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Abstract: Most countries worldwide continue to encounter a pathologist shortage, significantly
impeding the timely diagnosis and effective treatment of cancer patients. Deep learning techniques
have performed remarkably well in pathology image analysis; however, they require expert pathologists
to annotate substantial pathology image data. This study aims to minimize the need for data annotation
to analyze pathology images. Active learning (AL) is an iterative approach to search for a few high-
quality samples to train a model. We propose our active learning framework, which first learns latent
representations of all pathology images by an auto-encoder to train a binary classification model, and
then selects samples through a novel ALHS (Active Learning Hybrid Sampling) strategy. This strategy
can effectively alleviate the sample redundancy problem and allows for more informative and diverse
examples to be selected. We validate the effectiveness of our method by undertaking classification
tasks on two cancer pathology image datasets. We achieve the target performance of 90% accuracy
using 25% labeled samples in Kather’s dataset and reach 88% accuracy using 65% labeled data in
BreakHis dataset, which means our method can save 75% and 35% of the annotation budget in the two
datasets, respectively.
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1. Introduction

Cancer affects a large population [1] and is a leading cause of death worldwide [2]. An accurate
and timely cancer diagnosis is a critical first step in treating every cancer patient. Pathological
diagnosis is generally made by a human pathologist using a microscope to observe the stained
specimens on a slide glass. Due to the rapid development of digital microscopy in recent years, it is
possible to digitize histology slides quickly and at a high resolution [3]. Pathological images contain a
wealth of phenotypic information essential in diagnosing and classifying cancer. However, most
countries worldwide continue to encounter a pathologist shortage [4, 5], significantly hindering the
timely diagnosis and effective treatment of cancer patients. Each whole slide image (WSI) contains a
large amount of information and may contain tens of thousands of image patches. Relying solely on
the pathologist’s visual inspection for analyses such as cancer detection, tumor staging, and grading
would take a lot of time and effort, since it is very time-consuming for pathologists to accurately
annotate an abundance of image patches in a large WSI dataset. For cancer patients, waiting for
diagnosis and treatment results can also take a long time, which may lead to missing the best time for
treatment and not receiving proper treatment.

Fortunately, advances in artificial intelligence technology offer several practical tools to automate
or assist in diagnosing pathology, such as advanced tools proposed by [6–10], promising to improve
the current dilemma of the lack of pathologists. Machine learning, especially deep learning technology
[11], has achieved extraordinary performance in many fields, and its success relies heavily on large-
scale annotated training examples. One of the bottlenecks of deep learning methods in computer
vision is “the need for large annotated datasets” [12]. If we want to replicate the success of machine
learning in the medical field, the problem of insufficiently labeled samples is the first thing to be solved.
However, generating high-quality training datasets is challenging, as it is a labor-intensive manual
process that requires the input of domain experts, who have limited time and high costs. How can we
reduce the burden on pathologists and save the research budget? We work to solve these problems by
finding solutions in the domain of active learning.

Active learning [13], which is a branch of machine learning, attempts to achieve the best possible
performance of the model using as few, high-quality sample annotations as possible. A typical active
learning procedure is shown on Figure 1. The model is randomly initialized at the beginning. At each
training step, it selects some data from the unlabeled dataset for labeling and then retrains the model to
obtain better performance. Coreset [14], Bayesian AL [15], and VAAL [16] are several active learning
state-of-the-art methods in artificial intelligence.

In the medical field, a small number of scholars are also engaged in active learning research.
Halder and Kumar [17] proposed an active learning method using gene expression data utilizing a
rough-fuzzy classifier for cancer sample classification. Mahapatra et al. [18] proposed an active
learning framework to select most informative samples using conditional generative adversarial
networks (cGANs) to generate realistic chest X-ray images. Furthermore, similar to our work, [19]
proposed an AL acquisition method that uses data grouping based on imaging features and model
prediction uncertainty and then used it in the TIL binary classification task and applied it to pathology
images. By contrast, our approach was validated not only in a binary classification task, but also in a
multi-classification task.

