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Abstract: In this paper, we study the following Kirchhoff-type system:
~(ar + by [, IVuPdx)Au = Z5lul*ulvf + ef(x),
—(ay + by [ [VvPdx)Av = %Iul"lvlﬁ‘zv + eg(x), (0.1)
(u,v) € D"2(R?) x D'2(R?),

where aj,a, > 0, b;,b, > 0, @, > 1, a+ B = 6 and f(x),g(x) > 0, f(x),glx) € L%(R3). The
aim of this paper is to demonstrate the existence of at least two solutions for system (0.1), utilizing
the variational method. To achieve this, we construct an energy functional and analyze its critical
points by applying the Ekeland variational principle, the mountain pass lemma and the concentration
compactness principle.

Keywords: positive solutions; Kirchhoff-type systems; critical Sobolev exponent; concentration
compactness principle; mountain pass lemma

1. Introduction

In this paper, we mainly study the following Kirchhoft-type system
—(ar + by [ [VuPdx)Au = 2jul"2ulvf + ef (x),
—(ay + by fR3 [Vv|?dx)Av = j—@lul“Ivlﬂ‘zv + £g(x), (1.1)
(u,v) € D'?(R?) x D'2(RY),

under the condition of (C.1),(C.2) where (C.1): aj,a, > 0, by,b, > 0, o, > 1, o+ = 2" =
2x3/(3-2)=6,&>0;(C2): f(x),g(x) 20, f(x),g(x) £0, f(x),g(x) € Lg(R3). 2" = % is the
critical Sobolev exponent where N = 3.
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It is well known that the critical problem

CAu = |22
{ Au=ul"""u, xeQ, (1.2)

u=0, xedQ

does not have a minimizing energy solution when Q is a domain different from R". This result is
derived from the sharp Sobolev inequality on R [1-3]. However, the situation is different if there is a
nonhomogeneous term f(x):

(1.3)

—Au=uP 2u+puf(x), xeQ,
u=0, xedQ.

Tarantello [4] showed that problem (1.3) has at least two solutions in bounded domains. The main
idea is to use the Ekeland variational principle to get one solution uy which is a local minimum solution
and use the mountain pass theorem to obtain the second solution u; with the energy

| Y
I(uy) < I(up) + NSE

where S is the best constant for the Sobolev embedding D'*(RY) < L¥2(RV), namely

S - fRN \Vul>dx
= in

weDIZENO) ([ Jul#2dx)' T

Let U be a solution for the following problem:

Ay — (22 N
{ Au = |u|” ~“u,x € RY, (1.4)

u € D2(RN).
Then, we know

N-2 N-=2

(N(N -2))

X
=| ™
i8] 9

Usy(x) =

which are all positive solutions of (1.4) (see [5,6]) for any & > 0 and y € RY. Moreover, we know that
U satisfies

ol

IUIF = Uk =S (1.5)

where ||U|| = (fRN IVul?dx)? and |U|, = (fRN lul*dx)s are the norms of the Sobolev space D'? (RN)

and Lebesgue space L* (RN ) , 8 € [2,27], respectively. Han [7] extended (1.3) to the following elliptic
system

—Au = j—fulul"“zlvlﬁ + ef(x), in Q,

6| e :
—Av = Zul VP + sg(x), in Q, (1.6)
u=v=0, on 0
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in bounded domains. The author used upper and lower solution methods and variational methods to
prove that the problem (1.6) has at least two solutions for both subcritical and critical cases. The first
solution (i1, 7y) of (1.6) is also a local minimizer of the associated functional I and they obtained the
second solution (i1, V) with

Sag s

2
I(ity, V) < I(iig, Vo) + —
(@11, V1) < I(ito, Vo) N( >

where
¢ Jow [Vul? + |VvPdx

= 1mn .
2 uneD 2@ DREIN 00 ( [y lufevpd)

Indeed, according to [7] we know that
Uy = kU, Vo = v
is a solution of the following system

_ 2aq,,|a-2
—Au = ﬁlul ulvp’,
—-Av = @lul"lvlﬂ‘zv, (1.7)
(u,v) € D'"2(RN) x D'2(RN),

where U is a solution of (1.4),

2a
a+p

2a )G(M)a—z]ﬁé—m

k=1 a+p 2a

PO Lyt =

and a B o a
S.5=[(=)"F + (=) #F]S.
B [(,3) +(ﬁ) ]

We are certain that the existence of solutions will be affected by the nonhomogeneous term f(x) or
g(x) and the existence of a second solution for (1.3) or (1.6) will also be affected by Eq (1.2) or system
(1.7).

When a; = a;, by = by, f = g and u = v, system (1.1) transforms into the following individual
equation.

{ —(a + by [, [VuPdx)Au = u 2u+ef(x), in  RY, (18)

u € D'2(RV)

which is related to the stationary analogue of the equation

Fu Py E (tou, b 0u
pw*rzfo 5 405z =0

presented by Kirchhoff in [8]. Here, the parameters in (1.8) carry the following interpretations: p
represents the mass density, P the initial tension, / the cross-sectional area, E the Young’s modulus of
the material and L the length of the string. It was underscored in [9] that the Kirchhoft-type problem
models a variety of physical and biological systems where u characterizes a process that relies on its
own average (e.g., population density). Early investigations into the Kirchhoft-type problem can be
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traced back to the work of Bernstein [10] and PohoZaev [11]. Nevertheless, Eq (1.8) only attracted
significant attention after Lions [12] introduced an abstract framework for such problems.

Liu et al. [5] discovered that problem (1.8) has at least two positive solutions when N = 3,4 under
certain assumptions for f(x). Specifically, to consider the existence of a second solution for problem
(1.8), they needed to establish the existence of a unique positive solution for (1.8) when £ = 0. In fact,
they found that the positive solutions of

—(@+b [, [VuPdx)Au = [uf 2u, in R,
u € D' (RY)

can be expressed as
Veay () = A7 Ugy(x)

with
N N=2
A=a+bS24 7.

The solvability or multiplicity of the Kirchhoff type equation with critical exponent has been
extensively studied in recent years; see, for instance, [5, 13—25] and references therein.

