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Abstract: This paper investigates the issue of energy-to-peak control for continuous-time switched
systems. A generalized switching signal, known as persistent dwell-time switching, is considered. Two
different strategies for state-feedback controller design are proposed, using distinct Lyapunov functions
and a few decoupling techniques. The critical distinction between these two strategies lies in their
temporal characteristics: one is time-independent, while the other is quasi-time-dependent. Compared
to the former, the latter has the potential to be less conservative. The validity of the proposed design
strategies is demonstrated through an example.
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1. Introduction

Switched systems (SSs) are a significant subclass of hybrid systems consisting of a series of sub-
systems and a signal for controlling the switch among them [1]. Over the last few decades, SSs have
been applied in various domains, such as DC-DC power converters [2], inverter circuits [3], unmanned
vehicles [4], secure communication [5], fault estimation [6] and image encryption [7]. At the same
time, stability analysis and controller design for SSs, as fundamental issues in the control area, have
been intensively studied and a significant amount of results have been proposed in the international
literature; see, e.g., [8–16].

The stability of an SS is dependent on each subsystem and highly affected by the switching fre-
quency. Although all subsystems are asymptotically stable (AS), the entire SS may have a non-
convergent solution trajectory caused by fast switching [17]. However, the stability can be maintained
when the switching is sufficiently slow in the sense that the running time of each active subsystem is
not less than a specified threshold called the dwell time (DT) [18]. Actually, this is also true even when
fast switching occurs occasionally, as long as the average dwell time (ADT) is long enough [19].
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In 2004, a type of switching signal, called the persistent DT (PDT) switching signal, was introduced
in [20] to represent the switching signal that has infinitely many intervals of length no less than a
given positive constant ε (i.e., the PDT) during which no switch occurs, and distance between two
consecutive intervals with this property does not surpass a period of persistence δ. As explained in [20],
the PDT switching is more common and suitable than DT and ADT switching for describing switching
phenomena associated with hybrid systems.

There have been various control strategies, including uniform tube-based control [21], fault-tolerant
control [22], quasi-synchronization control [23], quantized fuzzy control [24], L1 finite-time control
[25], dynamic output-feedback control [26], sliding mode control [27] and model predictive control
[28], that have been introduced for discrete-time SSs with PDT switching over the past few years.
To the best of our knowledge, however, there are no available reports on the energy-to-peak control
of continuous-time SSs (CTSSs) with PDT switching. Energy-to-peak control can guarantee that the
infinity norm of the controlled output is less than a certain disturbance attenuation level [29]. In
many practical situations, such a control approach serves as an appropriate selection for system design
because it is insensitive to specific statistical characteristics of the noise signals and exhibits good
robustness [30].

In this paper, we are interested in the energy-to-peak control for CTSSs with PDT switching. Our
objective is to ensure that the CTSS is AS with a certain energy-to-peak disturbance-attenuation perfor-
mance (EPDAP) level [31]. We first introduce a lemma regarding the asymptotic stability and EPDAP
analysis of the PDT-based CTSS. Then, we propose a time-independent state-feedback controller de-
sign approach using a Lyapunov function (LF) and decoupling techniques. To reduce conservatism, we
further present a quasi-time-dependent (QTD) controller design method. The required gains of these
two types of controllers can be obtained by means of feasible solutions of linear matrix inequalities
(LMIs), which are known to be easily solved with available tools in MATLAB [32]. Finally, we give
an example to illustrate the effectiveness of our controller design strategies.

Notation: We denote by Rn the n-dimensional Euclidean space, by Z+ the set of non-negative in-
tegers, by R the set of real numbers, by ‖ · ‖ the 2-norm, and by b·c the round-down operator. We
apply an asterisk “∗” to represent a symmetric term in a matrix and the superscript “T” to stand for
the transpose operator. For any square matrix X, we utilize X > 0 (< 0) to imply that the matrix is
symmetric positive-definite (negative-definite) and define S (X) as X + XT . Moreover, we let K∞ be a
class of continuous and strictly increasing functions β(·) that satisfy β(0) = 0.

2. Preliminaries

In the field of control for SSs with PDT switching, the majority of published work primarily focuses
on the discrete-time setting; see, e.g., [21–28]. In this paper, we will consider CTSSs with PDT
switching as in [33, 34]. The system model is described by

ψ̇(t) = Aς(t)ψ(t) + Bς(t)u(t) + Eς(t)$(t), (2.1a)
φ(t) = Gς(t)ψ(t), (2.1b)

within which ψ(t) ∈ Rn, φ(t) ∈ Rp and u(t) ∈ Rq stand for the state, controlled output and control input,
respectively; $(t) ∈ Rr denotes the exterior disturbance that belongs to L2[0, ∞] [35]; Aς(t), Bς(t), Eς(t)

and Gς(t) are the given system matrices; ς(t) denotes the switching rule, which is a right-continuous
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Figure 1. The illustration of PDT switching.

function defined on [0,∞) and takes values inM = {1, . . . ,M}. The sequence formed by all switching
moments is given as t0 = 0, . . . , tl, . . .. The minimum time interval between any two switching moments
is defined by ht = min{tl+1 − tl} (l ∈ Z+). To avoid Zeno behavior, we set ht ≥ C0, where C0 is a positive
constant.

