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Abstract: In this paper, we study the following Kirchhoff-type system:
−(a1 + b1

∫
R3 |∇u|2dx)∆u = 2α

α+β
|u|α−2u|v|β + ε f (x),

−(a2 + b2

∫
R3 |∇v|2dx)∆v = 2β

α+β
|u|α|v|β−2v + εg(x),

(u, v) ∈ D1,2(R3) × D1,2(R3),

(0.1)

where a1, a2 ≥ 0, b1, b2 > 0, α, β > 1, α + β = 6 and f (x), g(x) ≥ 0, f (x), g(x) ∈ L
6
5 (R3). The

aim of this paper is to demonstrate the existence of at least two solutions for system (0.1), utilizing
the variational method. To achieve this, we construct an energy functional and analyze its critical
points by applying the Ekeland variational principle, the mountain pass lemma and the concentration
compactness principle.

Keywords: positive solutions; Kirchhoff-type systems; critical Sobolev exponent; concentration
compactness principle; mountain pass lemma

1. Introduction

In this paper, we mainly study the following Kirchhoff-type system
−(a1 + b1

∫
R3 |∇u|2dx)∆u = 2α

α+β
|u|α−2u|v|β + ε f (x),

−(a2 + b2

∫
R3 |∇v|2dx)∆v = 2β

α+β
|u|α|v|β−2v + εg(x),

(u, v) ∈ D1,2(R3) × D1,2(R3),

(1.1)

under the condition of (C.1), (C.2) where (C.1): a1, a2 ≥ 0, b1, b2 > 0, α, β > 1, α + β = 2∗ =
2 × 3/(3 − 2) = 6, ε > 0; (C.2): f (x), g(x) ≥ 0, f (x), g(x) . 0, f (x), g(x) ∈ L

6
5 (R3). 2∗ = 2N

N−2 is the
critical Sobolev exponent where N = 3.
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It is well known that the critical problem{
−∆u = |u|2

∗−2u, x ∈ Ω,
u = 0, x ∈ ∂Ω

(1.2)

does not have a minimizing energy solution when Ω is a domain different from RN . This result is
derived from the sharp Sobolev inequality on RN [1–3]. However, the situation is different if there is a
nonhomogeneous term f (x): {

−∆u = |u|2
∗−2u + µ f (x), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.3)

Tarantello [4] showed that problem (1.3) has at least two solutions in bounded domains. The main
idea is to use the Ekeland variational principle to get one solution u0 which is a local minimum solution
and use the mountain pass theorem to obtain the second solution u1 with the energy

I(u1) < I(u0) +
1
N

S
N
2

where S is the best constant for the Sobolev embedding D1,2(RN) ↪→ L
2N

N−2 (RN), namely

S = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2dx

(
∫
RN |u|

2N
N−2 dx)

N−2
N

.

Let U be a solution for the following problem:{
−∆u = |u|2

∗−2u, x ∈ RN ,

u ∈ D1,2(RN).
(1.4)

Then, we know

Uε,y(x) =
(N(N − 2))

N−2
4 ε

N−2
2

(ε2 + |x − y|2)
N−2

2

,

which are all positive solutions of (1.4) (see [5, 6]) for any ε > 0 and y ∈ RN . Moreover, we know that
U satisfies

∥U∥2 = |U |2
∗

2∗ = S
N
2 (1.5)

where ∥U∥ = (
∫
RN |∇u|2dx)

1
2 and |U |s = (

∫
RN |u|sdx)

1
s are the norms of the Sobolev space D1,2

(
RN
)

and Lebesgue space Ls
(
RN
)
, s ∈ [2, 2∗], respectively. Han [7] extended (1.3) to the following elliptic

system 
−∆u = 2α

α+β
u|u|α−2|v|β + ε f (x), in Ω,

−∆v = 2β
α+β
|u|αv|v|β−2 + εg(x), in Ω,

u = v = 0, on ∂Ω

(1.6)
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in bounded domains. The author used upper and lower solution methods and variational methods to
prove that the problem (1.6) has at least two solutions for both subcritical and critical cases. The first
solution (ũ0, ṽ0) of (1.6) is also a local minimizer of the associated functional I and they obtained the
second solution (ũ1, v̄1) with

I(ũ1, ṽ1) < I(ũ0, ṽ0) +
2
N

(
S α,β

2
)

N
2

where

S α,β = inf
(u,v)∈D1,2(RN )×D1,2(RN )\{(0,0)}

∫
RN |∇u|2 + |∇v|2dx

(
∫
RN |u|α|v|βdx)

2
α+β

.

Indeed, according to [7] we know that

u0 = kU, v0 = lU

is a solution of the following system
−∆u = 2α

α+β
|u|α−2u|v|β,

−∆v = 2β
α+β
|u|α|v|β−2v,

(u, v) ∈ D1,2(RN) × D1,2(RN),
(1.7)

where U is a solution of (1.4),

k =
[
(

2α
α + β

)β(
α + β

2α
)β−2] −1

2(α+β−2) , l =
[
(

2α
α + β

)α(
α + β

2α
)α−2] −1

2(α+β−2)

and
S α,β = [(

α

β
)

β
α+β + (

α

β
)−

α
α+β ]S .

We are certain that the existence of solutions will be affected by the nonhomogeneous term f (x) or
g(x) and the existence of a second solution for (1.3) or (1.6) will also be affected by Eq (1.2) or system
(1.7).

When a1 = a2, b1 = b2, f = g and u = v, system (1.1) transforms into the following individual
equation. {

−(a1 + b1

∫
RN |∇u|2dx)∆u = |u|2

∗−2u + ε f (x), in RN ,

u ∈ D1,2(RN)
(1.8)

which is related to the stationary analogue of the equation

ρ
∂2u
∂t2 − (

P0

h
+

E
2L

∫ L

0
|
∂u
∂t
|2 dx)

∂2u
∂t2 = 0

presented by Kirchhoff in [8]. Here, the parameters in (1.8) carry the following interpretations: ρ
represents the mass density, P0 the initial tension, h the cross-sectional area, E the Young’s modulus of
the material and L the length of the string. It was underscored in [9] that the Kirchhoff-type problem
models a variety of physical and biological systems where u characterizes a process that relies on its
own average (e.g., population density). Early investigations into the Kirchhoff-type problem can be

Electronic Research Archive Volume 31, Issue 9, 5286–5312.



5289

traced back to the work of Bernstein [10] and Pohoẑaev [11]. Nevertheless, Eq (1.8) only attracted
significant attention after Lions [12] introduced an abstract framework for such problems.

Liu et al. [5] discovered that problem (1.8) has at least two positive solutions when N = 3, 4 under
certain assumptions for f (x). Specifically, to consider the existence of a second solution for problem
(1.8), they needed to establish the existence of a unique positive solution for (1.8) when ε = 0. In fact,
they found that the positive solutions of{

−(a + b
∫
RN |∇u|2dx)∆u = |u|2

∗−2u, in RN ,

u ∈ D1,2(RN)

can be expressed as
Vε,λ,y(x) = λ

N−2
4 Uε,y(x)

with
λ = a + bS

N
2 λ

N−2
2 .

The solvability or multiplicity of the Kirchhoff type equation with critical exponent has been
extensively studied in recent years; see, for instance, [5, 13–25] and references therein.

Inspired by the ideas presented in [5] and [4], we discuss system (1.1) with ε > 0 small enough.
First, we establish the existence of solutions for problem (1.1) when ε = 0:

Theorem 1.1. Assume that ε = 0 and (u0, v0) is a positive solution of (1.7) and

S 1 =

∫
R3
|∇u0|

2dx =
α

3
(
S α,β

2
)

3
2 , S 2 =

∫
R3
|∇v0|

2dx =
β

3
(
S α,β

2
)

3
2 .

Then, we have
(i) If a1 = a2 = 0, problem (1.1) has a unique positive solution z = (u′, v′) where

u′ = (b1S 1)
α−2

8 (b2S 2)
β
8 u0, v′ = (b1S 1)

α
8 (b2S 2)

β−2
8 v0.

(ii) If a1 and a2 are not equal to 0 at the same time, problem (1.1) has a unique positive solution

z = (u′, v′) = (λ1u0, λ2v0).

Indeed, if a1 = 0, a2 , 0,

λα−2
1 λ

β
2 = (λα1λ

β−2
2 )

β
2+β (b1S 1)

4
β+2 , λα1λ

β−2
2 = a2 + (b2S 2)(b1S 1)

α
2+β (λα1λ

β−2
2 )

β−2
2+β .