Inspired by the ideas presented in [5] and [4], we discuss system (1.1) with & > 0 small enough.
First, we establish the existence of solutions for problem (1.1) when & = 0:

Theorem 1.1. Assume that € = 0 and (uy, vy) is a positive solution of (1.7) and

Sa,ﬂ 3

@ B Sap.:
Si= | VuPdx= = 2, Sy = | |[Vwldx = Z(—=>)2.
1 fR3| uol~dx 3(2) 2 fR3| vol“dx 3(2)

Then, we have
(i) If a; = a, = 0, problem (1.1) has a unique positive solution z = (u’,v') where

a=2

W= (BiS )T (BaS)fug, v = (018 DFB2S2) T v,
(ii) If a; and a, are not equal to O at the same time, problem (1.1) has a unique positive solution
z =,V = (diug, A2vp).
Indeed, if a; = 0,a, # 0,
20208 = DD (b, S )P, AT =y + (5rS)(byS )T (AT
(iii) If a; # 0> 0),a, # 0(> 0), problem (1.1) has at least a positive solution z = (u',V') =

(Ayug, A2vp) where
24 B a 2—a

L =CFCE, A=CiC

and

@

2 B a 2
Ci=a + C]4 CgblSl, Cr,=a +C{‘C24 szz.
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Remark 1.1. In fact, from the following equations

2-a

28 B a
L=CFCS, L=Cic)

and
2-,

25 B ¢ 2-a
Ci=a + C14 CgblSl, Co=ar + C14C24 szz,

we find that the unique or explicit form of (11, Ay) is affected by ay, a,, by, by. Thus, we can only obtain
the uniqueness of (11, Ay) in cases (i) — (ii) and the explicit form of (1, Ay) in case (i). Furthermore, we
believe that if ay, as, by, by satisfy certain assumptions, (1;, A;) will be unique, and we can also obtain
the explicit form of (1, A,).

. “ﬁﬂf S3, 968 Sa. :
We define & = W where g( ‘3) PN — 5( ‘3)5 = s min(by, by).

Next, we consider the existence of a local minimum solution for problem (1.1) by applying the Ekeland
variational principle.

Theorem 1.2. Assuming conditions (C.1) and (C.2) hold, system (1.1) has a local minimum solution
forany € € (0,&").

Remark 1.2. First, we demonstrate that the minimal value of the set minimization problem can be
attained by (u,v) and then we prove that (u,v) is a solution of (1.1). Unlike with single equations, due
to the mutual interaction of (u, V), it is challenging to obtain ||ul| > ||u,|| + o(1), ||Vl = ||[v.|| + o(1) where
(u,, v,) represents the minimizing sequence of co. The definitions of u,, v,,u, v, cy can be found in the
proof of Theorem 1.2 in Section 4. By drawing upon the proof method from Theorem 1.3 in [5] and
employing meticulous estimates, we can overcome this difficulty.

Finally, we investigate the existence of a second solution for problem (1.1) by applying the
mountain pass lemma and the concentration compactness principle. To obtain the energy estimation
of the associated functional ®, for problem (1.1), we will need the explicit form of (4, 4,).
Therefore, when a; = a, = 0 we have:

Theorem 1.3. Assume a = 8 = 3 and by, = b,, there exists € € (0, &"] such that for any € € (0, &),
problem (1.1) has another solution. The value of €* is defined in Theorem 1.2.

Remark 1.3. First, we prove that the associated functional @, for problem (1.1) satisfies the mountain
pass structure, from which we obtain a (PS) sequence. Then, we establish the (PS) condition by using
the concentration compactness principle. From this, we obtain another solution for (1.1). Owing to
the lack of compactness (a + B = 2*), the mutual action of (u,v) and the influence of the nonlocal term,
there arises a new challenge in employing the concentration compactness principle. Moreover; it is
difficult to derive an explicit expression when the values of a, and a, are non-zero. The reason for only
considering the case where a = 8 = 3 is that after extensive estimation, it is only when a = 3 = 3 that
A reaches its minimum value A,,;,. Therefore, the estimate satisfied by m contradicts Lemma 4.4(i).
The definitions of A, A\, and m as well as the details of their related proofs can be found in Remark
4.2 and the Proof of Theorem 1.3.

Remark 1.4. The innovation of this paper lies in overcoming the lack of compactness (a + 8 = 2*)
and the mutual interaction of (u,v) to demonstrate the existence of at least two solutions for systems
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(1.1). This extends the results from single equations in [5] to a system of equations. We accomplished
this by applying the Ekeland variational principle, the mountain pass lemma and the concentration
compactness principle as well as through some precise estimates.

The structure of this paper is as follows: Section 2 provides some preliminary background
knowledge. Section 3 is dedicated to the proof of Theorem 1.1. Finally, we present the proofs for
Theorem 1.2 and Theorem 1.3.

2. Notations and preliminary results

First, we introduce the following notations, which will be useful for proving the upcoming
theorems in this section.
e The function space corresponding to problem (1.1) is E = D'*(R?®) x D'*(R?) with the space norm
defined as [|(u, V)|l = (lull® + |[V|[*)2. E* is the dual space of E.
o(u,v) € E, B,={uekE:|(u,v) <p}
B, ={(u,v) € E:|(u,v)Il < p}, 0B, = {(u,v) € E : ||(u,v)|| = p}.
e The following elliptic system

—Au = fT“Iul"‘ZMIVIﬁ,
—Av = 02—+B|u|a|v|ﬁ—2v, 2.1
(u,v) € D'2(R?) x DI2(R3)

has a positive radial vector solution zy = (ug, vo) under the condition (C.1) (see [7]).
e y* = max{0,u}, u= = max{0, —u}.

Let us denote the energy functional @, : E — R corresponding to (1.1) by

Qo (u,v) = —(611||th|2 +alVIP) + 5 (191||th|4 + bl vlI*) = 3 f W Ydx ~ 8f3(fu + gvdx.

Obviously, @, is of C! and has the derivative given by

(D1, ), (0, 0)) =(ar + bullul) f ViuVdsx + (ax + balvl) f VoVyds
R3
¢ f Pty gdx — B f WP ydx - s f (foo + g)dx.

Next, we present the following lemma which can be utilized in the proof of Theorem 1.3.
Lemma 2.1. Assume o, > 1,a + 8 = 6 and define

Vul’d . Vul?+|Vv*d
S = inf Joa IVulPdx . Sap= inf o3 1Vul+v] 2x ,
ueD2(RINO} ([ 5 |u|a+ﬂdx)a+ﬁ (W)EENO0} ( [ [uje|vfdx) @R
§ .= inf J3 alVulP+bIVvPdx 2.2)
T WIENO0) ([, oo TP '
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Then,

Sap = [(%)a’f-ﬂ + (%)‘a‘iﬂ]s,

~ @ B @ B o a
Sop=aBbF[(=)F + (=) «F]S
g B B

where a, b is any real number.