As described in Figure 1, the whole time axis is divided into infinitely many stages, where each
stage consists of two parts, namely the slow switching part (i.e., ε-part) and the frequent switching
part (i.e., δ-part). We denote by εr and δr the duration of each of these two parts in the r-th stage,
respectively. Additionally, we use tm(r) to represent the initial moment of the r-th stage and nr to stand
for the number of switches within the period of (tm(r), tm(r+1)). Evidently, εr and δr satisfy εr ≥ ε and
δr ≤ δ, respectively, and the switching moments within the interval (tm(r), tm(r+1)) can be shown as
tm(r)+1, . . . , tm(r)+κ, . . . , tm(r)+nr . For all κ ∈ Z+, we denote further that δr, κ = tm(r)+κ+1 − tm(r)+κ. Then,
according to the meaning of the symbols introduced, it can be seen that δr, κ ≤ δ and tm(r+1) = tm(r)+nr+1.

Remark 1. According to the PDT switching scheme, in the r-th stage, the duration of the slow switch-
ing part is at least ε, and the duration of the frequent switching part does not surpass δ. As compared
to the DT and ADT switching schemes, the PDT switching scheme is more general. To be more spe-
cific, when δ takes values of zero and infinity, the PDT switching scheme degenerates into the DT and
weak DT switching schemes, respectively [20]. Furthermore, unlike the ADT switching scheme, the
PDT switching scheme does not impose any restrictions on the switching frequency of the frequent
switching part [36].

Let us now introduce the concepts concerning the asymptotic stability and EPDAP:

Definition 1. We say that CTSS (2.1) is AS if there is a function β(·) ∈ K∞ such that

‖ψ(t)‖ ≤ β(‖ψ(t0)‖)

holds in the case of $(t) = 0.

Definition 2. Given a scalar γ > 0, we say that CTSS (2.1) has the EPDAP level γ if

‖φ(t)‖2∞ ≤ γ
2
∫ ∞

0
‖$(t)‖2dt
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holds under ψ(0) = 0, where ‖φ(t)‖∞ = supt≥0 ‖φ(t)‖.

Before ending the section, we state three preliminary propositions that we are going to use to prove
our main results.

Proposition 1. [37] Given a scalar ρ > 0 and two locally integrable functions V (t) and Γ(t) defined
on [0,∞), if V̇ (t) ≤ −ρV (t) + Γ(t) holds, then we obtain

V (t) ≤ e−ρtV (0) +

∫ t

0
e−ρ(t−σ)Γ(σ)dσ, t ≥ 0.

Proposition 2. [38] Given a real number η and real matrices X, Y,U andW,[
X ∗

U − ηWY ηS {W}

]
< 0

holds if and only if both X < 0 and X + S {YTU} < 0 hold true.

Proposition 3. [39] For any real matrices N1, N2 and N3,[
N1 N2

∗ N3

]
< 0

holds if and only if
N3 < 0 and N1 − N2N

−1
3 N

T
2 < 0.

3. Main results

We will give the following lemma, which provides a criterion for the analysis of the asymptotic
stability and EPDAP.

Lemma 1. Given scalars δ ≥ 0, µ > 1, ρ > 0, γ > 0 and ht > 0, suppose that there is an LF
Vς(t)(ψ(t), t): (Rn,Z+)→ R and two classes of functions β1(·), β2(·) ∈ K∞ such that

β1(‖ψ(t)‖) ≤ Vς(t)(ψ(t), t) ≤ β2(‖ψ(t)‖), (3.1)
Vς(t)(ψ(t), t) ≤ µVς(t−)(ψ(t), t), (3.2)

V̇ς(t)(ψ(t), t) ≤ −ρVς(t)(ψ(t), t) + ‖$(t)‖2, (3.3)
‖φ(t)‖2 ≤ γ2Vς(t)(ψ(t), t) (3.4)

hold. Then, for any PDT switching signal satisfying

ε ≥
(δ /ht + 1) ln µ

ρ
− δ, (3.5)

CTSS (2.1) is AS with the EPDAP level γ̄ = γ
√
µδ/ht +1.
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Proof. Denote by N(a, b) the count of switched times within any left-open time interval (a, b]. Then,
for any t ∈ [tκ, tκ+1), κ ∈ Z+, one has

Vς(t)(ψ(t), t) ≤ µN(0, t)e−ρtVς(0)(ψ(0), 0) +

∫ t

0
µN(σ, t)e−ρ(t−σ)‖$(σ)‖2dσ. (3.6)

Inequality (3.6) can be shown by mathematical induction. In fact, for t ∈ (t0, t1) (i.e., κ = 0), using
Proposition 1, one can get from (3.3) that

Vς(t)(ψ(t), t) = Vς(0)(ψ(t), t)

≤ e−ρtVς(0)(ψ(0), 0) +

∫ t

0
e−ρ(t−σ)‖$(σ)‖2dσ.