(iii) If a1 , 0(> 0), a2 , 0(> 0), problem (1.1) has at least a positive solution z = (u′, v′) =
(λ1u0, λ2v0) where

λ1 = C
2−β

8
1 C

β
8
2 , λ2 = C

α
8
1 C

2−α
8

2

and

C1 = a1 +C
2−β

4
1 C

β
4
2 b1S 1, C2 = a2 +C

α
4
1 C

2−α
4

2 b2S 2.
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Remark 1.1. In fact, from the following equations

λ1 = C
2−β

8
1 C

β
8
2 , λ2 = C

α
8
1 C

2−α
8

2

and
C1 = a1 +C

2−β
4

1 C
β
4
2 b1S 1, C2 = a2 +C

α
4
1 C

2−α
4

2 b2S 2,

we find that the unique or explicit form of (λ1, λ2) is affected by a1, a2, b1, b2. Thus, we can only obtain
the uniqueness of (λ1, λ2) in cases (i)− (ii) and the explicit form of (λ1, λ2) in case (i). Furthermore, we
believe that if a1, a2, b1, b2 satisfy certain assumptions, (λ1, λ2) will be unique, and we can also obtain
the explicit form of (λ1, λ2).

We define ε∗ =
g(

√
9bS 3

α,β
20 )

√
S

| f | 65+|g|
6
5

where g(
√

9bS 3
α,β

20 ) = b
4 (
√

9bS 3
α,β

20 )3 − 1
3S 3 (
√

9bS 3
α,β

20 )5, b = 1
2 min(b1, b2).

Next, we consider the existence of a local minimum solution for problem (1.1) by applying the Ekeland
variational principle.

Theorem 1.2. Assuming conditions (C.1) and (C.2) hold, system (1.1) has a local minimum solution
for any ε ∈ (0, ε∗).

Remark 1.2. First, we demonstrate that the minimal value of the set minimization problem can be
attained by (u, v) and then we prove that (u, v) is a solution of (1.1). Unlike with single equations, due
to the mutual interaction of (u, v), it is challenging to obtain ∥u∥ ≥ ∥un∥+ o(1), ∥v∥ ≥ ∥vn∥+ o(1) where
(un, vn) represents the minimizing sequence of c0. The definitions of un, vn, u, v, c0 can be found in the
proof of Theorem 1.2 in Section 4. By drawing upon the proof method from Theorem 1.3 in [5] and
employing meticulous estimates, we can overcome this difficulty.

Finally, we investigate the existence of a second solution for problem (1.1) by applying the
mountain pass lemma and the concentration compactness principle. To obtain the energy estimation
of the associated functional Φε for problem (1.1), we will need the explicit form of (λ1, λ2).
Therefore, when a1 = a2 = 0 we have:

Theorem 1.3. Assume α = β = 3 and b1 = b2, there exists ε∗∗ ∈ (0, ε∗] such that for any ε ∈ (0, ε∗∗),
problem (1.1) has another solution. The value of ε∗ is defined in Theorem 1.2.

Remark 1.3. First, we prove that the associated functional Φε for problem (1.1) satisfies the mountain
pass structure, from which we obtain a (PS ) sequence. Then, we establish the (PS ) condition by using
the concentration compactness principle. From this, we obtain another solution for (1.1). Owing to
the lack of compactness (α+ β = 2∗), the mutual action of (u, v) and the influence of the nonlocal term,
there arises a new challenge in employing the concentration compactness principle. Moreover, it is
difficult to derive an explicit expression when the values of a1 and a2 are non-zero. The reason for only
considering the case where α = β = 3 is that after extensive estimation, it is only when α = β = 3 that
Λ reaches its minimum value Λmin. Therefore, the estimate satisfied by m contradicts Lemma 4.4(i).
The definitions of Λ, Λmin, and m as well as the details of their related proofs can be found in Remark
4.2 and the Proof of Theorem 1.3.

Remark 1.4. The innovation of this paper lies in overcoming the lack of compactness (α + β = 2∗)
and the mutual interaction of (u, v) to demonstrate the existence of at least two solutions for systems
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(1.1). This extends the results from single equations in [5] to a system of equations. We accomplished
this by applying the Ekeland variational principle, the mountain pass lemma and the concentration
compactness principle as well as through some precise estimates.

The structure of this paper is as follows: Section 2 provides some preliminary background
knowledge. Section 3 is dedicated to the proof of Theorem 1.1. Finally, we present the proofs for
Theorem 1.2 and Theorem 1.3.

2. Notations and preliminary results

First, we introduce the following notations, which will be useful for proving the upcoming
theorems in this section.
• The function space corresponding to problem (1.1) is E = D1,2(R3) × D1,2(R3) with the space norm
defined as ∥(u, v)∥ = (∥u∥2 + ∥v∥2)

1
2 . E∗ is the dual space of E.

•(u, v) ∈ E, Bρ = {u ∈ E : ∥(u, v)∥ < ρ}.
•Bρ = {(u, v) ∈ E : ∥(u, v)∥ ≤ ρ}, ∂Bρ = {(u, v) ∈ E : ∥(u, v)∥ = ρ}.
• The following elliptic system


−∆u = 2α

α+β
|u|α−2u|v|β,

−∆v = 2β
α+β
|u|α|v|β−2v,

(u, v) ∈ D1,2(R3) × D1,2(R3)
(2.1)

has a positive radial vector solution z0 = (u0, v0) under the condition (C.1) (see [7]).
• u+ = max{0, u}, u− = max{0,−u}.

Let us denote the energy functional Φε : E → R corresponding to (1.1) by

Φε(u, v) =
1
2

(a1∥u∥2 + a2∥v∥2) +
1
4

(b1∥u∥4 + b2∥v∥4) −
1
3

∫
R3

(u+)α(v+)βdx − ε
∫
R3

( f u + gv)dx.

Obviously, Φε is of C1 and has the derivative given by

⟨Φ
′

ε(u, v), (φ, ψ)⟩ =(a1 + b1∥u∥2)
∫
R3
∇u∇φdx + (a2 + b2∥v∥2)

∫
R3
∇v∇ψdx

−
α

3

∫
R3

(v+)β(u+)α−1φdx −
β

3

∫
R3

(u+)α(v+)β−1ψdx − ε
∫
R3

( fφ + gψ)dx.

Next, we present the following lemma which can be utilized in the proof of Theorem 1.3.

Lemma 2.1. Assume α, β > 1, α + β = 6 and define

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

(
∫
R3 |u|α+βdx)

2
α+β
, S α,β = inf

(u,v)∈E\{(0,0)}

∫
R3 |∇u|2+|∇v|2dx

(
∫
R3 |u|α |v|βdx)

2
α+β
,

S̃ α,β = inf
(u,v)∈E\{(0,0)}

∫
R3 a|∇u|2+b|∇v|2dx

(
∫
R3 |u|α |v|βdx)

2
α+β

. (2.2)
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Then,

S α,β = [(
α

β
)

β
α+β + (

α

β
)−

α
α+β ]S ,

S̃ α,β = a
α
α+β b

β
α+β [(

α

β
)

β
α+β + (

α

β
)−

α
α+β ]S

where a, b is any real number.

Proof. Refer to [26] for the proof of S α,β = [(α
β
)
β
6 + (α

β
)−

α
6 ]S ; we will provide the proof of S̃ α,β later.

Assume that ωn is a minimizing sequence for S, let s, t > 0 to be chosen. Taking un =
s
√

aωn, vn =
t
√

b
ωn in (2.2), we have that

a
α
α+β b

β
α+β

s2 + t2

(sαtβ)
2

α+β

∫
R3 |∇ωn|

2dx

(
∫
R3 |ωn|

α+βdx)
2

α+β

≥ S̃ α,β. (2.3)

Noting that
s2 + t2

(sαtβ)
2

α+β

= (
s
t
)

2β
α+β + (

t
s
)

2α
α+β , (2.4)

we can proceed to define the function as follows.

g(x) = x
2β
α+β + x

−2α
α+β , x > 0.