Proof. Refer to [26] for the proof of S,z = [(%)/5 + (%)‘%]S ; we will provide the proof of S o later.

Assume that w, is a minimizing sequence for S, let s, > 0 to be chosen. Taking u, = W Vn =
L

W in (2.2), we have that

a L S2 + tz jl‘afi |an|2dx

a=fbaip > 80p (2.3)
(s78)7F ( [, lw,|ePdx)77
Noting that
s+ 1 NE R
- = ()™ + (=), (2.4)
(S(Yt,B)(Hﬁ t N
we can proceed to define the function as follows.
28 2
g(x) = x¥# + x5, x > 0.
When x = %, there exists the minimum value
a a s A -
8(min = 8(([5) = ()T + (Z)=. (2.5)
BB B
Considering (2.3)—(2.5), we get
@I + (IS 2 Sap (2.6)
Then, we need to prove that
acﬁﬂba’iﬂ[(g)ﬁﬁ + (%)afﬁ]s <Sup. 2.7)

Let (u,,v,) be a minimizing sequence for Saﬁ. Define z, = s,v,, for some s, > 0 such that

|| Pdx = f |za|"Pdlx. (2.8)
R3 R3

By Young’s inequality

f izl < —2 f " Px + —P— f 2" dx. 2.9)
R3 a + B R3 a + ﬂ R3

Electronic Research Archive Volume 31, Issue 9, 5286-5312.
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By (2.8), we have

( f | 2afPdx) ™ < ( f | dx)es = ( f Izl P dx)es (2.10)
R3 3 R3

R

Using (2.10), we have

2B
fs alVu? + Vv, Pdx 5.7 [ alVu,l* + b|Vv,Pdx
= >
2 2 -
(fos lttal v, P )7 (oo a2, dx) 77
% fR3 |Vu,|>dx 2z fRS \Vz,[>dx

aih - + bs,” s, -
(fR3 |t |* P dx) =5 (J]l‘{3 |Zn|a+ﬁd-x)”+ﬁ

> h(s,)S,

n

28 =2a

where h(s,) = as,” + bs;”. Then, we get

Therefore, (2.7) is proved. Combining (2.6), we get

~ a B (O] a _o
Sop=aFbeB[(=)s +(=)"6]S.
p=a [(ﬁ) +(/3) ]
]

Ekeland’s variational principle is a tool used to obtain a local minimum solution. We include it here
for the convenience of the readers.

Theorem 2.1. ( [27], Theorem 4.1) Let M be a complete metric space with metric d and let [ : M —
(=00, +00 | be a lower semicontinuous function, bounded from below and not identical to +oo. Let
€ > 0 be given and u € M be such that

I(u) < %fl + €.
Then, there exists v € M such that
1) <I(w), d(u,v)<I1.

For each w € M, one has
IWw) < I(w) + ed(v,w).

3. Proof of Theorem 1.1
In this section, we provide the proof of Theorem 1.1. The key idea is to observe that the right-
hand side of problem (1.1), namely a, + b, fR3 |Vul>’dx and a, + b, fR3 [Vv[?dx, can be regarded as two
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constants. This insight guides us to construct the solution for problem (1.1) by utilizing the solution
for problem (2.1) and the method of undetermined coefficients.

Proof of Theorem 1.1.The proof of Theorem 1.1 is inspired by the idea presented in [5]. For any
C,Cy >0, let (u',v") = (A1ug, A2vy) wWhere (1, V") is a vector solution of (3.1), 4 > 0, 4, > 0.

i 3.1)

~Cidu = 22l ulyp,
2 _
—CAv = C,—H;|M|“|V|B 2.

By (3.1) and the fact that (g, v) satisfies (2.1), we can obtain

Cy =172,
§ 3.2
{Q:nﬁ% G:2)
which implies
A =Crct
LY (33)
/12 = 18C28

Now, we consider the equations

Cy=a, +b f \Vu'l’dx, Ch=ar+ b, f IVV'|2dx.

R R

Let [, [Vuoldx =Sy, [[,IVvoPdx = S. Thus, C,, C; satisty

boo 3.4

28 B
C, :a1+C14 Cé‘blSl,
C2:a2+CIZCZTanSz.

Next, we consider the existence and uniqueness of the positive solution from (1.1) when & = 0.
(1) If a; =0, a, = 0, we deduce from (3.4) that

Ci = (blslfff‘”(bzszz)f,
Cy = (b1S1)5(h2S2) 7.

Combining with (3.3), we have

Ay = (blsl)%*(bzsz)‘f,
a B
Ay = (01§ )3 (DS2) 3.

Hence, we have

{ W = (b1S1)F (b2S2)f o, (3.5)

V = (b1S 1) (252)F v,

(i1) If a; and a, are not equal to 0 at the same time, we can assume a; = 0 and a, # 0 which implies
that

b =
Ci=CP(b11S ), Cy=ay+ (b:S,)(b1S 1) C27
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According to the above, we define
A=bS)biSN¥ >0, -4<k=42<iB=a>0
where x > B. We want to determine the number of C,; we only need to find the solution of

f(x)=Ax*—x+B=0. (3.6)
(1) When 8 € (1,2), k € (-3,0), we can get
f(x)=Akx*1 -1 <0.

Considering f(x) > 0 as x = B, f(x) — —oo as x — +oo. Thus, there exists a unique C, > B such that

f(Cy) =0.
(2") When 8 =2, k =0, from (3.6)

Ci = (b2S,b1S | + a)? b, S,
C, = szzblsl + a.

Considering (3.2), (3.3), we have

u' = (b28:2018 + Clz)%uo,
Vv = (b1S1) .
(3') When B € (2,5), k € (0, 2), we know xy = (Ak)‘ﬁ is the only maximum from
f'(x) = Akx*"' =1 =0.

Considering f(x) > 0 as x — B, f(x) —» —oo as x — +oo. Thus, there exists a unique C, > B such
that f(C,) = 0. So, we can prove that there exists a unique («’,V") as a result of the only A;, 4,. If
a; # 0 and a, = 0, we can get a unique (¢, V") in the same way.

