
fac pix 83.02 ± 1.2 90.20 ± 0.5 94.65 ± 0.5 65.60 ± 1.1 93.67 ± 2.9 97.52 ± 0.4 97.45 ± 0.5 97.21 ± 0.4
fac zer 84.00 ± 0.6 71.50 ± 2.2 93.79 ± 0.7 96.00 ± 0.6 97.04 ± 0.6 97.03 ± 0.4 95.98 ± 0.3 97.75 ± 0.4
fou kar 90.11 ± 1.0 75.42 ± 5.6 93.98 ± 0.4 89.12 ± 4.3 96.90 ± 0.5 97.19 ± 0.6 97.45 ± 0.4 97.45 ± 0.3
fou mor 70.22 ± 0.4 55.82 ± 4.6 60.62 ± 1.6 82.30 ± 0.9 78.25 ± 0.6 83.81 ± 0.7 82.09 ± 1.0 84.80 ± 0.6
fou pix 68.44 ± 0.4 76.10 ± 4.7 78.24 ± 1.1 90.41 ± 3.2 76.28 ± 1.3 96.11 ± 0.5 97.62 ± 0.4 97.74 ± 0.3
fou zer 74.10 ± 0.9 62.80 ± 4.1 79.38 ± 1.2 79.53 ± 4.5 83.16 ± 1.4 85.98 ± 0.9 85.33 ± 1.1 86.56 ± 1.0
kar mor 64.09 ± 0.6 82.00 ± 1.6 72.92 ± 2.7 91.95 ± 2.8 91.89 ± 0.6 97.28 ± 0.5 96.83 ± 0.5 97.14 ± 0.4
kar pix 88.37 ± 0.9 88.85 ± 0.8 95.07 ± 0.6 92.59 ± 2.0 95.98 ± 0.3 94.68 ± 0.5 97.54 ± 0.4 97.31 ± 0.5
kar zer 90.77 ± 1.0 75.97 ± 2.8 94.17 ± 0.6 88.47 ± 2.9 93.57 ± 0.9 96.69 ± 0.4 96.98 ± 0.4 97.42 ± 0.4
mor pix 68.66 ± 1.5 82.01 ± 2.1 67.21 ± 2.3 93.04 ± 0.7 90.08 ± 1.0 96.89 ± 0.4 97.20 ± 0.5 97.19 ± 0.4
mor zer 73.22 ± 0.6 50.35 ± 1.8 60.95 ± 1.4 84.55 ± 0.9 80.59 ± 0.9 84.19 ± 0.8 81.75 ± 1.1 84.29 ± 0.7
pix zer 82.46 ± 0.6 71.16 ± 2.8 82.81 ± 1.2 91.67 ± 2.1 91.81 ± 1.2 96.30 ± 0.5 97.35 ± 0.5 97.30 ± 0.5