When x =
√

α
β
, there exists the minimum value

g(x)min = g(
√
α

β
) = (

α

β
)

β
α+β + (

α

β
)
−α
α+β . (2.5)

Considering (2.3)–(2.5), we get

a
α
α+β b

β
α+β [(

α

β
)

β
α+β + (

α

β
)
−α
α+β ]S ≥ S̃ α,β. (2.6)

Then, we need to prove that

a
α
α+β b

β
α+β [(

α

β
)

β
α+β + (

α

β
)
−α
α+β ]S ≤ S̃ α,β. (2.7)

Let (un, vn) be a minimizing sequence for S̃ α,β. Define zn = snvn, for some sn > 0 such that∫
R3
|un|

α+βdx =
∫
R3
|zn|

α+βdx. (2.8)

By Young’s inequality∫
R3
|un|

α|zn|
βdx ≤

α

α + β

∫
R3
|un|

α+βdx +
β

α + β

∫
R3
|zn|

α+βdx. (2.9)

Electronic Research Archive Volume 31, Issue 9, 5286–5312.
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By (2.8), we have

(
∫
R3
|un|

α|zn|
βdx)

2
α+β ≤ (

∫
R3
|un|

α+βdx)
2

α+β = (
∫
R3
|zn|

α+βdx)
2

α+β . (2.10)

Using (2.10), we have∫
R3 a|∇un|

2 + b|∇vn|
2dx

(
∫
R3 |un|

α|vn|
βdx)

2
α+β

=
s

2β
α+β

n

∫
R3 a|∇un|

2 + b|∇vn|
2dx

(
∫
R3 |un|

α|zn|
βdx)

2
α+β

≥

as
2β
α+β

n

∫
R3 |∇un|

2dx

(
∫
R3 |un|

α+βdx)
2

α+β

+ bs
2β
α+β

n s−2
n

∫
R3 |∇zn|

2dx

(
∫
R3 |zn|

α+βdx)
2

α+β

≥ h(sn)S ,

where h(sn) = as
2β
α+β

n + bs
−2α
α+β

n . Then, we get

h(sn)min = a(

√
bα
aβ

)
2β
α+β + b(

√
bα
aβ

)
−2α
α+β = a

α
α+β b

β
α+β [(

α

β
)

β
α+β + (

α

β
)
−α
α+β ].

Therefore, (2.7) is proved. Combining (2.6), we get

S̃ α,β = a
α
α+β b

β
α+β [(

α

β
)
β
6 + (

α

β
)−

α
6 ]S .

□

Ekeland’s variational principle is a tool used to obtain a local minimum solution. We include it here
for the convenience of the readers.

Theorem 2.1. ( [27], Theorem 4.1) Let M be a complete metric space with metric d and let I : M 7→
(−∞,+∞ ] be a lower semicontinuous function, bounded from below and not identical to +∞. Let
ϵ > 0 be given and u ∈ M be such that

I(u) ≤ inf
M

I + ϵ.

Then, there exists v ∈ M such that

I(v) ≤ I(u), d(u, v) ≤ 1.

For each w ∈ M, one has
I(v) ≤ I(w) + ϵd(v,w).

3. Proof of Theorem 1.1

In this section, we provide the proof of Theorem 1.1. The key idea is to observe that the right-
hand side of problem (1.1), namely a1 + b1

∫
R3 |∇u|2dx and a2 + b2

∫
R3 |∇v|2dx, can be regarded as two
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constants. This insight guides us to construct the solution for problem (1.1) by utilizing the solution
for problem (2.1) and the method of undetermined coefficients.

Proof of Theorem 1.1.The proof of Theorem 1.1 is inspired by the idea presented in [5]. For any
C1,C2 > 0, let (u′, v′) = (λ1u0, λ2v0) where (u′, v′) is a vector solution of (3.1), λ1 > 0, λ2 > 0. −C1∆u = 2α

α+β
|u|α−2u|v|β,

−C2∆v = 2β
α+β
|u|α|v|β−2v.

(3.1)

By (3.1) and the fact that (u0, v0) satisfies (2.1), we can obtain{
C1 = λ

α−2
1 λ

β
2,

C2 = λ
α
1λ

β−2
2 ,

(3.2)

which implies  λ1 = C
2−β

8
1 C

β
8
2 ,

λ2 = C
α
8
1 C

2−α
8

2 .
(3.3)

Now, we consider the equations

C1 = a1 + b1

∫
R3
|∇u′|2dx, C2 = a2 + b2

∫
R3
|∇v′|2dx.

Let
∫
R3 |∇u0|

2dx = S 1,
∫
R3 |∇v0|

2dx = S 2. Thus, C1,C2 satisfy C1 = a1 +C
2−β

4
1 C

β
4
2 b1S 1,

C2 = a2 +C
α
4
1 C

2−α
4

2 b2S 2.
(3.4)

Next, we consider the existence and uniqueness of the positive solution from (1.1) when ε = 0.
(i) If a1 = 0, a2 = 0, we deduce from (3.4) that C1 = (b1S 1)

2+α
4 (b2S 2)

β
4 ,

C2 = (b1S 1)
α
4 (b2S 2)

2+β
4 .

Combining with (3.3), we have  λ1 = (b1S 1)
α−2

8 (b2S 2)
β
8 ,

λ2 = (b1S 1)
α
8 (b2S 2)

β−2
8 .

Hence, we have  u′ = (b1S 1)
α−2

8 (b2S 2)
β
8 u0,

v′ = (b1S 1)
α
8 (b2S 2)

β−2
8 v0.

(3.5)

(ii) If a1 and a2 are not equal to 0 at the same time, we can assume a1 = 0 and a2 , 0 which implies
that

C1 = C
β

2+β

2 (b1S 1)
4
β+2 , C2 = a2 + (b2S 2)(b1S 1)

α
2+βC

β−2
2+β

2 .
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According to the above, we define
A = (b2S 2)(b1S 1)

α
2+β > 0, − 1

3 < k = β−2
2+β <

3
7 , B = a2 > 0

where x > B. We want to determine the number of C2; we only need to find the solution of

f (x) = Axk − x + B = 0. (3.6)

(1′) When β ∈ (1, 2), k ∈ (−1
3 , 0), we can get

f ′(x) = Akxk−1 − 1 < 0.

Considering f (x) > 0 as x→ B, f (x)→ −∞ as x→ +∞. Thus, there exists a unique C2 > B such that
f (C2) = 0.

(2′) When β = 2, k = 0, from (3.6){
C1 = (b2S 2b1S 1 + a2)

1
2 b1S 1,

C2 = b2S 2b1S 1 + a2.

Considering (3.2), (3.3), we have{
u′ = (b2S 2b1S 1 + a2)

1
4 u0,

v′ = (b1S 1)
1
2 v0.

(3′) When β ∈ (2, 5), k ∈ (0, 3
7 ), we know x0 = (Ak)−

1
k−1 is the only maximum from

f ′(x) = Akxk−1 − 1 = 0.

Considering f (x) > 0 as x → B, f (x) → −∞ as x → +∞. Thus, there exists a unique C2 > B such
that f (C2) = 0. So, we can prove that there exists a unique (u′, v′) as a result of the only λ1, λ2. If
a1 , 0 and a2 = 0, we can get a unique (u′, v′) in the same way.

(iii) If a1 , 0(> 0), a2 , 0(> 0), we deduce from (3.4) that

C1 − a1

C2 − a2
=

b1S 1

b2S 2
×

C2

C1
. (3.7)

Let C1 = λC2. By the above equality, we have

(b2S 2C2)λ2 − (a1b2S 2)λ − (C2 − a2)b1S 1 = 0.

Because λ = C1
C2
> 0, we deduce from (3.7) that

λ =
a1b2S 2 +

√
(a1b2S 2)2 + 4(C2 − a2)b1S 1b2S 2C2

2b2S 2C2
.

Then, we have

C2 − a2 = (b2S 2)
4−α

4 C
2−α

4
2 (

a1b2S 2 +
√

(a1b2S 2)2 + 4(C2 − a2)b1S 1b2S 2C2

2
)
α
4 .
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Let A
′

= ( 1
2 )

α
4 (b2S 2)

4−α
4 , B

′

= a1b2S 2, C
′

= a2, D
′

= 4b1b2S 1S 2 and

h(x) = A
′

x
2−α

4 (B
′

+
√

(B′)2 + D′ x(x −C′))
α
4 − x +C

′

.

As a result of

x→ +∞, h(x)→ −∞; x→ C
′

, h(x) > 0.

Then, there exists a C2 > 0 such that h(C2) = 0. Because the uniqueness is not clear, we have some
difficulties in considering the existence of the second solution of problem (1.1). Hence, the Theorem
1.1 is proved.

4. Proofs of Theorem 1.2 and Theorem 1.3

In this section, we establish the existence of two solutions for (1.1) by using some variational
methods. First, we will present the proofs of Theorem 1.2 and Theorem 1.3 utilizing various Lemmas
for each proof, respectively. We consider the existence of a local minimum solution for problem (1.1)
by applying the Ekeland variational principle.

Lemma 4.1. Assume that (C.1), (C.2) hold. Then, there exists ρ > 0 such that for any ε ∈ (0, ε∗), one
has Φε|∂Bρ ≥ α̃ for some α̃ > 0. For the definition of ε∗, please refer to Page 4, line 26.