(iii) If a; # 0(> 0), a, # 0(> 0), we deduce from (3.4) that

Cl—dl _ blSl XQ
CQ—CZZ B szz Cl.

(3.7)
Let C; = AC,. By the above equality, we have
(028 2C2) A% = (a15252)A = (C, — az)by S = 0.

Because A = % > 0, we deduce from (3.7) that

_ a1byS 5 + (@b 2)* + 4Ca — a2)b,S 1525 2C,
2b,8,C, '

A

Then, we have

4 2-@ a1b252 + \/(a1b2S2)2 + 4(C2 - az)b151b2S2C2

Cr—ay = (2S2) ¥ G, ( 5 )i
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LetA' = (Di(0:8,)%, B =aihsSs, C =ay D =4bbS,S,and

hx)= AxTB + VB2 +Dx(x-C )i —x+C.
As a result of
x — 400, h(x) = —00; x — C, h(x)> 0.

Then, there exists a C, > 0 such that #(C,) = 0. Because the uniqueness is not clear, we have some
difficulties in considering the existence of the second solution of problem (1.1). Hence, the Theorem
1.1 is proved.

4. Proofs of Theorem 1.2 and Theorem 1.3

In this section, we establish the existence of two solutions for (1.1) by using some variational
methods. First, we will present the proofs of Theorem 1.2 and Theorem 1.3 utilizing various Lemmas
for each proof, respectively. We consider the existence of a local minimum solution for problem (1.1)
by applying the Ekeland variational principle.

Lemma 4.1. Assume that (C.1),(C.2) hold. Then, there exists p > O such that for any € € (0, g"), one
has ®.|sp, > a for some a > 0. For the definition of €*, please refer to Page 4, line 26.

Proof. By the Holder inequalities, by > 0, b, > 0, the complete square formula and Sobolev
inequalities, one has

@) =g @l + aalblP) + Z il + balbi) - 3 fR WP
- Sf (fu+ gv)dx
.
>3 @llll + aalIP) + ZGill + bl - 5 x ”“;’3:”6
- = lg + el
(I - %”“S”gj”s - %(mg + 1l V)l

. . 9bS .
where b = 3 min(by, by). Let g(r) = 2 — 75=1°, then max g(t) = g(p) > 0 withp = 5. Owing to

« _ gV

~ Iflg+els
5 5

for any € € (0, "), we have

,(u.v) 2 [8(0) - %Gflg +1gle)lp = & > O(¥(u, v) € 3B,).

Hence, we conclude the proof. O
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Lemma 4.2. Suppose that (C.1),(C.2) hold. Then, for any € € (0,&") one has ¢y = inf O (u,v) €
u€B,
(—00,0) where p, €* is given by Lemma 4.1.

Proof. Firstly, we choose a (u,v) € E such that fR3 (fu + gv)dx > 0. Then, for any ¢ > 0 we have
1 1 1
D, (tu, 1v) =§(al||bt||2 + ar|vIP)e + Z(b1||u||4 + bolvlIH)e* - gtﬁ f3(u+)“(v+)ﬂdx
R

— 8l‘f (fu + gv)dx.
R3
Hence, there exists a sufficiently small # > 0 such that ||#(u, v)|| < p and ©.(tu, tv) < 0 which leads to
co < O (tu,tv) < 0.

As ||(u, v)|| < p, we obtain

DO (u,v) > — 1 f wH*vHdx - sf (fu+ gv)dx
3 Jgs R3

Hia vl e
> -2 = —(Uf1g + lgl)li(u, v)ll > —eo.
3783, N5 e

Consequently, we can establish that ¢y € (—o0,0), thereby completing the proof.

Proof of Theorem 1.2. By applying Lemma 4.2, we find that ¢y = inf ®.(u,Vv) € (—o0,0). Moreover,

ueB,
we know that ®,|sp, > 0 from Lemma 4.1. Therefore, we deduce that the minimum cannot be attained

on dBp. According to Lemma 4.1, Lemma 4.2 and Theorem 2.1 (Ekeland variational principle), there
exists (u,,v,) € B, such that ®,(u,,v,) — co and O, (u,,v,) — 01in E*. The above proof can be referred
to [ [28], pp. 534-535]. Consequently, there exists (i, v) € E satisfying:

U, — U, v, =V in E,
Uy, = u,v, > v, in L) RH)XL (RY),(1<s<2%)
U, = U, v, =V, a.e. on R* xR,

First, we prove that (, v) is a minimizer for ¢,. Noting that B_p is closed and convex,
(u,v) € B,, @.(u,v) > co.

Therefore, what we need to prove next is that ®.(u, v) < ¢(. The key idea here is that since @ (u,, v,)
converges to ¢y, we need to establish the inequality relationship between ®.(u, v) and ©.(u,, v,).

In order to eliminate %(b1||u||4 + by|v|[*), we have the following estimates. From D’ (1, v,) = Oin
E*, it holds that

(D (tty, V), (11, v))

= (a; + by|ju,l?) f Vu,Vudx + (ar + bo|v,ll?) f Vv, Vvdx
R3 R3
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_g f W) v udx - A f P vdx - ef (fu + gv)dx + o(1)
3 R3 3 R3 R3

= (ar + bllu|P)lel® + (a2 + balval DIV = 2f W) (v Pdx - Sf (fu + gv)dx + o(1)
R3 R3
=o(1).

Combining above equality and weakly lower semi-continuity of norm, we have

1 1 1
D, (u,v) =§(a1||u||2 + aol VI + 4—1(191||th|4 + bolVlI*) - 3 f}(u+)"(v+)ﬁdx
R
- sf (fu+ gv)dx

(alllull + aslVIP) + (blllun” ll® + ballval PIVI) = §f(u )" (v Ydx

jl;z (fu+ gv)dx — —(611 + byllualP)luell* - —(az + bol v, PP
+ Ef WH*(vHPdx + = f (fu + gv)dx + o(1)
R3

%I|u||2+ %nvn + f (v Pdx — —f(fu+gv)dx+0(1)

<l + ZwlP + 2 f W) v~ = f (fitn + gua)dx + o(1)
1
S(Ds(um Vn) - Z(q)g(una Vn)a (l/tn, Vn)> + 0(1) = Cp.
Hence, we get (1, v) is a minimizer for c.
Now, we need to prove (u, v) is a solution of (1.1) with ®.(u, v) = ¢o. On one hand, we have

co =Py(u,v) — 1(‘1)' (tn, V), (u, v)) + o(1)
=—(alllull + ap|VIP?) + (b1||u|| + by|vll )_§f(” ) (v P

— 8[ (fu+ gv)ydx — — f Vu,Vudx — — Vv, Vvdx
6 R3 6 R3

b

b,
|Vun|2dx f Vu,Vudx — = | |Vv,dx f Vv, Vvdx
6 6 Jrs R3

f YW  udx + = f WP vdx + = f (fu + gv)dx + o(1)

b by
=§(alllull + aylvIP) + Z(blllull + bylvll*) - gllunll Jluall® — gllvnll IvII?

