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Abstract: In this study, we investigate a maximum principle of the Fourier spectral method (FSM) for
diffusion equations. It is well known that the FSM is fast, efficient and accurate. The maximum princi-
ple holds for diffusion equations: A solution satisfying the diffusion equation has the maximum value
under the initial condition or on the boundary points. The same result can hold for the discrete numer-
ical solution by using the FSM when the initial condition is smooth. However, if the initial condition
is not smooth, then we may have an oscillatory profile of a continuous representation of the initial
condition in the FSM, which can cause a violation of the discrete maximum principle. We demonstrate
counterexamples where the numerical solution of the diffusion equation does not satisfy the discrete
maximum principle, by presenting computational experiments. Through numerical experiments, we
propose the maximum principle for the solution of the diffusion equation by using the FSM.
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1. Introduction

In this study, we investigate the discrete maximum principle of the Fourier spectral method (FSM)
for the following diffusion equation:

∂u(x, t)
∂t

= ∆u(x, t) on Ω, (1.1)

n · ∇u(x, t) = 0 on ∂Ω, (1.2)

where u(x, t) is the density of the diffusing material at location x and time t; n is the unit normal vector
to the domain boundary ∂Ω. Equation (1.1) can be derived from a total free energy functional as a
gradient flow:

E(u) :=
1
2

∫
Ω

|∇u|2dx, (1.3)
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i.e.,

∂u(x, t)
∂t

= −
δE(u)
δu
= ∆u(x, t), (1.4)

where δE(u)/δu is the variational derivative of E(u) with respect to u. In [1], the FSM was introduced
for fractional diffusion with Dirichlet and Neumann boundary conditions. This approach can be ex-
tended to other equations. The study in [2] investigated spectral methods and the maximum principle
for boundary problems involving the second derivative. Li [3] proposed effective maximum principles
that allow numerical solutions to deviate from the sharp bound through the use of a controllable dis-
cretization error. The author analyzed FSMs for various partial difference equations (refer to [3] for
further details).

Lee [4] showed that the discrete maximum principle holds for the implicit finite difference scheme
of the diffusion equation in the operator splitting method for the following Allen–Cahn (AC) equation:

∂u(x, t)
∂t

= −
u3(x, t) − u(x, t)

ϵ2
+ ∆u(x, t) on Ω, (1.5)

n · ∇u(x, t) = 0 on ∂Ω, (1.6)

where ϵ is a small positive parameter. The AC equation models the process of phase separation in
binary alloy mixtures. Ayub et al. [5] solved the AC equation by using unconditionally stable op-
erator splitting schemes. Ham et al. [6] proposed an unconditionally stable scheme for a parabolic
sine-Gordon equation based on an operator splitting method. In [5, 6], the authors solved the split
diffusion equation by using the FSM, and in this case, the maximum principle of the diffusion equation
was used to demonstrate the unconditional stability of the proposed method. Sun et al. [7] developed
a maximum-principle-preserving method for the AC equation. The authors extended the method by
incorporating the integrating factor two-step Runge–Kutta method and proposed sufficient conditions
for the preservation of the discrete maximum principle. Lee [8] used the FSM for space to propose
high-order and mass conservative methods for the conservative AC equation. In [9], the authors pro-
posed several types of methods for solving the non-local AC equation, including the Fourier spectral
operator splitting method. Following this study, Weng and Tang showed that the proposed method is
unconditionally stable and has second-order accuracy with respect to time by using the FSM for the
diffusion term in [10]. Alzahrani and Khaliq [11] investigated solving the space-fractional reaction-
diffusion equation based on the FSM. Their proposed method has spectral convergence, represents
fractional operators diagonally and can be applied to multi-dimensional space.

Regarding convection-diffusion equations, Chertock et al. [12] proposed a fast explicit operator
splitting method. In the proposed method, the parabolic equation was solved by using the FSM.
Abbaszadeh and Amjadian [13] analyzed the spectral element method for the fractional advection-
diffusion equation. Verrall and Read [14] solved the combined advection-diffusion-reaction equation
by using analytical solutions for decoupled equations. The diffusion problem was solved by using a
pseudo-spectral approach. Considering the above-mentioned equations, the diffusion equation is an
important building block equation for modeling scientific phenomena.