Proof. By the Hölder inequalities, b1 > 0, b2 > 0, the complete square formula and Sobolev
inequalities, one has

Φε(u, v) =
1
2

(a1∥u∥2 + a2∥v∥2) +
1
4

(b1∥u∥4 + b2∥v∥4) −
1
3

∫
R3

(u+)α(v+)βdx

− ε

∫
R3

( f u + gv)dx

≥
1
2

(a1∥u∥2 + a2∥v∥2) +
1
4

(b1∥u∥4 + b2∥v∥4) −
1
3
×
∥(u, v)∥6

S 3
α,β

−
ε
√

S
(| f | 6

5
+ |g| 6

5
)∥(u, v)∥

≥[
b
4
∥(u, v)∥3 −

1
3
∥(u, v)∥5

S 3
α,β

−
ε
√

S
(| f | 6

5
+ |g| 6

5
)]∥(u, v)∥

where b = 1
2 min(b1, b2). Let g(t) = b

4 t3 − 1
3S 3 t5, then max

t≥0
g(t) = g(ρ) > 0 with ρ =

√
9bS 3

α,β

20 . Owing to

ε∗ = g(ρ)
√

S
| f | 6

5
+|g| 6

5

, for any ε ∈ (0, ε∗), we have

Φε(u, v) ≥ [g(ρ) −
ε
√

S
(| f | 6

5
+ |g| 6

5
)]ρ = α̃ > 0(∀(u, v) ∈ ∂Bρ).

Hence, we conclude the proof. □
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Lemma 4.2. Suppose that (C.1), (C.2) hold. Then, for any ε ∈ (0, ε∗) one has c0 = inf
u∈Bρ
Φε(u, v) ∈

(−∞, 0) where ρ, ε∗ is given by Lemma 4.1.

Proof. Firstly, we choose a (u, v) ∈ E such that
∫
R3( f u + gv)dx > 0. Then, for any t > 0 we have

Φε(tu, tv) =
1
2

(a1∥u∥2 + a2∥v∥2)t2 +
1
4

(b1∥u∥4 + b2∥v∥4)t4 −
1
3

t6
∫
R3

(u+)α(v+)βdx

− εt
∫
R3

( f u + gv)dx.

Hence, there exists a sufficiently small t > 0 such that ∥t(u, v)∥ ≤ ρ and Φε(tu, tv) < 0 which leads to

c0 ≤ Φε(tu, tv) < 0.

As ∥(u, v)∥ ≤ ρ, we obtain

Φε(u, v) > −
1
3

∫
R3

(u+)α(v+)βdx − ε
∫
R3

( f u + gv)dx

≥ −
1
3
∥(u, v)∥6

S 3
α,β

−
ε
√

S
(| f | 6

5
+ |g| 6

5
)∥(u, v)∥ > −∞.

Consequently, we can establish that c0 ∈ (−∞, 0), thereby completing the proof.

Proof of Theorem 1.2. By applying Lemma 4.2, we find that c0 = inf
u∈Bρ
Φε(u, v) ∈ (−∞, 0). Moreover,

we know that Φε|∂Bρ > 0 from Lemma 4.1. Therefore, we deduce that the minimum cannot be attained
on ∂Bρ. According to Lemma 4.1, Lemma 4.2 and Theorem 2.1 (Ekeland variational principle), there
exists (un, vn) ∈ Bρ such thatΦε(un, vn)→ c0 andΦ′ε(un, vn)→ 0 in E∗. The above proof can be referred
to [ [28], pp. 534-535]. Consequently, there exists (u, v) ∈ E satisfying:

un ⇀ u, vn ⇀ v in E,

un → u, vn → v, in Ls
loc(R

3) × Ls
loc(R

3), (1 ≤ s < 2∗)
un → u, vn → v, a.e. on R3 × R3.

First, we prove that (u, v) is a minimizer for c0. Noting that Bρ is closed and convex,

(u, v) ∈ Bρ, Φε(u, v) ≥ c0.

Therefore, what we need to prove next is thatΦε(u, v) ≤ c0. The key idea here is that sinceΦε(un, vn)
converges to c0, we need to establish the inequality relationship between Φε(u, v) and Φε(un, vn).

In order to eliminate 1
4 (b1∥u∥4 + b2∥v∥4), we have the following estimates. From Φ′ε(un, vn) → 0 in

E∗, it holds that

⟨Φ
′

ε(un, vn), (u, v)⟩

= (a1 + b1∥un∥
2)
∫
R3
∇un∇udx + (a2 + b2∥vn∥

2)
∫
R3
∇vn∇vdx
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−
α

3

∫
R3

(u+n )α−1(v+n )βudx −
β

3

∫
R3

(u+n )α(v+n )β−1vdx − ε
∫
R3

( f u + gv)dx + o(1)

= (a1 + b1∥un∥
2)∥u∥2 + (a2 + b2∥vn∥

2)∥v∥2 − 2
∫
R3

(u+)α(v+)βdx − ε
∫
R3

( f u + gv)dx + o(1)

= o(1).

Combining above equality and weakly lower semi-continuity of norm, we have

Φε(u, v) =
1
2

(a1∥u∥2 + a2∥v∥2) +
1
4

(b1∥u∥4 + b2∥v∥4) −
1
3

∫
R3

(u+)α(v+)βdx

− ε

∫
R3

( f u + gv)dx

≤
1
2

(a1∥u∥2 + a2∥v∥2) +
1
4

(b1∥un∥
2∥u∥2 + b2∥vn∥

2∥v∥2) −
1
3

∫
R3

(u+)α(v+)βdx

− ε

∫
R3

( f u + gv)dx −
1
4

(a1 + b1∥un∥
2)∥u∥2 −

1
4

(a2 + b2∥vn∥
2)∥v∥2

+
1
2

∫
R3

(u+)α(v+)βdx +
ε

4

∫
R3

( f u + gv)dx + o(1)

≤
a1

4
∥u∥2 +

a2

4
∥v∥2 +

1
6

∫
R3

(u+)α(v+)βdx −
3ε
4

∫
R3

( f u + gv)dx + o(1)

≤
a1

4
∥un∥

2 +
a2

4
∥vn∥

2 +
1
6

∫
R3

(u+n )α(v+n )βdx −
3ε
4

∫
R3

( f un + gvn)dx + o(1)

≤Φε(un, vn) −
1
4
⟨Φ

′

ε(un, vn), (un, vn)⟩ + o(1) = c0.

Hence, we get (u, v) is a minimizer for c0.

Now, we need to prove (u, v) is a solution of (1.1) with Φε(u, v) = c0. On one hand, we have

c0 =Φε(u, v) −
1
6
⟨Φ

′

ε(un, vn), (u, v)⟩ + o(1)

=
1
2

(a1∥u∥2 + a2∥v∥2) +
1
4

(b1∥u∥4 + b2∥v∥4) −
1
3

∫
R3

(u+)α(v+)βdx

− ε

∫
R3

( f u + gv)dx −
a1

6

∫
R3
∇un∇udx −

a2

6

∫
R3
∇vn∇vdx

−
b1

6

∫
R3
|∇un|

2dx
∫
R3
∇un∇udx −

b2

6

∫
R3
|∇vn|

2dx
∫
R3
∇vn∇vdx

+
α

18

∫
R3

(v+n )β(u+n )α−1udx +
β

18

∫
R3

(u+n )α(v+n )β−1vdx +
ε

6

∫
R3

( f u + gv)dx + o(1)

=
1
3

(a1∥u∥2 + a2∥v∥2) +
1
4

(b1∥u∥4 + b2∥v∥4) −
b1

6
∥un∥

2∥u∥2 −
b2

6
∥vn∥

2∥v∥2

−
5ε
6

∫
R3

( f u + gv)dx + o(1).

On the other hand, we have

c0 =Φε(un, vn) −
1
6
⟨Φ

′

ε(un, vn), (un, vn)⟩ + o(1)
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=
1
2

(a1∥un∥
2 + a2∥vn∥

2) +
1
4

(b1∥un∥
4 + b2∥vn∥

4) −
1
3

∫
R3

(u+n )α(v+n )βdx

− ε

∫
R3

( f un + gvn)dx −
a1

6
∥un∥

2 −
a2

6
∥vn∥

2 −
b1

6
∥un∥

4 −
b2

6
∥vn∥

4

+
1
3

∫
R3

(v+n )β(u+n )αdx +
ε

6

∫
R3

( f un + gvn)dx + o(1)

=
a1

3
∥un∥

2 +
a2

3
∥vn∥

2 +
b1

12
∥un∥

4 +
b2

12
∥vn∥

4 −
5ε
6

∫
R3

( f u + gv)dx.