5
_2f f (fu+ gv)dx + o(1).
6 R3
On the other hand, we have

o =Dyt ) — é@;(un, 1) (s )} + 0(1)
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1 1 1
=—(allul* + axlvall®) + = Byllull* + ballvall*) — = f W vdx
2 4 3 R3
aj 2 2 b 4 by 4
- n n d - n - ~IVn - n - ~lIVn
811;(](” + gvy)dx 6||u | 6||V | 6||M I 6||V |
1
4= f P dx + 2 f (Fity + gvy)dx + o(1)
3 R3 6 ]R3
b b 5
:%nunn2 + %mnz + Sl + Sl - f fR (fu+ g

Hence, we have

1 1 1 1 b b
sallull + ZalVIPP + <byllull* + Sbalvll* - glllbtnllzllull2 - gzllvnHZIIVII2 +o(1)

3 3 4 4
Ll + Lt + bl + ol + o(1)
—3611 Up 3612 Vn 12 11Uy 12 211Vn o

1 1 1 1 1 1
>zallll + SaalbP + G~ Dbl + G = bl + o(1)
> L + Lo + & = Lo + Loatottt = Loaiwal2i? + o)
—a1||ull + zasllv — = )by|lull* + = — =by|lv, o(1).
=34 3% 176" 472V = g Dalall Y

So, we obtain
2 2
|l [~ = [loa, ||~ + 0(1).

Following the above steps, we have

1 1 1 1 b b
3illull+ §CIzII\/II2 + Zblllu”4 + szIIVIl“ - gl ot Nedl® = gz [1vall® VI + o(1)

1 1 1 1
=zar lull + 3@ Vall? + b1 lluall* + = ba [vall* + o(1)

3 3 12 12
1 1 11 11
2zl + §CIzIIVII2 +(5 - 6)171”””4 +(3 - 6)b2||v||4 +o(1)
1 1 1 1 11
23 lull + gaz||v||2 + szllull4 - gb2 lotall* Neall® + - g)b1IIVII4 +o(1).

Thus, we obtain
2 2
[VII* = [[vall™ + o(1).

Using again the weakly lower semi-continuity of norm, we get ||(«, v)|| = ||(#,, v,)I| + o(1). Combining
u, — u, v, — v in E, we have u, — u,v, — v in E and then ®,.(u,, v, —
co = D(u,v), . (uy, vy) = OL(u,v) = 01in E*. We complete the proof.

Now, we give proof of the second positive solution by the mountain pass lemma and the
concentration compactness principle.

Lemma 4.3. Suppose that (C.1),(C.2) hold. Then, there exists (u*,v*) € E such that ||(u*,v*)|| > p and
O (u*,v*) < O where p is given by Lemma 4.1.
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Proof. Let uy = kU, vy = IU, we can obtain '7‘ = \/% and

k = 3I%a%zﬁ;2§ = (%)f(g)li,
[=33a758% = (g)g(g)z,

where U is a solution of (1.4). Then, for any ¢ > 0 it holds that

1 1 10
D (tuy, tvo) ZE(GHWOHZ + aylltvoll*) + Z(bleoH4 + bylltvoll*) - 3 f}(uar)a(var)ﬂ
R

- stf (fug + gvo)dx
R3

1 s, 1 1
:E(alkz +al)S2 + Z(b1k4 + byIMHS3t - §k"lﬁs 10 — gt f (fuo + gvo)dx
R3

1 3 1 1 3
<5 @k +aP)s LI Z O+ bal)S e - KPS 30,
Hence, there exists a sufficiently large 7, > O such that
llto(uo, voll > o and @ (touo, tovo) < 0.
Let (u',v*) = (touy, tyvo). This completes the proof. O
According to lemma 4.1, lemma 4.3, we can find (i, v) such that
inf ® (u,v) =d > ®.0,0) =0,
B,
(v ¢ B_p satisfy O (u ,v*) <d.
Then, we define

m = inf max ®,(u,v) > d,
PeA ueP

where A is the set of all passes which connect 0 and e = (' ,v),i,e.,
A={P e C(0,1],X)|P0) =0, P(1) =e}.

Remark 4.1. For any € € (0, "), we can obtain a nonnegative bounded (PS) sequence.

Proof. By the mountain pass theorem [6], there exists (u,,v,) € E such that I(u,,v,) — m and
I'(u,,v,) = 01in E*. Thus, we can get

5¢

1 ’
6 f (fun + gVn)dX +m+ 0(””}19 Vn”) :(Ds(um Vn) - 6<(Dg(un, Vn), (un, Vn)>
R3

12
> 01|t vi)II*. (4.1)

=3 laall™ + S lWall™ + T lueal "+ 5 1val
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where Q) is a positive constant with a sufficiently small value.
By the Holder inequality and the Sobolev inequality, we get

S5¢ S5¢ 5S¢
s f3(fun + gv,)dx < FllelurtlZ + Flnglvnb < C(e)ll(up, vi)ll 4.2)
R

where C(¢) is a a sufficiently small constant that depends only on £. Combining (4.1) with (4.2), we
conclude that (u,, v,) is bounded in E.
Sinceu =u"—u",v=v"—v", we have

o(1) = = (D, (un, Vi), (11, v;,))
= —alf VunVu;dx—azf anVv;dx—blllunllzf Vu,Vu, dx
R? R3 R3

— bo|vall? f Vv, Vvidx + & f (fu, + gv;)dx
R3 R3

-2 -2 211,112 201,112 - -
=ay||u, |I” + axllv, [I” + bllunl [N, 117 + Dollvall“lIv, |l +8f(fun +gv,)dx
R3

2Dy [l llty 1P + Dallval Pl1v, I

>bylju, |I* + ballv, II*
which implies ||u, || = 0, [[v,|| = 0,n — oo. According to Holder and Sobolev inequality, we have

0<e f (i + gvdx < Call gl 11 + Igle v .
R\
Therefore,
gf (fu, +gv,)dx =0,n — oco.
R3
Next, we need to verify that
O (u),vy) — m, ((D;(M,J;, v), (@, ¥)) — 0.