In this study, we propose our active learning framework in Figure 1, which first learns latent
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representations of all pathology images by an auto-encoder and trains a binary classification model to
distinguish latent representations from labeled and unlabeled samples, then serves as the basis for
sample selection. We find that in the case of good feature mapping, the closer the inputs of the
approximate points into the neural network, the more similar the probability outputs are. Taking
advantage of this attribute, we introduce a novel sample selection method called ALHS (Active
Learning Hybrid Sampling). First, the dataset needs be sorted by the probability values given by the
discriminative model and then divided into K (budget size) parts in order, and one sample is selected
for expert labeling in each part of the dataset. We have four methods to select samples for each
category to better select valuable samples: random, least confidence [20], margin sampling [21], and
entropy [22]. Through our selection method, we avoid choosing more samples in similar regions, thus
effectively avoiding the sample redundancy problem. Furthermore, we adopt a series of
dimensionality reduction methods to visualize the samples selection. To the best of our knowledge,
our study is the first attempt to apply active learning to two pathology image datasets, while explicitly
considering the sample redundancy problem as well as the visualization of selection result based on
latent representations.

The specific goal of this study is to propose an active learning framework applied to the pathology
image dataset to reduce the heavy burden on pathologists. We validate the effectiveness of our method
on two pathology image datasets. Savings of 75% and 55% of the sample labeling budget were
achieved while reaching the target performance in the two datasets, respectively.

Figure 1. A typical active learning procedure. There is a situation in which unlabeled data is
abundant, but manual labeling is expensive. In active learning, the algorithm selects a subset
of examples to be labeled by human annotators instead of labeling an entire dataset.

2. Materials and methods

2.1. Data acquisition

2.1.1. Collection of textures in colorectal cancer histology (Kather’s)

The multi-class colorectal histology image dataset [23] proposed by Kather et al. was used. The
dataset contains 5000 images of 625 images for each class of fixed dimension 150 px × 150 px, which
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is approximately 74 µm × 74 µm. All images are RGB, 0.495 µm per pixel, digitized with an Aperio
ScanScope (Aperio/Leica biosystems), magnification 20x. Histological samples are obtained from the
pathology archive at the University Medical Center Mannheim (Heidelberg University, Mannheim,
Germany). The dataset contains the following eight classes of histology images: adipose, debris,
lymphoma, mucosa, complex, stroma, tumor, and empty. Figure 2 shows a sample from each type of
colorectal cancer histology. We divided this dataset into a training set, a validation set and a test set
with the numbers of 3600, 400 and 1000, respectively.

Figure 2. Samples from each type of colorectal cancer histology on Kather’s dataset:
Adipose, debris, lymphoma, mucosa, complex, stroma, tumor, and empty.

2.1.2. Breast cancer histopathological database (BreakHis)

Moreover, the BreakHis [24] dataset was used in this work, which is composed of 7909 microscopic
images of breast tumor tissue collected from 82 patients using different magnifying factors (40 X, 100
X, 200 X, and 400 X). It contains 2480 benign and 5429 malignant samples. Each slide of breast
tumors is stained with hematoxylin and eosin(HE) and collected by SOB. The dataset comprises eight
types of benign and malignant tumors. The four benign tumors types are as follows: Adenosis (A),
Fibroadenoma (F), Phyllodes Tumor (PT), and Tubular Adenona (TA). The four malignant tumors
types are as follows: Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC)
and Papillary Carcinoma (PC). The number of samples for each magnification factor is provided in
Table 1. We divided this dataset into a training set, a validation set and a test set with the full images
of 62, 8 and 12 patients, respectively.
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Table 1. The number of breast cancer histology images samples per class on BreakHis
dataset.

CLASS SUB-CLASS
Magnification factor

Total
40 X 100 X 200 X 400 X

Benign

Adenosis 114 113 111 106 444
Fibroadenoma 253 260 264 237 1014
Phyllodes Tumor 109 121 108 115 453
Tubular Adenona 149 150 140 130 569

Malignant

Ductal Carcinoma 864 903 896 788 3451
Lobular Carcinoma 156 170 163 137 626
Mucinous Carcinoma 205 222 196 169 792
Papillary Carcinoma 145 142 135 138 560

Total 1995 2081 2013 1820 7909

2.2. Basic methods of active learning

• Random: Select samples randomly.
• Least Confidence: The least confident method is to select those samples with the minimal

maximum probability for labeling, as described by the following mathematical formula [20]:

x∗LC = arg max
x∈U

(1 − Pθ(ŷ | x)) = arg min
x∈U

(Pθ(ŷ | x)) , (2.1)

where ŷ = arg max
y

Pθ(y | x), θ denotes the set of parameters of a trained machine learning model,

and ŷ is the class with the highest probability of model prediction for x.
• Margin Sampling: Margin sampling refers to the selection of sample data that are either highly

susceptible to being judged into one or two categories or that have a slight difference in the
probability of being considered into two types. Margin sampling is the selection of the sample
with the most minor difference between the largest and second-largest probabilities of model
prediction, as described by the following mathematical formula [21]:

x∗Margin = arg max
x∈U

(Pθ (ŷ1 | x) − Pθ (ŷ2 | x)) , (2.2)

where ŷ1 and ŷ2 denote that for x the model predicts the maximum possible class and the second
most probable class, respectively.
• Entropy: A general uncertainty sampling strategy uses Shannon entropy of the prediction

probability as an uncertainty measure. Entropy is an information-theoretic measure that
represents the amount of information needed to “encode” a distribution. As such, it is often
thought of as a measure of uncertainty or impurity in machine learning, as described by the
following mathematical formula [22]:

x∗Entropy = arg max
x∈U

−∑
i

Pθ (yi | x) · ln Pθ (yi | x)