Hence, we have

1
3

a1∥u∥ +
1
3

a2∥v∥2 +
1
4

b1∥u∥4 +
1
4

b2∥v∥4 −
b1

6
∥un∥

2∥u∥2 −
b2

6
∥vn∥

2∥v∥2 + o(1)

=
1
3

a1∥un∥ +
1
3

a2∥vn∥
2 +

1
12

b1∥un∥
4 +

1
12

b2∥vn∥
4 + o(1)

≥
1
3

a1∥u∥ +
1
3

a2∥v∥2 + (
1
4
−

1
6

)b1∥u∥4 + (
1
4
−

1
6

)b2∥v∥4 + o(1)

≥
1
3

a1∥u∥ +
1
3

a2∥v∥2 + (
1
4
−

1
6

)b1∥u∥4 +
1
4

b2∥v∥4 −
1
6

b2∥vn∥
2∥v∥2 + o(1).

So, we obtain

∥u∥2 ≥ ∥un∥
2 + o(1).

Following the above steps, we have

1
3

a1∥u∥ +
1
3

a2∥v∥2 +
1
4

b1∥u∥4 +
1
4

b2∥v∥4 −
b1

6
∥un∥

2
∥u∥2 −

b2

6
∥vn∥

2
∥v∥2 + o(1)

=
1
3

a1 ∥un∥ +
1
3

a2 ∥vn∥
2 +

1
12

b1 ∥un∥
4 +

1
12

b2 ∥vn∥
4 + o(1)

≥
1
3

a1∥u∥ +
1
3

a2∥v∥2 + (
1
4
−

1
6

)b1∥u∥4 + (
1
4
−

1
6

)b2∥v∥4 + o(1)

≥
1
3

a1∥u∥ +
1
3

a2∥v∥2 +
1
4

b2∥u∥4 −
1
6

b2 ∥un∥
2
∥u∥2 + (

1
4
−

1
6

)b1∥v∥4 + o(1).

Thus, we obtain
∥v∥2 ≥ ∥vn∥

2 + o(1).

Using again the weakly lower semi-continuity of norm, we get ∥(u, v)∥ = ∥(un, vn)∥ + o(1). Combining
un ⇀ u, vn ⇀ v in E, we have un → u, vn → v in E and then Φε (un, vn) →

c0 = Φε(u, v),Φ′ε (un, vn)→ Φ′ε(u, v) = 0 in E∗. We complete the proof.

Now, we give proof of the second positive solution by the mountain pass lemma and the
concentration compactness principle.

Lemma 4.3. Suppose that (C.1), (C.2) hold. Then, there exists (u∗, v∗) ∈ E such that ∥(u∗, v∗)∥ > ρ and
Φε(u∗, v∗) < 0 where ρ is given by Lemma 4.1.
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Proof. Let u0 = kU, v0 = lU, we can obtain k
l =
√

α
β

and

 k = 3
1
4α

β−2
8 β−

β
8 = (α

β
)
β
8 ( 3

α
)

1
4 ,

l = 3
1
4α−

α
8 β

α−2
8 = ( β

α
)
α
8 ( 3

β
)

1
4 ,

where U is a solution of (1.4). Then, for any t > 0 it holds that

Φε(tu0, tv0) =
1
2

(a1∥tu0∥
2 + a2∥tv0∥

2) +
1
4

(b1∥tu0∥
4 + b2∥tv0∥

4) −
t6

3

∫
R3

(u+0 )α(v+0 )β

− εt
∫
R3

( f u0 + gv0)dx

=
1
2

(a1k2 + a2l2)S
3
2 t2 +

1
4

(b1k4 + b2l4)S 3t4 −
1
3

kαlβS
3
2 t6 − εt

∫
R3

( f u0 + gv0)dx

≤
1
2

(a1k2 + a2l2)S
3
2 t2 +

1
4

(b1k4 + b2l4)S 3t4 −
1
3

kαlβS
3
2 t6.

Hence, there exists a sufficiently large t0 > 0 such that

∥t0(u0, v0∥ > ρ and Φε(t0u0, t0v0) < 0.

Let (u
∗

, v∗) = (t0u0, t0v0). This completes the proof. □

According to lemma 4.1, lemma 4.3, we can find (u, v) such that

inf
∂Bρ
Φε(u, v) ≜ d > Φε(0, 0) = 0,

(u
∗

, v∗) < Bρ satis f y Φε(u
∗

, v∗) < d.

Then, we define

m ≜ inf
P∈A

max
u∈P
Φε(u, v) ≥ d,

where A is the set of all passes which connect 0 and e = (u
∗

, v∗), i, e.,

A = {P ∈ C([0, 1], X)|P(0) = 0, P(1) = e}.

Remark 4.1. For any ε ∈ (0, ε∗), we can obtain a nonnegative bounded (PS ) sequence.

Proof. By the mountain pass theorem [6], there exists (un, vn) ∈ E such that I(un, vn) → m and
I′(un, vn)→ 0 in E∗. Thus, we can get

5ε
6

∫
R3

( f un + gvn)dx + m + o(∥un, vn∥) =Φε(un, vn) −
1
6
⟨Φ

′

ε(un, vn), (un, vn)⟩

=
a1

3
∥un∥

2 +
a2

3
∥vn∥

2 +
1

12
∥un∥

4 +
1

12
∥vn∥

4

≥Q1∥(un, vn)∥2. (4.1)
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where Q1 is a positive constant with a sufficiently small value.
By the Hölder inequality and the Sobolev inequality, we get

5ε
6

∫
R3

( f un + gvn)dx ≤
5ε
6
| f |2|un|2 +

5ε
6
|g|2|vn|2 ≤ C(ϵ)∥(un, vn)∥ (4.2)

where C(ε) is a a sufficiently small constant that depends only on ε. Combining (4.1) with (4.2), we
conclude that (un, vn) is bounded in E.

Since u = u+ − u−, v = v+ − v−, we have

o(1) = − ⟨Φ
′

ε(un, vn), (u−n , v
−
n )⟩

= − a1

∫
R3
∇un∇u−n dx − a2

∫
R3
∇vn∇v−n dx − b1∥un∥

2
∫
R3
∇un∇u−n dx

− b2∥vn∥
2
∫
R3
∇vn∇v−n dx + ε

∫
R3

( f u−n + gv−n )dx

=a1∥u−n ∥
2 + a2∥v−n ∥

2 + b1∥un∥
2∥u−n ∥

2 + b2∥vn∥
2∥v−n ∥

2 + ε

∫
R3

( f u−n + gv−n )dx

≥b1∥un∥
2∥u−n ∥

2 + b2∥vn∥
2∥v−n ∥

2

≥b1∥u−n ∥
4 + b2∥v−n ∥

4

which implies ∥u−n ∥ = 0, ∥v−n ∥ = 0, n→ ∞. According to Hölder and Sobolev inequality, we have

0 ≤ ε
∫
R3

( f u−n + gv−n )dx ≤ Cε(| f | 6
5
∥u−n ∥ + |g| 65 ∥v

−
n ∥).

Therefore,

ε

∫
R3

( f u−n + gv−n )dx = 0, n→ ∞.

Next, we need to verify that

Φε(u+n , v
+
n )→ m, ⟨Φ

′

ε(u
+
n , v
+
n ), (φ, ψ)⟩ → 0.

Given that ∥u−n ∥ = 0, ∥v−n ∥ = 0, n→ ∞ and ε
∫
R3( f u−n + gv−n )dx = 0, n→ ∞, we have

Φε(un, vn) =
1
2

(a1∥un∥
2 + a2∥vn∥

2) +
1
4

(b1∥un∥
4 + b2∥vn∥

4) −
1
3

∫
R3

(u+)α(v+)βdx

− ε

∫
R3

( f un + gvn)dx

=
1
2

[a1(∥u+n ∥
2 + ∥u−n ∥

2) + a2(∥v+n ∥
2 + ∥v−n ∥

2)] −
1
3

∫
R3

(u+n )α(v+n )βdx

+
1
4

[b1(∥u+n ∥
4 + ∥v+n ∥

4) + b2(∥v+n ∥
4 + ∥v−n ∥

4)] − ε
∫
R3

g(v+n − v−n )dx

− ε

∫
R3

f (u+n − u−n )dx
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=
1
2

(a1(∥u+n ∥
2 + a2(∥v+n ∥

2) +
1
4

(b1(∥u+n ∥
4 + b2(∥v+n ∥

4)

−
1
3

∫
R3

(u+n )α(v+n )βdx − ε
∫
R3

( f u+n + gv+n )dx + o(1)

=Φε(u+n , v
+
n ) + o(1).