AWA

cq lss 73.11 ± 2.1 62.08 ± 0.3 76.19 ± 1.0 70.51 ± 1.3 77.53 ± 1.7 87.80 ± 2.8 89.03 ± 1.4 89.80 ± 1.2
cq phog 65.21 ± 1.4 73.10 ± 1.2 72.42 ± 1.6 70.15 ± 0.9 74.51 ± 2.1 85.58 ± 2.7 86.71 ± 2.3 86.81 ± 1.2
cq rgsift 60.22 ± 1.3 61.40 ± 1.7 78.04 ± 1.3 82.87 ± 2.4 82.83 ± 1.4 90.99 ± 3.0 93.44 ± 0.6 94.34 ± 0.8
cq sift 74.33 ± 1.3 61.28 ± 1.9 77.85 ± 1.4 83.19 ± 2.1 80.05 ± 1.7 81.59 ± 5.2 87.17 ± 0.8 90.68 ± 0.8
cq surf 75.86 ± 1.7 69.30 ± 2.1 79.07 ± 0.8 73.55 ± 2.3 81.59 ± 1.5 93.58 ± 1.1 94.36 ± 1.0 95.35 ± 0.5
lss phog 69.96 ± 1.7 59.72 ± 0.2 68.12 ± 1.2 64.86 ± 2.6 71.36 ± 1.4 80.48 ± 2.0 81.76 ± 1.1 81.62 ± 1.1
lss rgsift 78.65 ± 0.9 63.21 ± 1.3 73.64 ± 1.0 78.28 ± 2.8 77.28 ± 1.4 87.38 ± 4.3 90.13 ± 0.7 89.95 ± 1.0
lss sift 73.49 ± 1.0 65.72 ± 2.1 73.12 ± 1.4 66.21 ± 1.6 76.69 ± 1.7 81.56 ± 2.4 84.05 ± 0.9 84.07 ± 1.9
lss surf 76.30 ± 1.4 65.33 ± 1.8 74.84 ± 1.6 79.06 ± 2.8 78.52 ± 1.3 89.81 ± 2.5 89.75 ± 0.8 91.12 ± 0.7
phog rgsift 68.18 ± 1.1 48.38 ± 1.0 69.49 ± 2.3 77.37 ± 1.5 74.41 ± 1.5 82.76 ± 1.1 83.57 ± 1.6 83.68 ± 1.2
phog sift 68.26 ± 1.1 70.24 ± 1.1 68.97 ± 1.3 63.16 ± 1.3 72.14 ± 1.5 80.50 ± 1.2 83.57 ± 1.1 83.75 ± 1.5
phog surf 64.57 ± 1.4 56.94 ± 0.5 71.55 ± 1.4 75.68 ± 1.9 74.43 ± 2.1 84.97 ± 2.6 88.02 ± 1.8 87.34 ± 0.8
rgsift sift 71.35 ± 1.3 58.56 ± 2.3 72.85 ± 1.1 75.28 ± 2.5 76.69 ± 1.7 90.76 ± 2.2 93.44 ± 0.4 93.79 ± 1.0
rgsift surf 75.55 ± 1.3 67.22 ± 1.6 76.94 ± 2.2 84.10 ± 2.4 80.46 ± 1.7 93.25 ± 1.2 92.82 ± 0.8 93.66 ± 0.8
sift surf 75.33 ± 1.3 63.36 ± 1.6 74.27 ± 1.2 82.14 ± 2.7 75.51 ± 1.1 90.07 ± 3.4 90.67 ± 1.0 91.69 ± 1.1

ADNI
AV FDG 65.47 ± 1.8 73.28 ± 2.1 75.28 ± 2.6 76.25 ± 2.1 76.26 ± 2.5 79.59 ± 1.9 68.64 ± 3.3 80.86 ± 2.1
AV VBM 71.02 ± 2.4 71.02 ± 2.8 73.24 ± 3.1 63.47 ± 2.1 60.67 ± 2.7 81.59 ± 2.5 78.38 ± 2.5 80.70 ± 2.8
FDG VBM 61.37 ± 1.2 65.28 ± 1.6 70.37 ± 2.6 64.05 ± 1.6 70.95 ± 1.8 80.12 ± 2.0 74.97 ± 2.9 80.21 ± 1.7

USPS left right 62.14 ± 0.6 80.11 ± 1.2 66.67 ± 0.9 63.96 ± 2.0 82.89 ± 1.9 89.76 ± 0.3 96.19 ± 0.7 96.03 ± 0.6

4.3. Comparisons on face datasets

We also conducted age estimation experiments on AgeDB [43] , CACD [44] and IMDB-WIKI [45] .
These three databases are illustrated in Figure 2.

(a) AgeDB (b) CACD (c) IMDB-WIKI

Figure 2. Face examples from (a) AgeDB, (b) CACD datasets and (c) IMDB-WIKI dataset.

We extracted BIF [46] and HoG [47] feature vectors and reduced dimensions to 200 by PCA as two
view representations. We randomly chose 50, 100, 150 samples for training. Also, we use VGG19 [48]
and Resnet50 [45] to extract deep feature vectors from AgeDB, CACD and IMDB-WIKI databases. We
report results in Tables 3, 5 and 6.

The estimation errors (MAEs) of all the methods reduced monotonically. The age MAEs of DCLMP
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are the second lowest, demonstrating the solidness of our modelling cross-view discriminative knowledge
and data manifold structures. We can also observe that C-DCLMP yields the lowest estimation errors,
demonstrating its effectiveness and superiority.