 . (2.3)
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2.3. Our active learning framework

Our active learning strategy is divided into three steps: the first step is to learn the latent
representation using an auto-encoder; the second step is to identify whether the low-dimensional
representation of a sample is from a labeled or unlabeled dataset using a discriminative network; and
the third step is to use the probabilistic output of the discriminative network to select samples with
value using the ALHS method.

Figure 3. Our Active Learning Framework. We first learn latent representations of all
pathology images by an auto-encoder to train a binary classification model and then select
samples through a novel ALHS(Active Learning Hybrid Sampling) strategy. (a) The auto-
encoder network learns the low-dimensional latent spatial representation of all pathology
images. (b) The discriminant model learns whether the latent representation of the pathology
image is from the labeled or unlabeled dataset. (c) Using ALHS strategy to select samples
for experts labeling. ALHS Strategy: sort data by output probability; divide into K(= budget)
parts in order; select one sample in each part.

Three key components make up my active learning framework: an auto-encoder, a discriminator
model, and an ALHS selection strategy. Figure 3 displays the entire process of our active learning
framework.
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2.3.1. Feature extraction with latent representation of pathological images

Pathological images contain a wealth of phenotypic information. Therefore, we utilize an
auto-encoder model to extract latent representations from the pathology images. Auto-encoder is an
unsupervised deep learning algorithm that learns unlabeled data. We use auto-encoder for
representation learning, where the encoder learns to embed the medical dataset in the
low-dimensional space, and the decoder reconstructs the input image based on the low-dimensional
representation. Mapping the data distribution into the latent space can effectively improve the
performance with less computational cost.

The feature extraction portion of the Resnet50 [25] structure is chosen to implement the encoder in
the auto-encoder network, and the decoder portion is the counterpart encoder transposed. The network
structure diagram of the auto-encoder model is shown in the first grey block on the right of Figure 3.
We set the batch size to 128, the number of iterations to 50,000 and the optimizer to Adam. Specifically,
we set the learning rate of the backbone to 0.01 and a weight decay rate of 1/50,000 is set to inhibit
overfitting, which can keep the weights of the neural network from becoming too large.

Formally, let Ψ : X → Z be the mapping from the original input space to the learned latent
representation (i.e., z = Ψ(x)). Let Φ : Z → X̂ be the mapping from the latent feature representation
to the reconstructed image, i.e., x̂ = Φ(z), and the model reconstructs the input image based on the
low-dimensional representation z. The objective function of AE is the MAE loss function, i.e., L1
loss:

LAE = L1(x, x̂) =
1
N

N∑
i=1

|xi − x̂i| (2.4)

where x denotes the original image, x̂ denotes the reconstructed image and N represents the number of
images. We use a stochastic gradient descent to optimize the objective function and save the model with
the lowest loss. We expect our trained auto-encoder model to achieve excellent image reconstruction
and its latent representation to provide a good representation input for the next discriminative model to
distinguish between labeled and unlabeled datasets.

2.3.2. Discriminative approach prepares for sample selection

After learning latent representations and dimensionality reduction by the auto-encoder network, the
pathology images are used as the input of a discriminative model. The discriminative model tries to
distinguish the labeled samples from the unlabeled samples, where the label of the labeled data set is
recorded as one, and the label of the unlabeled data is recorded as zero. Formally, with Ψ : X → X̂
being a mapping from the original input space to the learned latent representation, we define a binary
classification problem with X̂ as our input space and Y = {l, u} as our label space, where l is the label
for a sample being in the labeled set and u is the label for the unlabeled set.

The network structure diagram of the discriminative model is shown in the second grey block on
the right of Figure 3. We set the batch size to 64, the number of epochs to 100 and the optimizer to
Adam. Specifically, we set the learning rate to 0.01 and adopted equal-interval adjustment of learning
rate measures to inhibit overfitting.