Given that ∥u−n ∥ = 0, ∥v−n ∥ = 0, n→ ∞ and ε
∫
R3( f u−n + gv−n )dx = 0, n→ ∞, we have

⟨Φ
′

ε(un, vn), (φ, ψ)⟩ =a1

∫
R3
∇un∇φdx + a2

∫
R3
∇vn∇ψdx + b1∥un∥

2
∫
R3
∇un∇φdx

+ b2∥vn∥
2
∫
R3
∇vn∇ψdx −

α

3

∫
R3

(v+n )β(u+n )α−1φdx

−
β

3

∫
R3

(u+n )α(v+n )β−1ψdx − ε
∫
R3

( fφ + gψ)dx

=a1

∫
R3
∇(u+n − u−n )∇φdx + a2

∫
R3
∇(v+n − v−n )∇ψdx

+ b1(∥u+n ∥
2 + ∥u−n ∥

2)
∫
R3
∇(u+n − u−n )∇φdx

+ b2(∥v+n ∥
2 + ∥v−n ∥

2)
∫
R3

(∇v+n − v−n )∇ψdx

−
α

3

∫
R3

(v+n )β(u+n )α−1φdx −
β

3

∫
R3

(u+n )α(v+n )β−1ψdx − ε
∫
R3

( fφ + gψ)dx

=a1

∫
R3
∇u+n∇φdx + a2

∫
R3
∇v+n∇ψdx + b1∥u+n ∥

2
∫
R3
∇u+n∇φdx

+ b2∥v+n ∥
2
∫
R3
∇v+n∇ψdx −

α

3

∫
R3

(v+n )β(u+n )α−1φdx

−
β

3

∫
R3

(u+n )α(v+n )β−1ψdx − ε
∫
R3

( fφ + gψ)dx + o(1)

=⟨Φ
′

ε(u
+
n , v
+
n ), (φ, ψ)⟩ + o(1).

Then, we can obtain a nonnegative bounded sequence for Φε. We complete the proof.

Lemma 4.4. Suppose that (C.1), (C.2) hold. Then, there exists ε∗∗ ∈ (0, ε∗) such that for any ε ∈ (0, ε∗∗)
where Λ is the Maximum value for p(t), the following statements hold:

(i) a1 = a2 = 0, m ≤ sup
t≥0
Φε(tu′, tv′) < Λ − ε2(| f | 6

5
+ |g| 6

5
)S

1
4 ;

(ii) a1 = 0, a2 , 0, m ≤ sup
t≥0
Φε(tu′, tv′) < Λ −

9ε2|g|26
5

16a2S
− ε2| f | 6

5
S

1
4 ;

(iii) a1 , 0, a2 , 0, m ≤ sup
t≥0
Φε(tu′, tv′) < Λ −

9ε2| f |26
5

16a1S
−

9ε2|g|26
5

16a2S
.

Proo f . Let

h(t) = Φε(tu′, tv′) =
1
2

(a1∥u′∥2 + a2∥v′∥2)t2 +
1
4

(b1∥u′∥4 + b2∥v′∥4)t4 −
1
3

t6
∫
R3

(u′)α(v′)βdx
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− εt
∫
R3

( f u′ + gv′)dx,

and

p(t) =
1
2

(a1∥u′∥2 + a2∥v′∥2)t2 +
1
4

(b1∥u′∥4 + b2∥v′∥4)t4 −
1
3

t6
∫
R3

(u′)α(v′)βdx.

Then, there exists t1 > 0 such that p′(t1) = 0. In this case, we have

t2
1 =

1
4 (b1∥u′∥4 + b2∥v′∥4) +

√
1
16 (b1∥u′∥4 + b2∥v′∥4)2 + 1

2 (a1∥u′∥2 + a2∥v′∥2)
∫
R3(u′)α(v′)βdx∫

R3(u′)α(v′)βdx
. (4.3)

On the other hand, we know that (u′, v′) satisfies

a1∥u′∥2 + a2∥v′∥2 + b1∥u′∥4 + b2∥v′∥4 = 2
∫
R3

(u′)α(v′)βdx. (4.4)

Combining (4.3) and (4.4), we obtain t1 = 1 and

Λ = max
t>0

p(t) = p(t1) =
1
3

(a1∥u′∥2 + a2∥v′∥2) +
1

12
(b1∥u′∥4 + b2∥v′∥4).

Let ε1 ∈ (0, ε∗]. Then, for t2 ∈ (0, t1) and ε ∈ (0, ε1), we have:
(i) when a1 = a2 = 0,

max
0≤t≤t2

h(t) ≤ max
0≤t≤t2

(
1
2

(a1∥u′∥2 + a2∥v′∥2)t2 +
1
4

(b1∥u′∥4 + b2∥v′∥4)t4

< Λ − ε2(| f | 6
5
+ |g| 6

5
)S

1
4 .

(ii) when a1 = 0, a2 , 0,

max
0≤t≤t2

h(t) ≤ max
0≤t≤t2

(
1
2

(a1∥u′∥2 + a2∥v′∥2)t2 +
1
4

(b1∥u′∥4 + b2∥v′∥4)t4

< Λ −
9ε2|g|26

5

16a2S
− ε2| f | 6

5
S

1
4 .

(iii) when a1 , 0, a2 , 0,

max
0≤t≤t2

h(t) ≤ max
0≤t≤t2

(
1
2

(a1∥u′∥2 + a2∥v′∥2)t2 +
1
4

(b1∥u′∥4 + b2∥v′∥4)t4

< Λ −
9ε2| f |26

5

16a1S
−

9ε2|g|26
5

16a2S
.

Choosing ε∗∗ ∈ (0, ε1] for any ε ∈ (0, ε∗∗), we can deduce that for all t ≥ t2,

max
t≥t2

h(t) ≤ max
t≥t2

p(t) − εt2

∫
R3

( f u′ + gv′)dx = Λ − εt2

∫
R3

( f u′ + gv′)dx.
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Furthermore, we obtain the following inequalities:
(i) when a1 = a2 = 0,

max
t≥t2

h(t) < Λ − ε2(| f | 6
5
+ |g| 6

5
)S

1
4 .

(ii) when a1 = 0, a2 , 0,

max
t≥t2

h(t) < Λ −
9ε2|g|26

5

16a2S
− ε2| f | 6

5
S

1
4 .

(iii) when a1 , 0, a2 , 0,

max
t≥t2

h(t) < Λ −
9ε2| f |26

5

16a1S
−

9ε2|g|26
5

16a2S
.

Therefore, we complete the proof.

Proof of Theorem 1.3. According to Remark 4.1, we can get that {(un, vn)} is bounded and
nonnegative. Up to a subsequence, there exists (u, v) ⊂ E such that un ⇀ u, vn ⇀ v in E, un → u,
vn → v in Ls

loc(R
3) × Ls

loc(R
3)(1 ≤ s < 2∗) and un → u, vn → v a.e in R3. By applying the concentration

compactness principle (see Proposition 2.2 in [29]), we can find non-negative measures µ and ν on
R3, a vector function (u, v) and an at most countable set Γ such that as n→ ∞,

|∇un|
2 + |∇vn|

2 ⇀ µ, |un|
α|vn|

β ⇀ ν (4.5)

in the sense of measure and

(i) ν = |u|α|v|β +
∑
i∈Γ
νiδxi , µ ≥ (|∇u|2 + |∇v|2) +

∑
i∈Γ
µiδxi;

(ii) µi ≥ S α,β(νi)
2

α+β , i ∈ Γ.
(4.6)

Here, δxi is the Dirac delta measure concentrated xi. We claim that Γ = ∅. Suppose by contradiction
that Γ , ∅. To obtain a contradiction, we estimate m = limn→∞Φε(un, vn) by utilizing the assumption
Γ , ∅ and the concentration compactness principle. By comparing this estimation of m with the one
provided in Lemma 4.1, we deduce a contradiction. To do this, we first present the following relevant
estimates. Fix k ∈ Γ. For ρ > 0, assume that φk

ρ ∈ C∞0
(
R3
)

satisfies φk
ρ ∈ [0, 1],

φk
ρ(x) = 1, f or |x − ak| ≤

ρ

2
; φk

ρ(x) = 0, f or |x − ak| ≥ ρ

and |∇φk
ρ| ≤

ρ

2 . It follows from ⟨(Φ
′

ρ(un, vn), (φk
ρun, 0)⟩ → 0 that

(a1 + b1∥un∥
2)(
∫
R3 un∇un∇φ

k
ρdx +

∫
R3 |∇un|

2φk
ρdx)