Due to its efficiency and accuracy, the FSM is extensively employed to address various problems,
including those equations mentioned above. In particular, when the linear term takes the form of the
diffusion equation, the operator splitting method is used to solve these problems. In this process,
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the maximum principle of the diffusion equation is used to demonstrate the stability of the numerical
schemes [6, 15]. However, due to the oscillatory profile of the non-smooth initial conditions of a con-
tinuous representation in the FSM, it is possible for the discrete maximum principle to be violated. The
primary objective of this study is to present counterexamples demonstrating that the discrete maximum
principle may not hold for the FSM when applied to the diffusion equation.

The contents of this paper are as follows. In Section 2, we briefly describe the FSM for the diffusion
equation. In Section 3, we present numerical experiments to demonstrate that the discrete maximum
principle may not hold for the FSM. Conclusions are given in Section 4.

2. Fourier spectral method

Now, we describe the FSM for the diffusion equation (1.1). In this paper, to apply the homogeneous
Neumann boundary condition (1.2), we consider the discrete cosine transform (DCT) and inverse DCT
(IDCT). For simplicity of exposition, we consider the one-dimensional space Ω = (0, L). Let xi =

(i − 0.5)h for i = 1, . . . ,N, where h = L/N and N is a positive integer. Let tn = n∆t for n = 1, . . . ,
where ∆t is the time step size. For the given values u(xi, tn) for i = 1, . . . ,N and some n, the DCT and
IDCT are defined as follows:

û(p, tn) = αp

N∑
i=1

u(xi, tn) cos(ξpπxi), (2.1)

u(xi, tn) =
N∑

p=1

αpû(p, tn) cos(ξpπxi), (2.2)

respectively, where α1 =
√

1/N, αp =
√

2/N for p ≥ 2, and ξp = (p−1)/L for p = 1, . . . ,N [5,9,15,16].
In Eq (2.2), let us replace xi and tn by x and t, respectively; then, we have a continuous representation
function, as follows:

U(x, t) =
N∑

p=1

αpû(p, t) cos(ξpπx). (2.3)

We can use the partial derivatives of U(x, t) in Eq (2.2) with respect to t and x as follows:

∂U(x, t)
∂t

=

N∑
p=1

αp
∂û(p, t)
∂t

cos(ξpπx),

∂U(x, t)
∂x

= −

N∑
p=1

ξpπαpû(p, t) sin(ξpπx),

∂2U(x, t)
∂x2 = −

N∑
p=1

(ξpπ)2αpû(p, t) cos(ξpπx).

Therefore, Eq (1.1) can be written as follows:

N∑
p=1

αp
∂û(p, t)
∂t

cos(ξpπx) = −
N∑

p=1

(ξpπ)2αpû(p, t) cos(ξpπx),
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which results in

∂û(p, t)
∂t

= −(ξpπ)2û(p, t), for p = 1, . . . ,N. (2.4)

Equation (2.4) is an ordinary differential equation and we can solve it analytically as follows:

û(p, tn+1) = û(p, tn)e−(ξpπ)2∆t for p = 1, . . . ,N. (2.5)

Finally, we have the numerical solution at time t = tn+1 by using Eqs (2.1), (2.3) and (2.5) as follows:

u(xi, tn+1) =
N∑

p=1

αpû(p, tn)e−(ξpπ)2∆t cos(ξpπxi). (2.6)

3. Numerical experiments

The FSM is a very fast, efficient and accurate method for solving diffusion equations. However,
the discrete maximum principle may not hold for the FSM and we present numerical experiments
to demonstrate that fact. Let us consider the following smooth (Eq (3.1)) and stiff (Eq (3.2)) initial
conditions on the domain Ω = (0, 2) as shown in Figure 1(a),(b), respectively.

u(x, 0) = cos(0.5πx2), (3.1)

u(x, 0) =


0, if x < 1,

0.5, if x = 1,
1, if x > 1.