Given that [|u, || = 0, ||v,]| = 0,n — oo and 8&3(]01/!; + gv,)dx = 0,n — oo, we have

1 1 1
D (uy, Vn) =§(a]||un||2 + ar|lvall®) + Z(blllun”4 + balvall*) - 3 fs(u+)“(v+)ﬂdx
R
- sf (fu, + gv,)dx
R3
1 _ - 1 a
=§[al(||u,f||2 + Nl I1P) + ax(llvy I + v, 1P)] - §f (uy)* vy Ydx

R3

1
+ ZU%(IIHZII4 + il + ba(vy Il + v, 1] = 8f3 g(v, — v,)dx
R

- sf fQu) —u,)dx
R3
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1 1
=§(al(||u2||2 +ay(vy 1) + Z(bl(”u::”4 + by(|Ivy ")

! f W' viYdx-e f (fu; + gvhdx + o(1)
3 R3 R3

=0, (u!,v)) + o(1).

Given that [[u, || = 0, ||v,]| = 0,n — oo and 8&3(1%; + gv,)dx = 0,n — oo, we have
(@t ). () = f Vi, Veds + as f Vo, Vi + byl f Vi, Vgdx
R3 R3 R3
+ blevn”zf Vv, Vipdx — 2 f VP W) pdx
R3 3 R3
- g f W) vy ydx — & f (fo + g)dx
R3 R3
=a f V(u, —u,)Vedx + a; f V(v —v,)Vdx
R3 R3
+ by (Il |I” + ||M;||2)f V(u, — u,)Vodx
R3
+ by(IViI* + ||V,_,||2)f (Vv = v,)Vipdx
R3
a + +ya—1 ﬁ +ya ., Hy8-1
—= | 0P edx—= | @) wdx—e | (fe+ gy)dx
3 R3 3 R3 R3
=a, f Vu, Vodx + azf Vv Virdx + b1||M;||2f Vu, Vdx
R3 R3 R3
+ by|viH| f Vv Vidx — = f VP pdx
R3 3 R3

- § f )" 0 ydx — & f (fo + gpdx + o(1)
R3 R3
=D, v}, (@, ) + o(1).

Then, we can obtain a nonnegative bounded sequence for ®.. We complete the proof.

Lemma 4.4. Suppose that (C.1), (C.2) hold. Then, there exists € € (0, %) such that for any € € (0, &)

where A is the Maximum value for p(t), the following statements hold:

() ar=a;=0, m<supd(tu',1v') <A~ 82(|f|g + Iglg)S%;

>0

9¢2|gl? |
(@) a1 =0,a0#0, m<sup®(tu/,0v') <A - > szlflgSﬁ;
>0 16a,S 5

92f2  9&7gl
i 0, 0’ S (I)S t ,’ t ' < A - - - 5 )
@) a; #0,a0 # m St‘;g’ (', 1v') 16a;S  16a,S

Proof. Let

1 1 1
) = O (tu’, 1v") =§(al||u’||2 + a|V' ) + Z(blllu/”4 + bVl - §t6f W) (V' Ydx
R3
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—etf (fu' + gv')dx,
R3
and
1 2 112\ 2 1 4 7114 4 1 6 N[
p(0) = z(aill']l” + aolV'|ID)e” + =By llu’|[* + Do) — =7 W) (V' Ydx.
2 4 3 R3

Then, there exists #; > 0 such that p’(¢;) = 0. In this case, we have

LI+ Dol I+ Bl + ballv I + @l + aslvIP) () (P

2= . 4.3)
1 [ @y Pdx
On the other hand, we know that (', V") satisfies
arllu'|* + axllV'|P + byllu’|[* + bl V|1 = 2f3(u')“(V')ﬂdX- (4.4)
R

Combining (4.3) and (4.4), we obtain #; = 1 and
1 7112 7112 1 4 4
A =max p(t) = p(t) = §(a1llu II” + alV'[I) + E(bﬂlu " + bal V).

Let &, € (0, &*]. Then, for t, € (0,¢) and € € (0, &), we have:
(i) whena; =a, =0,

1 1
max h(f) < max(=(a;[l'|* + aallV' I + =Dl |I* + bl ()2
0<t<ty 0<t<t, 2 4

<A=&(flg +1gle)S .

(i1)) when a; = 0,a, # 0,

1 1

max h(t) < max(=(ai|W'|* + alV' I + —(Bill'II* + bolv )¢

0<i<ty 0<t<tr, 2 4
9¢?|gl%

A - > — & fleS 3.
<A Teas FVI

=

(iii) when a; # 0,a; # 0,

1 2 2\ 2 1 4 4 4
max h(t) < max (s (aille’[I” + aallV' 1)) + < (Bl " + ballV'[I7)e
0<r<ty O<r<n, 2 4

9¢|f Izg 982|g|2%

A- _ .
SAT 760 1648

Choosing £ € (0, g;] for any € € (0, €™), we can deduce that for all > 1,,

max Ah(f) < max p(t) — 8t2f (fu' + gv)dx=A—et, f (fu' + gv')dx.
1>t [2d%) R3 R3
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Furthermore, we obtain the following inequalities:
(l) when a =ay = O,

max i) < A — £2(fls + |gle)S 7.
>t 5 5

(i) when a; = 0,a, # 0,
9«92|g|2
%?.;(h(l) <A- ﬂ —& |f|6S4.

(ii1) when a; # 0,a, # 0,

9%’ f12  9&%gl>
h(t) < A — > >
max h(z) 16a,S 164,85

Therefore, we complete the proof.