Formally, the labeled sample set is denoted as L and the unlabeled sample set is denoted asU. All
pathological images are used as the input of the discriminator D, and the labels of the labeled samples
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are set to 1 and the labels of the unlabeled samples are set to 0. Let discriminator D : Z → T ,Z is the
input space, which is the latent representation of the images learned by the encoder in auto-encoder,
and T = {l, u} is the label space where l is the label of the labeled sample set, (i.e., the set of all 1 s,)
and u is the label of the unlabeled sample set, (i.e., the set of all 0 s). Then, the objective function of
the discriminator D is the cross-entropy loss function:

LD = LCE =
1
N

N∑
i=1

−
[
ti · log (pi) + (1 − ti) · log (1 − pi)

]
(2.5)

where ti is the label of the sample 1 or 0 and pi is the predicted probability that the model predicts the
label of the sample to be ti. We solve the classification problem over U ∪ L for every iteration of the
active learning process by minimizing the objective function using a stochastic gradient descent and
obtaining the best model P̂(t | Ψ(x)) with the lowest training loss.

By observing the distribution of the results of the discriminative model, we find that the inputs of
the approximate points into the neural network have similar probability outputs. If we select the top-K
samples that satisfy

x = argmax
x∈U

P̂(t = u | Ψ(x)) (2.6)

as with other discriminative active learning methods [26], this may make the selected samples
redundant and thus result in an ineffective task model. To overcome the sample redundancy problem,
we designed a novel sampling method that considers the attribute of the discriminative model outputs.

2.3.3. Selecting samples by ALHS strategy for experts labeling

We take the latent representation of the pathology image dataset through the already trained AE
and then distinguish the labeled and unlabeled datasets by a discriminator to obtain a probability value
output. Obviously, the close input points have similar probability outputs in the discriminant neural
networks. Thus, we cannot refuse some close input points to be selected for a single selection indicator
at the same time, which leads to sample redundancy. Naturally, we thought that we could divide the
unlabeled samples into K parts after arranging them in a certain order, in which K is the budget size,
and select one of the samples in each sample for expert annotation, thus avoiding the selection of some
redundant samples at similar output probabilities.

Based on the above, we propose a novel sample selection strategy - ALHS (Active Learning Hybrid
Sampling). Our initial procedure for selecting samples is shown at the bottom right of Figure 3. The
specific process is as follows: we first sort the dataset by probability values, then divide it into K
parts in order, and select one sample in each part of the dataset for experts labeling. To better select
valuable and informative samples, we have four ways to select samples from each class: random, least
confidence [20], margin sampling [21] and entropy [22].

In summary, our sample selection strategy relies on an auto-encoder and a discriminator, which
work together to perform image reconstruction and label prediction tasks, respectively. By leveraging
the discriminative power of the discriminator, we are able to select representative samples from the
unlabeled set and use them to improve the performance of our model. The way we divide the unlabeled
samples into K parts based on the probability values of the discriminator’s output is a novel point that
enables us to balance the diversity and representativeness of the selected samples.With such a sample

Electronic Research Archive Volume 31, Issue 9, 5340–5361.



5348

selection method, we select samples that take into account the representativeness and uncertainty of
the samples, while improving the sample redundancy problem.

2.4. Dimension reduction via t SNE to visualize

To better visualize the generated results and the subsequent selection results, we use the t SNE
method to reduce the dimensionality of the features again. The t-SNE (t-distributed stochastic
neighbor embedding) is an unsupervised non-linear dimension reduction technique which was
introduced by [27]. This dimensionality reduction technique is a variant of the random neighborhood
embedding introduced by [28], whose main purpose is to construct probability distributions from
pairwise distances such that larger distances correspond to smaller probabilities and vice versa. t-SNE
is currently a robust technique for visualization quality in dimension reduction [29].

3. Results

3.1. Performance of multi-classification task for Kather’s dataset

One of our experiments to test multi-classification performance starts with an initial pool of labels
in which 10% of the training set is labeled. The budget size of each batch is equal to 5% of the training
dataset. The other experiment has 5% of the training set labeled. The budget size of each batch is equal
to 2.5% of the training dataset. The pool of unlabeled data contains the rest of the training set from
which samples are selected to be annotated by experts. Once labeled, they will be added into the initial
training set and training is repeated on the new training set. To reduce the variance from the stochastic
training process of neural networks, we average our results over 10 experiments for every method.

We chose random, entropy, and the DAL [26] methods as baselines for comparison. Random and
entropy methods are described in Section 2.2, followed by a detailed description of the DAL method.
The intuitive motivation for the DAL method is that if we can say with high probability that an
unlabeled example came from the unlabeled set, then it is different from our current labeled examples
and labeling it should be informative. The DAL method poses active learning as a binary
classification task, attempting to choose examples to label in such a way as to make the labeled set
and the unlabeled pool indistinguishable.