(3.2)

As shown in Figure 1(a), if the initial condition is smooth, then the continuous representation of
the initial condition using the FSM is almost identical to the given initial condition, Eq (3.1). In the
case of the stiff step function, the discrete initial values at the discrete domain coincide with the initial
condition. From the continuous representation function given by Eq (2.3), we have the following
discrete initial values at the discrete domain, which are the same as for the initial condition (see the
open circles in Figure 1(b)):

u(xi, 0) =
20∑

p=1

αpû(p, 0) cos(ξpπxi), i = 1, . . . , 20. (3.3)

However, the following continuous function has different values from the initial condition at the points
which are not on the discrete domain (see the solid line in Figure 1(b)):

U(x, 0) =
N∑

p=1

αpû(p, 0) cos(ξpπx). (3.4)

This fact may lead to the violation of the maximum principle for the discrete numerical solution for
the diffusion equation by using the FSM.
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Figure 1. Discrete (circles) and continuous (solid line) representations of the following initial
conditions: (a) u(x, 0) = cos(0.5πx2) and (b) u(x, 0) = 1 if x > 1; u(x, 0) = 0.5 if x = 1;
u(x, 0) = 0 if x < 1. Here, the dashed lines are the given initial conditions.
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Figure 2. (a) Discrete initial condition u(xi, 0) for i = 1, . . . , 6, continuous representation
of the initial condition U(x, 0) and some of its decomposed components vp(x, 0) for p =
1, 2, 4, 6. (b) Temporal evolution of the discrete and continuous solutions. (c) Temporal
evolution of the continuous solutions at x = 1.5 of the decomposed components vp(x, 0) for
p = 1, 2, 3, 4, 5, 6. (d) Temporal evolution of the composed solution u(1.5, t) from t = 0 to
t = 0.025.

We investigate the reason why the discrete solution of the diffusion equation by using the FSM may
not satisfy the discrete maximum principle. We consider the step function (3.2) in the one-dimensional
computational domainΩ = (0, 2) as an initial condition for the diffusion equation with the homogenous
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Neumann boundary condition (1.2). For better visualization, we use only six uniform discrete spatial
points, i.e., x = 1/6, 3/6, 5/6, 7/6, 9/6, 11/6 and N = 6. Let us decompose the continuous solution
U(x, t) into

∑6
p=1 vp(x, t), where vp(x, t) = αpû(p, t) cos(ξpπx). Figure 2(a) shows the discrete initial

condition u(xi, 0) for i = 1, . . . , 6, continuous representation of the initial condition U(x, 0) and some of
its decomposed components vp(x, 0) for p = 1, 2, 4, 6. Figure 2(b) shows the temporal evolution of the
discrete and continuous solutions. We can observe that the discrete maximum principle is violated, i.e.,
the values at x = 1.5 are greater than one until t = 0.0215. Figure 2(c) shows the temporal evolution of
the discrete solutions at x = 1.5 of the decomposed components vp(x, 0) for p = 1, 2, 3, 4, 5, 6. Figure
2(d) plots the temporal evolution of the continuous solution U(1.5, t) from t = 0 to t = 0.025. The
discrete solutions on x = 1.5 at t = 0.01, 0.015 and 0.02 do not satisfy the discrete maximum principle,
i.e., the solutions are greater than one. As shown in Figure 2(c), the high frequency cosine function
with a negative value (p = 6) at x = 1.5 is damped faster than the low frequency cosine functions.
Therefore, the discrete composed solution u(1.5, t) is greater than one on x = 1.5 as shown in Figure
2(d).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Continuous initial value

Discrete initial value

(a)

1.02 1.04 1.06 1.08 1.1
0.9

0.95

1

1.05

1.1

1.15

(b) (c)
Figure 3. (a) Initial values of continuous and discrete functions. (b) Temporal evolution
of solutions with the initial condition. (c) Maximum values of the continuous (solid line)
and discrete (dashed line) solutions over time. Here, T0 = 0, T1 = 0.25e-4, T2 = 1.43e-4,
T3 = 2.5e-4 and T4 = 04e-4.

Figure 3 shows solutions of continuous and discrete functions from the FSM. Here, we use uniform
discrete points: N = 50 and h = 2/N. Figure 3(a) shows the initial values of continuous and discrete
functions. Figure 3(b) shows the temporal evolution of solutions with the initial condition. We can
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observe that the solutions at times t = T1, T2, T3 are greater than one. Figure 3(c) shows the max-
imum values of the continuous (solid line) and discrete (dashed line) solutions over time. As shown
in Figures 3(b),(c), the discrete solution is not bounded by the discrete initial values 0 and 1. How-
ever, it is bounded by the maximum and the minimum values of the continuous initial values. These
results demonstrate that the continuous solution satisfies the maximum principle, although the discrete
solution may not satisfy that.