Proof of Theorem 1.3. According to Remark 4.1, we can get that {(u,,v,)} is bounded and
nonnegative. Up to a subsequence, there exists (#,v) C E such that u, — u, v, = vinE, u, — u,
v, > vin Lj (R) x L (R*)(1 < s <2*)and u, — u,v, — va.e in R’. By applying the concentration
compactness principle (see Proposition 2.2 in [29]), we can find non-negative measures ¢ and v on

R3, a vector function (i, v) and an at most countable set I" such that as n — oo,
2 2
Vil + [Vvul* = g, g val’ = v (4.5)

in the sense of measure and

@A) v=1ulMP + X vidy, u=(Vul + V) + Y Wi
i€t ier (4.6)
(i) i > Sap(v)7a, i€

Here, ¢,. is the Dirac delta measure concentrated x;. We claim that I' = @. Suppose by contradiction
that I' # @. To obtain a contradiction, we estimate m = lim,,_,., P.(1,, v,) by utilizing the assumption
I' # @ and the concentration compactness principle. By comparing this estimation of m with the one
provided in Lemma 4.1, we deduce a contradiction. To do this, we first present the following relevant
estimates. Fix k € . For p > 0, assume that (pf) eCy (R3) satisfies gof) e [0,1],

ks

o) =1, for lx—al <%; @) =0, for lx—al>p

\®)

and V| < 2. Tt follows from (@ (u,, vs,), (¢ u,, 0)) — O that
p p p

(ax bullualP)( [ unwnwpdx + [ IV Pefd)

4.7
- 3 R3 nvﬁ(pf)d‘x + 811%3 f‘ppundx + 0(1)
In the same way, it follows from ((<D’p(u,,, V), (0, go’;vn» — 0 that
(e ballval ) fos va Vv Ve + [ Vv, Pilid) “.8)

vﬂtpf,dx + 8&3 gpovhdx + o(1).

R3 nn
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First, we need to solve the lack of compactness problem from the critical Sobolev exponent which
causes the invariance of dilation. Combining (4.7), (4.8) and Holder inequality, we have

Al = hmhm sup (a; + bylju,|?)| fR3 unVu,,chkdxl

n—oo

< hmhgl sup (. VP dx)* ([, IVehPlunld)? wo)
< lim C( Js,. |u|6dx)6
0
and
Ay = })i_r)% ligl_)sollp (@ + bolval®| f5 v Vv, Vehdx| = (4.10)

where B,(a;) = {x € R? : |x — a;] < p}. By (4.5) and (4.6), we have

hm hm SUP(Gl + billual®) [y VualPebdx + (az + ballval®) [ [Vvaleh
k k 2
> /131_r>%11m sup(a1 Jos WunPoldx + ay [ [VvaPobdx) + [bi( [, [Vu,otdx)

n—oo

+ba( [, IVVnIZQOkdX)Z] 4.11)
> hr% lim sup(a, fw |V, | dx + a, fR3 Vv, 2@ dx)

n—oo

+3(Vb1 [ IVunPidx + VB [ [VviPdn)?

> mm(al,az)Saﬁv + = mln(bl,bz)Saﬁ 7,

lim lim sup( > 3t A ) “v{jgo,’;dx = 21im f UVl + 2v; = 2v,, (4.12)
P R3

0 e

lim lim sup f (f b + glva)dx = lim f (fhu + gghv)dx = 0. (4.13)
R3 P—>O R3

0 e
We can deduce from (4.7)—(4.13) that
> —1 min( )S § + —1 min(by, b,)S 2 i
Vi in(ay, a)S o 5v; i , vy,
> L@)Sapy t oy 1,02)9 4 gV,

So, we have

min(by,b2)S 7 4+ \/[min(bl,bz)Psg +32min(ar,a2)S o 4

Vi > ( S ) )

min(b,b2)S3, o+ \Jmin(b1 b2) PSS ;432 min(ar.a2)S?
8

M; = min(ay, az)

For R > 0, assume that ¢ € C8°(R3) satisfies g € [0, 1],
QOR(X) = 17 fO’" |-x| < R’ SDR(X) = 0’ for |X| > ZR’

and |Vgg| < %. By applying the concentration compactness principle, we obtain
1 ’
m = lim (I)e(um Vn) - Z(cDg(un’ vn)’ (un’ Vn))
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1 1 3
= lim —(ayll,|* + allval?) + ~ f upidx — = f (futn + gvn)dx
oo 4 6 Jzs 4

> lim lim (alf |V, |? prdx + azf IVv,|? Qrdx) + 6f uﬁvﬁg&Rdx
R3

R— n—)oo

- 3—8f(fu+gv)a’x

1 3¢

1

a 2 2

_ V d+_ V d+_1+ ;
fl I/tl X 4 RSl Vl X U 6V 4

f (fu + gv)dx.
R3

Hence, we can infer that

1 3
we 4 [ wpae % [ wipacs s dn- f (fu+ gv)d.
4 R3 4 R3 4 3

(1) If a; = a» = 0, by (4.14), we need to demonstrate that

11
Z qHitgvi—e *(1flg + lgls )ST>A - *(1flg + lgls )S .

By Lemma 2.1 and the fact that (i, v) satisfies (2.1), we can obtain:

s luol*oPdx = 1 [ [Vuol + [VvoPdx = (742)3

and

St = [ VuoPdx = 553, 2= [, [VwoPdx = 552

Combing with (4.16), (4.17) and (3.5), (u’, V") satisfies

fVuPdx = b, bia*Ppts? [ IVvPdx = SbibyT atps?
2 2 ap’ R3 aB’
oy O Pdx = thebibyatplst,
Consequently, we have
1
t _—bb2 22 + t4__ bz 7 S6t
) 20736 a*p's ﬁ(" Pt = 51gabi 020 B S ap
= st b ES LG - )

Based on p’(f) = 0, we can determine that t = 1. Therefore, there exists

A = maxp(t) = mb bza/Z,B S

On one hand, considering

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)
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we have

f(a)min = f(3)

Hence,

1
A, = 2 6

On the other hand, we can derive

Vi 1 mln(bl’bZ)Saﬂ 3 1 . 36
E > 6 X ( 1 ) = 384[mln(b1,b2)] Sa,ﬂ
Therefore, it is only when @ = 8 = 3 and b, = b, that
1
m = 6Vl — & (lfl6 + |g| )54 > Amm — €& (|f|6 + |g| )S4 (420)

which contradicts Lemma 4.4 (i).

Remark 4.2. The reason for only considering the case where « = [ = 3 is that after extensive
estimation, it is only when a = 8 = 3 that A reaches its minimum value A,,;,. Therefore, the estimate
satisfied by m contradicts Lemma 4.4 (i). For the cases in Lemma 4.4 (ii) and (iii), obtaining the result
is challenging due to the mutual interaction of (u,v) adding complexity to our computations. This will
be our main task in the following work.