Figure 4 shows the multi-classification performance of our framework compared to prior works on
Kather’s dataset. Figure 4(a) plots the results of experiments in which 10% of the initial training set
is labeled and the budget size of each batch is equal to 5% of the training dataset. It shows that our
strategy is the first to exceed the average accuracy of 90%, getting 90.6% by using 25% of the data,
ahead of other methods, whereas using the entire dataset yields accuracy 93.3%. Figure 5 shows the
confusion matrices obtained after applying 25% and 100% of the labeled dataset to train the task model.
The accuracy of 90% is set as the target performance to be achieved by the model on Kather’s dataset.
Figure 5 shows that the model trained with 25% of the labeled dataset achieves the target performance
and is very close to the final version of the model with 100% of the labeled dataset. Comparing the
mean accuracy values for data ratios above 15% shows that our method evidently outperforms random
sampling, entropy and DAL method. The maximum achievable mean accuracy is 93.3% on Kather’s
dataset using 100% of the data, while ALHS achieves 92.4%, by only using 60% of it.
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Figure 4. Muti-classification results of Kather’s dataset. Compared to other methods, our
strategy is the first to exceed the average accuracy of 90% by using 25% of the data. ALHS
achieves a mean accuracy of 92.4% by only using 60%, which is close to the bottleneck
performance of 93.3%.

Figure 5. The confusion matrices obtained after applying 25% and 100% of the labeled
dataset to train the task model. The performance of the model trained with 25% of the labeled
dataset is close to the final performance of the model with 100% of the labeled dataset.

Moreover, Figure 4(b) plots the results of experiments in which 5% of the initial training set is
labeled and the budget size of each batch is equal to 2.5% of the training dataset. Our approach has
more advantages over other methods. Similar to the previous experiment, our strategy is the first
to exceed the average accuracy of 90%, getting 91.2% by using 25% of the data. Additionally, our
method achieves 93.1% by using 60% of data, which is closer to the bottleneck performance of 93.3%.
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Moreover, from the data ratios above 25% of the labeled data, entropy method outperforms random
selection. The DAL method outperforms the random method after the ratios exceed 40%, but it rises
quickly afterwards, outperforming the entropy method after the ratios exceed 50%. However, our
approach performs much better.

3.2. Performance of binary classification task for BreakHis dataset

Figure 6 shows binary classification performance of our framework compared to prior works on
BreakHis dataset. We also chose random, entropy, and the DAL methods as baselines for comparison.

Figure 6. Binary classification results of BreakHis dataset. Compared to other methods, our
strategy is the first to reach the average accuracy of 88% by using 65% of the data, which is
close to the bottleneck performance of 89.2%.

Figure 6(a) plots the results of experiments in which 10% of the initial training set is labeled and
the budget size of each batch is equal to 5% of the training dataset. It shows that our strategy is the
first to reach the average accuracy of 88% by using 65% of the data, ahead of other methods, whereas
using the entire dataset yields accuracy 89.2%. Figure 7 shows the confusion matrices obtained after
applying 65% and 100% of the labeled dataset to train the task model. The accuracy of 88% is set
as the target performance to be achieved by the model on BreakHis dataset. Figure 7 shows that the
model trained with 65% of the labeled dataset achieves the target performance and is very close to
the final version of the model with 100% of the labeled dataset. From Figure 6(a), comparing the
mean accuracy values for data ratios above 20% shows that our method evidently outperforms random
sampling, entropy and DAL method. The maximum achievable mean accuracy is 89.2% on BreakHis
dataset using 100% of the data while ALHS achieves 88.4% by using 80% of it. Moreover, Figure 6(b)
plots the results of experiments in which 5% of the initial training set is labeled and the budget size of
each batch is equal to 2.5% of the training dataset. Our approach shows some advantages over other
methods. Our strategy is the first to exceed the average accuracy of 88%, getting 88.1% by using 75%
of the data.
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Figure 7. The confusion matrices obtained after applying 65% and 100% of the labeled
dataset to train the task model. The performance of the model trained with 35% of the labeled
dataset is close to the final performance of the model with 100% of the labeled dataset.