= α
3

∫
R3 uαnvβnφk

ρdx + ε
∫
R3 fφk

ρundx + o(1).
(4.7)

In the same way, it follows from ⟨(Φ
′

ρ(un, vn), (0, φk
ρvn)⟩ → 0 that

(a2 + b2∥vn∥
2)(
∫
R3 vn∇vn∇φ

k
ρdx +

∫
R3 |∇vn|

2φk
ρdx)

=
β

3

∫
R3 uαnvβnφk

ρdx + ε
∫
R3 gφρvk

ndx + o(1).
(4.8)
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First, we need to solve the lack of compactness problem from the critical Sobolev exponent which
causes the invariance of dilation. Combining (4.7), (4.8) and Hölder inequality, we have

A1 = lim
ρ→0

lim sup
n→∞

(a1 + b1∥un∥
2)|
∫
R3 un∇un∇φ

k
ρdx|

≤ lim
ρ→0

lim sup
n→∞

C(
∫

Bρ(ak )
|∇un|

2dx)
1
2 (
∫

Bρ(ak )
|∇φk

ρ|
2|un|

2dx)
1
2

≤ lim
ρ→0

C(
∫

Bρ(ak )
|u|6dx)

1
6

= 0

(4.9)

and

A2 = lim
ρ→0

lim sup
n→∞

(a2 + b2∥vn∥
2)|
∫
R3 vn∇vn∇φ

k
ρdx| = 0 (4.10)

where Bρ(ak) = {x ∈ R3 : |x − ak| < ρ}. By (4.5) and (4.6), we have

lim
ρ→0

lim sup
n→∞

(a1 + b1∥un∥
2)
∫
R3 |∇un|

2φk
ρdx + (a2 + b2∥vn∥

2)
∫
R3 |∇vn|

2φk
ρdx

≥ lim
ρ→0

lim sup
n→∞

(a1

∫
R3 |∇un|

2φk
ρdx + a2

∫
R3 |∇vn|

2φk
ρdx) + [b1(

∫
R3 |∇un|

2φk
ρdx)2

+ b2(
∫
R3 |∇vn|

2φk
ρdx)2]

≥ lim
ρ→0

lim sup
n→∞

(a1

∫
R3 |∇un|

2φk
ρdx + a2

∫
R3 |∇vn|

2φk
ρdx)

+ 1
2 (
√

b1

∫
R3 |∇un|

2φk
ρdx +

√
b2

∫
R3 |∇vn|

2φk
ρdx)2

≥ min(a1, a2)S α,βν
1
3
i +

1
2 min(b1, b2)S 2

α,βν
2
3
i ,

(4.11)

lim
ρ→0

lim sup
n→∞

(
α

3
+
β

3
)
∫
R3

uαnvβnφ
k
ρdx = 2 lim

ρ→0

∫
R3

uαvβφk
ρ + 2νi = 2νi, (4.12)

lim
ρ→0

lim sup
n→∞

∫
R3

( fφk
ρun + gφk

ρvn)dx = lim
ρ→0

∫
R3

( fφk
ρu + gφk

ρv)dx = 0. (4.13)

We can deduce from (4.7)–(4.13) that

νi ≥
1
2

min(a1, a2)S α,βν
1
3
i +

1
4

min(b1, b2)S 2
α,βν

2
3
i .

So, we have

νi ≥ (
min(b1,b2)S 2

α,β+
√

[min(b1,b2)]2S 4
α,β+32 min(a1,a2)S α,β

8 )3,

µi ≥ min(a1, a2)
min(b1,b2)S 3

α,β+
√

[min(b1,b2)]2S 6
α,β+32 min(a1,a2)S 3

α,β

8 .

For R > 0, assume that φR ∈ C∞0 (R3) satisfies φR ∈ [0, 1],

φR(x) = 1, f or |x| < R, φR(x) = 0, f or |x| > 2R,

and |∇φR| <
2
R . By applying the concentration compactness principle, we obtain

m = lim
n→∞
Φε(un, vn) −

1
4
⟨Φ

′

ε(un, vn), (un, vn)⟩
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= lim
n→∞

1
4

(a1∥un∥
2 + a2∥vn∥

2) +
1
6

∫
R3

uαnvβndx −
3ε
4

∫
R3

( f un + gvn)dx

≥ lim
R→∞

lim
n→∞

1
4

(a1

∫
R3
|∇un|

2φRdx + a2

∫
R3
|∇vn|

2φRdx) +
1
6

∫
R3

uαnvβnφRdx

−
3ε
4

∫
R3

( f u + gv)dx

≥
a1

4

∫
R3
|∇u|2dx +

a2

4

∫
R3
|∇v|2dx +

1
4
µi +

1
6
νi −

3ε
4

∫
R3

( f u + gv)dx.

Hence, we can infer that

m ≥
a1

4

∫
R3
|∇u|2dx +

a2

4

∫
R3
|∇v|2dx +

1
4
µi +

1
6
νi −

3ε
4

∫
R3

( f u + gv)dx. (4.14)

(i) If a1 = a2 = 0, by (4.14), we need to demonstrate that

m ≥
1
4
µi +

1
6
νi − ε

2(| f | 6
5
+ |g| 6

5
)S

1
4 ≥ Λ − ε2(| f | 6

5
+ |g| 6

5
)S

1
4 . (4.15)

By Lemma 2.1 and the fact that (u0, v0) satisfies (2.1), we can obtain:∫
R3 |u0|

α|v0|
βdx = 1

2

∫
R3 |∇u0|

2 + |∇v0|
2dx = (S α,β

2 )
3
2 (4.16)

and

S 1 =
∫
R3 |∇u0|

2dx = α
3 ( S α,β

2 )
3
2 , S 2 =

∫
R3 |∇v0|

2dx = β

3 (S α,β

2 )
3
2 . (4.17)

Combing with (4.16), (4.17) and (3.5), (u′, v′) satisfies∫
R3 |∇u′|2dx = 1

72b
α−2

4
1 b

β
4
2α

α+2
4 β

β
4 S 3

α,β,
∫
R3 |∇v′|2dx = 1

72b
α
4
1 b

β−2
4

2 α
α
4 β

β+2
4 S 3

α,β, (4.18)∫
R3(u′)α(v′)βdx = 1

1728b
α
2
1 b

β
2
2α

α
2 β

β
2 S 6

α,β.

Consequently, we have

p(t) =
1

20736
b
α
2
1 b

β
2
2α

α
2 β

β
2 S 6

α,β(α + β)t4 −
1

5184
b
α
2
1 b

β
2
2α

α
2 β

β
2 S 6

α,βt
6

=
1

5184
b
α
2
1 b

β
2
2α

α
2 β

β
2 S 6

α,β(
3
2

t4 − t6).

Based on p′(t) = 0, we can determine that t = 1. Therefore, there exists

Λ = max
t>0

p(t) =
1

10368
b
α
2
1 b

β
2
2α

α
2 β

β
2 S 6

α,β. (4.19)

On one hand, considering

f (α) = α
α
2 β

β
2 = α

α
2 (6 − α)

6−α
2
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we have

f (α)min = f (3).

Hence,

Λmin =
1

384
b
α
2
1 b

β
2
2 S 6

α,β.

On the other hand, we can derive

νi

6
≥

1
6
× (

min(b1, b2)S 2
α,β

4
)3 =

1
384

[min(b1, b2)]3S 6
α,β.

Therefore, it is only when α = β = 3 and b1 = b2 that

m ≥
1
6
νi − ε

2(| f | 6
5
+ |g| 6

5
)S

1
4 ≥ Λmin − ε

2(| f | 6
5
+ |g| 6

5
)S

1
4 (4.20)

which contradicts Lemma 4.4 (i).

Remark 4.2. The reason for only considering the case where α = β = 3 is that after extensive
estimation, it is only when α = β = 3 that Λ reaches its minimum value Λmin. Therefore, the estimate
satisfied by m contradicts Lemma 4.4 (i). For the cases in Lemma 4.4 (ii) and (iii), obtaining the result
is challenging due to the mutual interaction of (u, v) adding complexity to our computations. This will
be our main task in the following work.

Moving forward, we will only consider the case where a1 = a2 = 0, α = β = 3 and b1 = b2.
We need to solve the lack of compactness problem from the region R3 which causes the invariance of
translation.