Now, we investigate the effect of the number of grid points N on the evolution dynamics of the
numerical solutions for the diffusion equation. We solve the diffusion equation by using the FSM with
the step function (3.2) as an initial condition for the different number of grid points N = 12, 16 and 20.
Figure 4(a)–(c) show the temporal evolutions of the continuous and discrete solutions with N = 12, 16
and 20, respectively. Figure 4(d) shows the temporal evolutions of the maximum values of the discrete
solutions with N = 12, 16 and 20. As shown in Figure 4(d), we can observe that a larger value of N
has the effect that the artificial maximum of the discrete solution decreases faster.
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Figure 4. (a)–(c) Temporal evolutions of the continuous and discrete solutions with N = 12,
16 and 20, respectively. (d) Temporal evolutions of the maximum values of the continuous
solutions with N = 12, 16 and 20.

Let us consider the following two smooth and discontinuous functions as the initial condition of the
diffusion equation:

u(x, 0) =
cos(0.5πx2) + 1

2
, (3.5)

u(x, 0) =


0, if x < 1,

0.5, if x = 1,
1, if x > 1,

(3.6)
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which are both bounded by zero and one. For two initial conditions, in Figure 5, we use the uniform
discrete points N = 40 and grid size h = 2/N on the computational domain Ω = (0, 2). Figure 5(a),(b)
show continuous (solid line) and discrete (circles) representations of the smooth and discontinuous
initial conditions, respectively. Figures 5(c),(d) show the temporal evolution of the maximum values
of the continuous and discrete representation solutions for the diffusion equation for the smooth initial
condition and discontinuous initial condition, respectively. From the results of Figure 5, in the case of
the smooth initial condition, the continuous representation is consistent with the discrete representation
and the solution satisfies the maximum principle. Conversely, in the case of the discontinuous initial
condition, the continuous representation is inconsistent with the discrete representation and the discrete
solution does not satisfy the discrete maximum principle.
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Figure 5. Continuous (solid line) and discrete (circles) representations of the following initial
conditions: (a) u(x, 0) = (cos(0.5πx2) + 1)/2 and (b) u(x, 0) = 1 if x > 1; u(x, 0) = 0.5 if
x = 1; u(x, 0) = 0 if x < 1. Temporal evolution for the maximum values of continuous (solid
line) and discrete (dashed line) representation solutions of the diffusion equation for the (c)
smooth initial condition and (d) discontinuous initial condition.

From the results of several numerical experiments, we find that the numerical solution of the diffu-
sion equation obtained by using the FSM satisfies the maximum principle if the initial conditions are
smooth enough, but otherwise, they may not. Initial conditions that are not smooth enough cause a phe-
nomenon in which continuous Fourier representation does not correspond to discrete representation.
That is, the numerical solution of the diffusion equation by using the FSM is bounded to the contin-
uous Fourier representation of the initial condition. Hence, the maximum principle for the numerical
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solution of the diffusion equation by using the FSM should be used as follows:

max
i≤i≤N
|u(xi, tn)| ≤ ∥U(·, 0)∥∞ (3.7)

for all tn, where ∥U(·, t)∥∞ = supx∈Ω |U(x, t)|.

4. Conclusions

In this study, we investigated the discrete maximum principle of the FSM for the diffusion equation.
It is well known that the FSM is fast, efficient and accurate. The maximum principle holds for the
diffusion equation: A solution satisfying the diffusion equation has the maximum value under the initial
condition or on the boundary points. The same result holds for the discrete numerical solution by using
the FSM when the initial condition is smoother. However, if the initial condition is not smooth, then we
may have an oscillatory profile of a continuous representation of the initial condition in the FSM, which
can cause a violation of the discrete maximum principle. We have presented counterexamples of this
phenomenon based on computational experiments in which the numerical solutions are bounded by
the supremum of the continuous representation of the initial condition. To explain this phenomenon,
we decomposed and analyzed the numerical solution into each Fourier mode. We also proposed a
maximum principle formula for obtaining the discrete numerical solution of the diffusion equation by
using the FSM. Furthermore, investigating the discrete maximum bound principle of the numerical
solution of the AC equation by using the FSM will also be interesting future work.
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