3.3. Visualization of latent representation and samples selection

To better visualize the latent representation of the auto-encoder model and the subsequent selection
results, we use t SNE to reduce the dimensionality to two and draw a two-dimensional scatter plot
shown in Figure 8. Figure 8(a),(b) represent the results of latent spatial by t SNE visualization for
Kather’s dataset and the BreakHis dataset, respectively. We can see from Figure 8 that the
pathological images have some aggregation under the latent layer representation in the auto-encoder
model. Although auto-encoder is a self-supervised model that can be trained without labels, the
results of the representation of the feature space that it extracts are interpretable.

Figure 8. Visualization of latent representation in auto-encoder model. The pathological
images have some aggregation of the same class of data under the latent representation in the
AE, which indicates that the AE presents the latent representation of the images well.
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Figure 9. Results of samples selection on Kather’s dataset at one time. (a)–(d) represent
the sample selection results using random, entropy, DAL method and ALHS respectively.
Our method selects more informative and diverse samples without the sample redundancy
problem.

Figure 10. Results of samples selection on BreakHis dataset at one time. (a)–(d) represent
the sample selection results using random, entropy, DAL method and ALHS respectively.
Our method selects more informative and diverse samples without the sample redundancy
problem.
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Figures 9 and 10 display the samples selection results of applying the four methods on Kather’s
dataset and BreakHis dataset, respectively. From the selection results, the DAL method does not
perform well. It picks almost all samples on the lower right side of Kather’s and BreakHis dataset
in one selection, which have obvious sample redundancy and lead to poor results in the final target
model. The next is the entropy method, which selects the samples in the upper-middle on Kather’s
dataset and in the center-left on BreakHis dataset. The sample selection results of the random method
are as expected. Our method, ALHS, performs excellently. It picks samples that cover almost every
aspect of the feature map on Kather’s dataset. On the BreakHis dataset, we find that it selects few
sample points on the right side in this pick. Seeing that the right side is almost always blue sample
points representing the same category, only a small number of samples need to be selected. This is
exactly what our method does, allowing expensive annotations to be used on other instances that are
more valuable. Moreover, our approach do not produce sample redundancy, which is one of the main
reasons for the superior performance of our method on the task model.

Figure 11 shows the comparison of the reconstructed images after auto-encoder modeling with the
original images on Kather’s and BreakHis datasets. The difference between the original and generated
images is not apparent, at least not distinguishable by the human eye, showing that the auto-encoder
network we used performs the image reconstruction task well.

Figure 11. Comparison of the reconstructed images after auto-encoder modeling with the
original images on Kather’s and BreakHis datasets. (a) Original images of Kather’s dataset;
(b) Reconstructed images of Kather’s dataset. (c) Original images of BreakHis dataset; (d)
Reconstructed images of BreakHis dataset. There is little difference between the original and
reconstructed images.
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3.4. Ablation study

Figure 12 presents our ablation study to inspect the contribution of the key modules in our
framework, including auto-encoder and the ALHS strategy. We perform ablation on the
multi-classification task, which is more challenging than the binary classification task, and we
perform an ablation experiment with Kather’s dataset.

Figure 12. Ablation results on analyzing the effect of the Auto-Encoder and the discriminator
denoted as Dis here. Random: just select samples randomly. Dis+ALHS: remove Auto-
Encoder, just use discriminator and the ALHS strategy. AE+Dis+Top-K: use Auto-Encoder
and discriminator, and replace the ALHS strategy with top-K strategy. Our approach
outperforms other cases because we learn latent representations to train discriminative
models and select samples with a novel ALHS strategy.

The variants of ablation we consider are as follows: 1) removing auto-encoder, just using
discriminator and the ALHS strategy, and 2) removing the ALHS strategy and replacing it with top-K.
In the first ablation, we only use a discriminator to memorize the data, which yields better
performance than random; however, this performs worse that our method. Moreover, it reveals the key
role of the auto-encoder is not only learning a rich latent representation, but also downscaling the data
so that the discriminator can better learn the data representations. In the second ablation scenario, we
use an auto-encoder to the previous setting to learn a lower dimensional space for training the
discriminator. However, instead of using the ALSH strategy to select samples, we choose the top-K
strategy, as shown in Eq (2.6). This ablation performed even less well than random at first,
accumulating 35% of the labeled sample before surpassing the random method. However, our
approach seems better than all these cases because we learn latent representations to train
discriminative models and select samples with a novel ALHS strategy.
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4. Discussion

Active learning, which is a branch of deep learning, holds great promise in the medical field.
Supervised deep learning techniques traditionally relied on a large number of uniformly distributed,
accurately annotated sample points [30]. Although an increasing number of medical image datasets
are available, the time, cost, and effort required to annotate medical image datasets remain significant.
To date, even well-resourced large national consortia have been challenged by the task of acquiring
enough expert-validated labeled data [28]. Active learning methods are precisely proposed to alleviate
the shortage of annotated labeled samples.