Table 2. Age estimation results (MAE±STD) on AgeDB.
training samples CCA DCA MPECCA DCCA CECCA CDCA DCLMP (ours) C-DCLMP (ours)
50 17.70 ± 0.5 17.78 ± 0.5 16.10 ± 0.4 15.93 ± 0.4 15.62 ± 0.5 15.48 ± 0.2 15.59 ± 0.1 15.16 ± 0.4
100 16.81 ± 0.5 17.23 ± 0.6 14.74 ± 0.5 14.79 ± 0.5 14.67 ± 0.4 14.57 ± 0.2 14.60 ± 0.2 14.13 ± 0.2
150 15.43 ± 0.5 16.25 ±0 .6 13.83 ± 0.5 13.49 ± 0.4 13.43 ± 0.4 13.21 ± 0.2 13.48 ± 0.2 13.19 ± 0.3

Table 3. Age estimation results (MAE±STD) on AgeDB (deep features).
training samples CCA DCA MPECCA DCCA CECCA CDCA DCLMP (ours) C-DCLMP (ours)
50 16.17 ± 0.5 16.27 ± 0.46 15.42 ± 0.5 15.09 ± 0.5 14.78 ± 0.5 14.67 ± 0.3 14.75 ± 0.2 14.52 ± 0.2
100 15.86 ± 0.5 15.79 ± 0.6 14.89 ± 0.8 14.23 ± 0.4 14.09 ± 0.4 13.78 ± 0.3 14.07 ± 0.3 13.68 ± 0.2
150 15.09 ± 0.5 14.81 ± 0.3 13.97 ± 0.5 13.41 ± 0.6 13.34 ± 0.5 13.16 ± 0.3 13.46 ± 0.3 13.15 ± 0.3

Table 4. Age estimation results (MAE±STD) on CACD.
training samples CCA DCA MPECCA DCCA CECCA CDCA DCLMP (ours) C-DCLMP (ours)
50 16.28 ± 0.5 16.78 ± 0.4 15.79 ± 0.4 14.98 ± 0.4 14.38 ± 0.4 14.28 ± 0.4 14.10 ± 0.3 13.95 ± 0.3
100 15.45 ± 0.4 16.52 ± 0.5 15.04 ± 0.5 14.44 ± 0.4 13.99 ± 0.4 13.98 ± 0.3 13.85 ± 0.2 13.74 ± 0.2
150 15.20 ± 0.5 15.41 ± 0.5 14.79 ± 0.4 14.02 ± 0.5 13.73 ± 0.5 13.79 ± 0.2 13.67 ± 0.1 13.63 ± 0.3

Table 5. Age estimation results (MAE±STD) on CACD (deep features).
training samples CCA DCA MPECCA DCCA CECCA CDCA DCLMP (ours) C-DCLMP (ours)
50 16.07 ± 0.6 16.27 ± 0.4 15.35 ± 0.4 14.21 ± 0.6 13.39 ± 0.4 13.49 ± 0.3 13.52 ± 0.3 13.27 ± 0.2
100 15.69 ± 0.5 15.75 ± 0.3 14.65 ± 0.5 14.17 ± 0.5 13.28 ± 0.3 13.26 ± 0.3 13.24 ± 0.2 12.97 ± 0.4
150 15.22 ± 0.4 15.32 ± 0.4 14.45 ± 0.3 14.01 ± 0.6 13.01 ± 0.3 12.94 ± 0.3 12.91 ± 0.3 12.76 ± 0.4

Table 6. Age estimation results (MAE±STD) on IMDB-WIKI.
training samples CCA DCA MPECCA DCCA CECCA CDCA DCLMP (ours) C-DCLMP (ours)
50 14.29 ± 0.5 14.39 ± 0.5 13.49 ± 0.3 13.04 ± 0.5 12.26 ± 0.4 12.37 ± 0.3 11.84 ± 0.3 11.65 ± 0.3
100 13.97 ± 0.5 13.87 ± 0.4 12.79 ± 0.5 12.35 ± 0.3 11.96 ± 0.3 11.86 ± 0.3 11.53 ± 0.2 11.13 ± 0.3
150 13.43 ± 0.5 13.56 ± 0.5 12.48 ± 0.3 12.26 ± 0.4 11.66 ± 0.3 11.65 ± 0.3 11.45 ± 0.2 10.98 ± 0.3

4.4. Parameters analysis

For the proposed methods, we performed parameter analysis t, γ and λ involved in (3.21), respectively.
Specifically, we conducted age estimation experiments on both AgeDB and CACD . The results are
plotted in Figures 3–5.