For R > 0, define

µ∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R
|∇un|

2 + |∇vn|
2dx,

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R

uαnvβndx.
(4.21)

By concentration compactness principle, we obtain

lim sup
n→∞

∫
R3 |∇un|

2 + |∇vn|
2dx =

∫
R3 dµ + µ∞,

lim sup
n→∞

∫
R3 uαnvβndx =

∫
R3 dν + ν∞,

(4.22)

and S α,βµ
1
3
∞ ≤ ν∞. Next, we estimate ν∞ and µ∞. Assume that χR ∈ C∞0 (R3) satisfy χR ∈ [0, 1], we have

χR(x) = 0, f or |x| <
R
2
, χR(x) = 1, f or |x| > R

where |∇χR| <
3
R . It follows from ⟨(Φ

′

ε(un, vn), (χRun, 0)⟩ → 0 that

(a1 + b1∥un∥
2)(
∫
R3 un∇un∇χRdx +

∫
R3 |∇un|

2χRdx)
= α

3

∫
R3 uαnvβnχRdx + ε

∫
R3 fχRundx.

(4.23)

Electronic Research Archive Volume 31, Issue 9, 5286–5312.



5308

In this way, we can also have from ⟨(Φ
′

ε(un, vn), (0, χRvn)⟩ → 0 that

(a2 + b2∥vn∥
2)(
∫
R3 vn∇vn∇χRdx +

∫
R3 |∇vn|

2χRdx)
=

β

3

∫
R3 uαnvβnχRdx + ε

∫
R3 gχRvndx.

(4.24)

By Hölder inequality, we have

B1 = lim
R→∞

lim sup
n→∞

(a1 + b1∥un∥
2)|
∫
R3 un∇un∇χRdx|

≤ lim
R→∞

lim sup
n→∞

C(
∫

R
2 ≤|x|≤R

|∇un|
2dx)

1
2 (
∫

R
2 ≤|x|≤R

|∇χR|
2|un|

2dx)
1
2

≤ lim
R→∞

C(
∫

R
2 ≤|x|≤R

|∇χR|
3dx)

1
3 (
∫

R
2 ≤|x|≤R

|u|6dx)
1
6

≤ lim
R→∞

C(
∫

R
2 ≤|x|≤R

|u|6dx)
1
6 = 0

(4.25)

and

B2 = lim
R→∞

lim sup
n→∞

(a2 + b2∥vn∥
2)|
∫
R3 vn∇vn∇χRdx| = 0. (4.26)

Combining (4.21), we have

lim
R→∞

lim sup
n→∞

(a1 + b1∥un∥
2)
∫
R3 |∇un|

2χRdx + (a2 + b2∥vn∥
2)
∫
R3 |∇vn|

2χRdx

≥ lim
R→∞

lim sup
n→∞

(a1

∫
R3 |∇un|

2χRdx + a2

∫
R3 |∇vn|

2χRdx) + [b1(
∫
R3 |∇un|

2χRdx)2

+ b2(
∫
R3 |∇vn|

2χRdx)2]
≥ lim

R→∞
lim sup

n→∞
(a1

∫
|x|>R
|∇un|

2χRdx + a2

∫
|x|>R
|∇vn|

2χRdx)

+ 1
2 (
√

b1

∫
|x|>R
|∇un|

2χRdx +
√

b2

∫
|x|>R
|∇vn|

2χRdx)2

≥ 1
2b1S 2

α,βν
2
3
∞

(4.27)

and

(α3 +
β

3 ) lim
R→∞

lim sup
n→∞

∫
R3 uαnvβnχRdx = lim

R→∞
lim sup

n→∞
2
∫
|x|≥ R

2
uαnvβnχRdx

≤ lim
R→∞

2
∫
|x|≥ R

2
uαnvβndx = 2ν∞.

(4.28)

Otherwise, we get

lim
R→∞

lim sup
n→∞

∫
R3

( fχRun + gχRvn)dx = lim
R→∞

∫
R3

( fχRu + gχRv)dx = 0. (4.29)

Combining (4.23)–(4.29), we have

ν∞ ≥
1
4

b1S 2
α,βν

2
3
∞.

We obtain one of the following two cases holds:
(1) ν∞ = 0; µ∞ = 0.
(2)

ν∞ ≥ (
b1S 2

α,β+
√

b2
1S 4

α,β

8 )3,

µ∞ ≥ 0.
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Suppose that case (2) holds. We deduce that

m = lim
n→∞
Φε(un, vn) −

1
4
⟨Φ

′

ε(un, vn), (un, vn)⟩

≥
a1

4

∫
R3
|∇u|2dx +

a2

4

∫
R3
|∇v|2dx +

1
4
µ∞ +

1
6
ν∞ −

3ε
4

∫
R3

( f u + gv)dx.

Considering as the same as (4.15)–(4.20), we get

m ≥
1
4
µ∞ +

1
6
ν∞ − ε

2(| f | 6
5
+ |g| 6

5
)S

1
4 ≥ Λ − ε2(| f | 6

5
+ |g| 6

5
)S

1
4

which is a contradiction. Thus, case (1) holds.

Combining (4.5), (4.22) with Γ = ∅, we have:

lim sup
n→∞

∫
R3

uαnvβndx =
∫
R3

uαvβdx.

Applying Fatou’s lemma, we obtain:∫
R3

uαvβdx ≤ lim inf
n→∞

∫
R3

uαnvβndx ≤ lim sup
n→∞

∫
R3

uαnvβndx =
∫
R3

uαvβdx.

Thus, we have

lim
n→∞

∫
R3

uαnvβndx =
∫
R3

uαvβdx.

Set ∥un∥ → d. Then, by limn→∞

∫
R3 uαnvβndx =

∫
R3 uαvβdx, we have

0 =(Φ
′

ε(un, vn), (un, 0)) + o(1)

=(a1 + b1∥un∥
2)∥un∥

2 −

∫
R3

uαnvβndx − ε
∫
R3

f undx + o(1)

=(a1 + b1d2)d2 −

∫
R3

uαvβdx − ε
∫
R3

f udx

and

0 =(Φ
′

ε(un, vn), (u, 0)) + o(1)

=(a1 + b1∥un∥
2)
∫
R3
∇un∇udx −

∫
R3

uα−1
n vβnudx − ε

∫
R3

f udx + o(1)

=(a1 + b1d2)∥u∥2 −
∫
R3

uαvβdx − ε
∫
R3

f udx

which deduces d = ∥u∥. Combining un ⇀ u in D1,2(R3), we obtain un → u in D1,2(R3). Following the
same approach and steps, we can also establish that vn → v in D1,2(R3). According to Remark 4.1 and
Lemma 4.4, there exists a non-negative bounded sequence (un, vn) ⊂ E that satisfies

Φε(un, vn)→ m < Λ, Φ′ε(un, vn)→ 0.

Electronic Research Archive Volume 31, Issue 9, 5286–5312.



5310

Consequently, by un → u in D1,2(R3) and vn → v in D1,2(R3) we have

Φε(un, vn)→ m = Φε(u, v), Φ′ε(un, vn)→ 0 = Φ′ε(u, v).

This completes the proof of the existence of the second solution.

5. Conclusions

In this paper, we first consider the existence of a local minimum solution for problem (1.1) by
applying the Ekeland variational principle. Next, we investigate the existence of a second solution for
problem (1.1) by applying the mountain pass lemma and the concentration compactness principle. To
obtain the energy estimation of the associated functionalΦε for problem (1.1), we will need the explicit
form of (λ1, λ2). Therefore, when a1 = a2 = 0 we have: Assume α = β = 3 and b1 = b2, there exists
ε∗∗ ∈ (0, ε∗] such that for any ε ∈ (0, ε∗∗), problem (1.1) has another solution. The value of ε∗ is defined
in Theorem 1.2. The reason for only considering the case where α = β = 3 is that after extensive
estimation, it is only when α = β = 3 that Λ reaches its minimum value Λmin. Therefore, the estimate
satisfied by m contradicts Lemma 4.4 (i). For the cases in Lemma 4.4 (ii) and (iii), obtaining the result
is challenging due to the mutual interaction of (u, v) adding complexity to our computations. This will
be our main task in the following work.
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Ann. Inst. H. Poincarè Anal., Non Lineairè, 9 (1992), 281–304. https://doi.org/10.1016/S0294-
1449(16)30238-4

Electronic Research Archive Volume 31, Issue 9, 5286–5312.

http://dx.doi.org/https://doi.org/10.1137/0121004
http://dx.doi.org/https://doi.org/10.1007/BF02418013
http://dx.doi.org/https://doi.org/10.1016/S0294-1449(16)30238-4
http://dx.doi.org/https://doi.org/10.1016/S0294-1449(16)30238-4


5311

5. J. Liu, J. F. Liao, C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent
in RN , J. Math. Anal. Appl., 429 (2015), 1153–1172. https://doi.org/10.1016/j.jmaa.2015.04.066
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