In this study, we propose a novel active learning framework applied to the pathology image dataset
to reduce the heavy burden on pathologists. We use various feature extraction and dimensionality
reduction methods to improve the efficiency and visualize the selection results. We also use the ALHS
method to select samples to alleviate the redundancy problem. Experimental results demonstrate the
effectiveness and robustness of our approach. Savings of 75% and 55% of the sample labeling budget
were achieved while reaching the target performance in the two datasets, respectively.

There are three significant advantages to our study. Above all, our ALHS sample selection strategy
is proposed explicitly for the sample redundancy problem. The sample redundancy phenomenon is
reflected in the DAL method shown in Figures 9(c) and 10(c). We discover that the samples selected
by the DAL method are concentrated in a particular region in one of the sample selection result plots,
leading to a lack of diversity in the selected samples and a wasted annotation. We also find that under
good mapping, there is a certain aggregation between the close data, and the output of the close data
points will be near after the discriminative network. Based on this, we propose the ALHS method
for samples selection. It avoids repeatedly drawing samples from a region overly but selects multiple
regions and draws only a small number of samples from them, which can effectively avoid the sample
redundancy problem and improve the quality of selected samples.

Furthermore, we visualize the sample selection results to indicate more directly the advantages
of our method over other approaches. Visualization is a powerful tool for identifying problems and
finding causes in the data processing. The visualized images can visually and clearly show that the
samples selected by our method are more informative and representative. From each visualization of
the sample selection results, it is also possible to infer the reasons for the poor performance of some
methods, such as DAL, due to severe sample redundancy, and entropy methods, where some selection
results are uncertain but lack diversity.

In addition, class imbalance [31] and noisy samples [32] are common problems in medical image
datasets. The two datasets we selected are very representative, one of which is a balanced dataset
Kather’s and the other is an unbalanced dataset BreakHis. The validity of our active learning
framework is verified on both datasets, showing that our approach works equally well for both
balanced and unbalanced data. Moreover, in Kather’s dataset, there is a class of ‘empty’ pathology
images, approximating noisy samples as the images contain very little information and are almost
substantially blank. The DAL method first picks the samples in the ‘empty’ class, indicating that the
class differs from the labeled set. In contrast to the DAL method, which is strongly influenced by
noisy samples, our method is less affected by noise and selects informative and diverse samples.

Despite our study’s contribution in applying active learning methods to pathology image analysis,
there are some potential shortcomings. First, we choose the AE network to accomplish the image
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reconstruction task and extract its latent representations. However, the current more advanced image
generation methods are VAE (Variational Auto-Encoders) [33] and GAN (Generative Adversarial Nets)
[34], which take many times longer to train the network until fitting. Additionally, GAN has many
variants [35–39] to adapt to different situations. With sufficient computational capacity, we can choose
a more efficient network to find the latent representation of pathological images.

Second, while we use an active learning framework to reduce the need for labeled samples, there
are state-of-the-art semi-supervised methods such as deep co-training [40], meta pseudo labels [41]
and EnAEF [42] in machine learning. One of the advantages of semi-supervised learning over active
learning as another approach to alleviating the shortage of labeled samples is that it can leverage the
information of unlabeled samples without the additional cost of manual labeling. Improved results with
a smaller budget could be obtained by combining our active learning framework with the advanced
semi-supervised prerequisite methods.

Third, our active learning selection strategy picks informative and diverse samples. But the sets
of samples to be labeled are independent between each selection, which may lead to close points in
each selected sample set and result in wasted labeling. The current selection can be considered by
combining the results of previous sample selections with the conditional probability method. Lastly,
our selected pathology image datasets are not large enough to compare with deep learning datasets,
such as MNIST [43], CIFAR [44], and ImageNet [45]. However, we can still verify the effectiveness
of our framework.

Last but not least, the classification of images under the study may be affected by multiple
uncertainties as well as inaccuracies. In this study, we choose Resnet50 and Inception v3, powerful
convolutional neural networks, for image classification. We can also choose a fuzzy logic-based
classifier [46, 47] to improve classification effect.