Moving forward, we will only consider the case where a; = a; = 0, @ = 8 = 3 and b, = b;.
We need to solve the lack of compactness problem from the region R? which causes the invariance of
translation.

For R > 0, define

peo = lim Tim sup o 19t + 10, P,

L o 4.21)
Veo :Igglc}olnr‘ln_illpfl ® nvﬁdx
By concentration compactness principle, we obtain
hm 15up Lo IVun? + (Vv Pdx = [ dp + e,
(4.22)

hrn sup fw “\/ﬁdx = fn@ dv + v,

1
and S, gs < veo. Next, we estimate v., and o,. Assume that yx € C8°(R3) satisfy yx € [0, 1], we have

R
Xr(x) =0, for |x| < > Xr(x) =1, for |x| >R
where |Vyg| < %. It follows from (((D;(un, Vi), (YrUy, 0)) — 0 that

(a + blnunnZ)( o n Vit Vyrdx + [ 1V, Pxrdx)

4.23
= R nVﬁ)(Rdx + ijS fXRundx ( )
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In this way, we can also have from ((d);(u,,, V), (0, Yrv,)) — O that

(@ + balval ) L5 vaVvaVirdx + [, [Vvalxrdx)

= § - ugvgn)(Rdx + ¢ J}J@ SYRVndx.

By Holder inequality, we have
By = lim lim sup(ay + bullus|P)| [, 1, Ve, Vxrd]

. .n_)oo 1 1
< Jim tim sup C(fy . 1V Pd0)? (fy g 9Pl
< lim C(fy o VxRPAX)S(fyp luldie)s

. 6 L
< lim C(fy_ o lul°dx)s = 0

<|x|<R

and

B, = Igim lim sup(a, + b||v,|*)| fR3 v, Vv, Vxrdx| = 0.

n—oo

Combining (4.21), we have

lim lim sup(ay + b1 lusl?) [, Vi Pxadx + (@ + ballvalP) [ 199, Pydx

n—oo

> lim limsup(a; [o; [VunPxrdx + as [, [VvalPyrdx) + [bi( [ Vi Pxrdx)?

R—oo o

+ bo( [, Vv Pyed )]
> lim limsup(ay [, [VieuPxrdix + az [ 19, Pxrdx)

n—oo

+5VB1 [ VuaPxadx + VB2 [ 90
> %blSiﬂv;
and

o ﬁ . . a 1 . o
5+ 5);1_1)130 lllsls()ilp fR3 unvf/\(Rdx = 1%1_1)1010 lim s:)1p2 f|x|z§ unvﬁ,\/Rdx

< lim2 [ ugvhdx = 2.,
XZ§

R—oo

Otherwise, we get

lim lim supf (fxrU, + gxrvy)dx = lim f (fxru + gyrv)dx = 0.
R—o R3 R— R3

n—oo

Combining (4.23)—(4.29), we have

1 2
Voo = ZblSiﬁvso.
We obtain one of the following two cases holds:
(D Vo = 0; e = 0.

()
bls§ﬁ+ \/b?SiﬁP
- < b

Voo 2 ( g

Heo = 0.

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
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Suppose that case (2) holds. We deduce that
1 ’
m = lim (Ds(un’ vn) - Z(q)g(una Vn)a (l/tn, Vn)>

1 1 3
z% fR 3 \Vul*dx + % fR 3 IVvlPdx + JHe ¥ Ve = f (fu + gv)dx.

Considering as the same as (4.15)—(4.20), we get

1 1
4,uoo+6voo—8(|f|6+|g| ST > A - (1 flg + lgls )i

which is a contradiction. Thus, case (1) holds.

Combining (4.5), (4.22) with I' = @, we have:

limsupf u‘,fvfdx:f uVPdx.
n—0o0 R3 R3

Applying Fatou’s lemma, we obtain:

fu“vﬁdxsliminff u;‘fvﬁdxslimsupf ugvfdx:f uVPdx.
R3 n—oo R3 n—00 R3 R3

limf uzvfdx:f uVPdx.
n—oo R3 R3

Set |lu,|| — d. Then, by lim,,_,., fR3 uVidx = fR3 u™?dx, we have

Thus, we have

0 =(D, (4, V), (4, 0)) + 0(1)

=(ar + byllua|P)leesl* — f ugVidx — Ef Supdx + o(1)
R? R3
=(a; + byd*)d* —f uVPdx — 8f fudx
R3 R3

and
0 =(Dy (14, Vi), (u, 0)) + o(1)
—(a1+b1||un||)f Vu,Vudx — f “_lvgua’x—ef Sfudx + o(1)
3 R3

=(a + b1d®)||ul® —f uVPdx - sf Sfudx
R3

which deduces d = |lu||. Combining u, — u in D"*(R?), we obtain u, — u in D"*(R?). Following the
same approach and steps, we can also establish that v, — v in D'*(R?). According to Remark 4.1 and
Lemma 4.4, there exists a non-negative bounded sequence (u,, v,) C E that satisfies

D (Up, vy) = m < A, D (uy, v,) = 0.

Electronic Research Archive Volume 31, Issue 9, 5286-5312.
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Consequently, by u, — u in D"?(R*) and v, — v in D"?(R?) we have
Do (uy, vy) = m = Oy(u,v), O (y,v,) = 0 =D (u,v).

This completes the proof of the existence of the second solution.
5. Conclusions

In this paper, we first consider the existence of a local minimum solution for problem (1.1) by
applying the Ekeland variational principle. Next, we investigate the existence of a second solution for
problem (1.1) by applying the mountain pass lemma and the concentration compactness principle. To
obtain the energy estimation of the associated functional @, for problem (1.1), we will need the explicit
form of (4;, A,). Therefore, when a; = a, = 0 we have: Assume @ = 8 = 3 and b, = b,, there exists
£ € (0, "] such that for any € € (0, &™), problem (1.1) has another solution. The value of &" is defined
in Theorem 1.2. The reason for only considering the case where @ = = 3 is that after extensive
estimation, it is only when @ = 8 = 3 that A reaches its minimum value A,,;,. Therefore, the estimate
satisfied by m contradicts Lemma 4.4 (i). For the cases in Lemma 4.4 (ii) and (iii), obtaining the result
is challenging due to the mutual interaction of (u, v) adding complexity to our computations. This will
be our main task in the following work.
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