Geometric weighting parameter t of C-DCLMP: We find some interesting observations from
Figure 3. That is, with t increasing from 0 to 1, the estimation error descended first and then rose again.
It shows that the similar manifolds within class and the inter-class data distributions are helpful in
regularizing the model solution space.

Electronic Research Archive Volume 31, Issue 9, 5425–5441.



5436

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

14.5

14.55

14.6

14.65

14.7

M
A

E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

13.75

13.8

13.85

13.9

13.95

14

14.05

M
A

E

Figure 3. Age estimation MAE on AgeDB (left) and CACD (right) with varying t.

Metric balance parameter γ of C-DCLMP: We can observe from Figure 4 that, the age estimation
error (MAE) achieved the lowest values when 0.1 < γ < 0.9. This observation illustrates that preserving
the data cross-view discriminative knowledge and the manifold distributions is useful and helps improve
the estimation precision.
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Figure 4. Age estimation MAE on AgeDB (left) and CACD (right) with varying γ.

Metric prior parameter λ of C-DCLMP: Figure 5 shows that, with increased λ value, age esti-
mation error descended to its lowest around λ = 1e-1 and then increased steeply. It demonstrates that
incorporating moderate metric prior knowledge can regularize the model solution positively, but excess
prior knowledge may dominate the entire data rule and mislead the training of the model.
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Figure 5. Age estimation MAE on AgeDB (left) and CACD (right) with varying λ.

Electronic Research Archive Volume 31, Issue 9, 5425–5441.



5437

4.5. Time complexity analysis

For the proposed methods and the comparison methods mentioned above, we performed time
complexity analysis. Specifically, we conducted age estimation experiments on both AgeDB and CACD
by choosing 100 samples from each class for training while taking the rest for testing, respectively. We
reported the averaged results in Table 7.

Table 7. Running time results (MAE±STD) on AgeDB and CACD.
Dataset CCA DCA MPECCA DCCA CECCA CDCA DCLMP (ours) C-DCLMP (ours)
AgeDB 0.10 ± 0.12 0.06 ± 0.05 0.41 ± 0.03 0.18 ± 0.03 0.52 ± 0.02 0.11 ± 0.10 57.74 ± 0.71 54.94 ± 0.32
CACD 0.09 ± 0.13 0.06 ± 0.10 0.38 ± 0.09 0.15 ± 0.04 0.47 ± 0.03 0.07 ± 0.01 30.86 ± 0.61 31.04 ± 0.68

4.6. Ablation experiments

For the proposed methods, we performed ablation experiments. Specifically, we conducted age
estimation experiments on both AgeDB and CACD. We repeated the experiment 10 times with random
data partitions and reported the averaged results in Table 8. In Table 8, each referred part corresponds
to Eq (3.7).

Table 8. Ablation experiment results (MAE±STD) on AgeDB and CACD.
Dataset First part Second part Third part C-DCLMP (ours)(ours)

AgeDB

✓ ✓ 14.49 ± 0.16
✓ ✓ 14.51 ± 0.10
✓ ✓ 14.47 ± 0.22
✓ ✓ ✓ 14.18 ± 0.32

CACD

✓ ✓ 14.07 ± 0.25
✓ ✓ 14.08 ± 0.32
✓ ✓ 14.04 ± 0.21
✓ ✓ ✓ 13.73 ± 0.24

5. Conclusion

In this paper, we proposed a DCLMP, in which both the cross-view discriminative information and
the spatial structural information of training data is taken into consideration to enhance subsequent
decision making. To pursue closed-form solutions, we remodeled the objective of DCLMP to nonlinear
geodesic space and consequently achieved its convex formulation (C-DCLMP). Finally, we evaluated
the proposed methods and demonstrated their superiority on various benchmark and real face datasets.
In the future, we will consider exploring the latent information of the unlabeled data from the feature
and label level, and study how to combine related advanced multi-view learning methods to reduce the
computational consumption of the model and further improve the generalization ability of the model in
various scenarios.
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