In conclusion, our proposed novel active learning framework in pathology image datasets can
effectively alleviate the dilemma of insufficient annotated samples. Moreover, we hope our approach
will soon reach real applications and practically relieve the pressure on pathologists, thus enabling
cancer patients to receive timely pathology reports and proceed to diagnosis and treatment.
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based approach to classify numerically simulated and experimentally detected carbon fiber-
reinforced polymer plate defects, Sensors, 22, (2022), 4232. https://doi.org/10.3390/s22114232

47. A. T. Azar, A. E. Hassanien, Dimensionality reduction of medical big data using neural-fuzzy
classifier, Soft comput., 19 (2015), 1115–1127. https://doi.org/10.1007/s00500-014-1327-4

48. N. Lei, Y. Guo, D. An, X. Qi, Z. Luo, S. T. Yau, et al., Mode collapse and
regularity of optimal transportation maps, arXiv preprint, (2019), arXiv:1902.02934.
https://doi.org/10.48550/arXiv.1902.02934

49. M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks,
in International Conference on Learning Representations(ICLR), Toulon, France, (2017), 1–17.

Appendix

Latent representation for discrimination

The discriminator of our active learning framework is trained to distinguish latent representations
from labeled and unlabeled samples, and the AE network is trained to observe the latent
representations. This means that the encoder network in AE can be considered a generator of the
discriminator network. Following [48, 49], we take a theoretical step forward in understanding the
training dynamics of this procedure.

According to previous work [48], training the AE model is equivalent to computing the encoding
map fθ and decoding map gξ:

(νgt, χ)
fθ
−→ (µgt,Ω)

gξ
−→ (νgt, χ) (A1)

where fθ and gξ are parameterized by CNNs, and νgt is a probability measure modeled from the data
distribution, which is supported on a k-dimensional manifold χ embedded in a Euclidean space with N
dimensions. Given a dense sampling from the image manifold and ideal optimization, fθøgξ coincides
with the identity map. Then, fθ will be continuous and convertible, namely homeomorphism, and gξ
will be the inverse homeomorphism during the training. That means, fθ : χ→ Ω is an embedding, and
pushes forward νgt to the latent data distribution µgt := fθ#gξ.

Obviously, since k << N, the latent representations in µgt is a lower-dimensional representation
relative to the data distribution but can indicate νgt over the full dimensions. Therefore, we can say that
mapping the data distribution into the latent space can effectively improve the performance with less
computational cost.

Then we recall the theory of the perfect discriminator according to [49].

Definition 1. LetM and P be two boundary free regular submanifolds of Rd. Let x ∈ M ∩ P be an
intersection point of the two manifolds. M and P intersect transversally in x if TxM + TxP = TxR

d,
where TxM means the tangent space ofM around x. Accordingly,M and P perfectly align if there is
an x ∈ M ∩ P such thatM and P don’t intersect transversally in x.
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Lemma 1. LetM and P be two regular submanifolds of Rd that don’t perfectly align and don’t have
full dimension. Let L =M∩P. IfM and P don’t have boundary. then L is also a manifold, and has
strictly lower dimension than both the one ofM and the one of P. If they have boundary, L is a union
of at most 4 strictly lower dimensional manifolds. In both cases, L has measure 0 in bothM and P.

Lemma 2. Let Pr(data distribution) and Pg(generated distribution) be two distributions that have
support contained in two closed manifolds M and P that don’t perfectly align and don’t have full
dimension. We further assume that Pr and Pg are continuous in their respective manifolds, meaning
that if there is a set A with measure 0 in M, then Pr(A) = 0(and analogously for Pg). Then, there
exists and optimal discriminator D∗ : X → [0, 1] that has accuracy 1 and for almost any x inM or P,
D∗ is smooth in a neighbourhood for x and ∇D∗(x) = 0.

As mentioned in Lemmas 1 and 2, we can assume that there is a perfect discriminator D that is
smooth and constant almost everywhere inM and P. At the same time, their supports are disjoint or
lie on low-dimensional manifolds. In this case, the discriminator and generator updates will be stopped
completely.

Let M1 and M2 be two regular submanifolds come from the space of the data distribution and the
latent representation, respectively. Analogously for P1 and P2, by Lemma 1, L1 = M1 ∩ P1 and
L2 = M2 ∩ P2 is strictly lower dimensional than their supports, respectively.

Let x ∈ M1 \ L1, we say that x ∈ Pc (the complement of P) which is an open set that there exists a
ball of radius ϵx such that B(x, ϵx) ∩ P = ∅. Let

M̂∞ =
⋃

x∈M∞\L∞

B(x, εx \ 3) (A2)

Define P̂1 analogously. The discriminator is perfect while M̂ ∩ P̂ = ∅. We can say that the
discriminator used to observe the latent space is more difficult to perfect because of the high
correlation between each x in the latent space. The ball in the latent space is smoother and relatively
close, indicating less tendency to have the perfect discriminator problem, consequently improving
classification performance.
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