Because of N(σ, t) = 0 for σ ∈ [t0, t), the inequality (3.6) obviously holds. For t ∈ [t1, t2) (i.e., κ = 1),
from (3.2) and (3.3), one can obtain

Vς(t)(ψ(t), t) = Vς(t1)(ψ(t), t)

≤ e−ρ(t−t1)Vς(t1)(ψ(t1), t1) +

∫ t

t1
e−ρ(t−σ)‖$(σ)‖2dσ

≤ µe−ρ(t−t1)Vς(0)(ψ(t1), t1) +

∫ t

t1
e−ρ(t−σ)‖$(σ)‖2dσ

= µe−ρ(t−t1){e−ρ(t1−0)Vς(0)(ψ(0), 0) +

∫ t1

0
e−ρ(t1−σ)‖$(σ)‖2dσ} +

∫ t

t1
e−ρ(t−σ)‖$(σ)‖2dσ

= µe−ρtVς(0)(ψ(0), 0) + µ

∫ t1

0
e−ρ(t−σ)‖$(σ)‖2dσ +

∫ t

t1
e−ρ(t−σ)‖$(σ)‖2dσ

= µN(0, t)e−ρtVς(0)(ψ(0), 0) +

∫ t

0
µN(σ, t)e−ρ(t−σ)‖$(σ)‖2dσ,

which means that the inequality (3.6) is satisfied. Next, assume that (3.6) holds for t ∈ [tk, tk+1) (k >
1, k ∈ Z+). Then, one can write the following inequality:

Vς(tk)(ψ(t.), t.) ≤ µN(0,t.)e−ρ(t.−0)Vς(0)(ψ(0), 0) +

∫ t.

0
µN(σ,t.)e−ρ(t.−σ)‖$(σ)‖2dσ, t. ∈ [tk, tk+1). (3.7)

For t ∈ [tk+1, tk+2), using (3.2) and (3.3) and noticing that N(0, t) = k + 1, one has

Vς(t)(ψ(t), t) = Vς(tk+1)(ψ(t), t)

≤ e−ρ(t−tk+1)Vς(tk+1)(ψ(tk+1), tk+1) +

∫ t

tk+1

e−ρ(t−σ)‖$(σ)‖2dσ

≤ µe−ρ(t−tk+1)Vς(tk)(ψ(tk+1), tk+1) +

∫ t

tk+1

e−ρ(t−σ)‖$(σ)‖2dσ

= µe−ρ(t−tk+1) lim
t.→t−k+1

Vς(tk)(ψ(t.), t.) +

∫ t

tk+1

e−ρ(t−σ)‖$(σ)‖2dσ.
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It follows from (3.7) that

Vς(t)(ψ(t), t)

≤ µe−ρ(t−tk+1) lim
t.→t−k+1

{
µN(0, t.)e−ρ(t.−0)Vς(0)(ψ(0), 0) +

∫ t.

0
µN(σ, t.)e−ρ(t.−σ)‖$(σ)‖2dσ

}
+

∫ t

tk+1

e−ρ(t−σ)‖$(σ)‖2dσ

= lim
t.→t−k+1

{
µe−ρ(t−tk+1)µN(0, t.)e−ρ(t.−0)Vς(0)(ψ(0), 0) + µe−ρ(t−tk+1)

∫ t.

0
µN(σ, t.)e−ρ(t.−σ)‖$(σ)‖2dσ

}
+

∫ t

tk+1

e−ρ(t−σ)‖$(σ)‖2dσ

= µN(0, t)e−ρtVς(0)(ψ(0), 0) +

∫ tk+1

0
µN(σ, t)e−ρ(t−σ)‖$(σ)‖2dσ +

∫ t

tk+1

µN(σ, t)e−ρ(t−σ)‖$(σ)‖2dσ

= µN(0, t)e−ρtVς(0)(ψ(0), 0) +

∫ t

0
µN(σ,t)e−ρ(t−σ)‖$(σ)‖2dσ,

which means that (3.6) holds true for t ∈ [tk+1, tk+2).
When $(t) = 0, for t > 0, one obtains from (3.6) that

Vς(t)(ψ(t), t) ≤ µN(0, t)e−ρtVς(0)(ψ(0), 0), (3.8)

which, together with

0 ≤ N(σ, t) ≤
(
t − σ
ε + δ

+ 1
)
(δ /ht + 1) (3.9)

results in
Vς(t)(ψ(t), t) ≤ µδ/ht +1e−(ρ− (δ/ht +1) ln µ

ε+δ )tVς(0)(ψ(0), 0). (3.10)

From (3.5), one can find that

ρ −
(δ /ht + 1) ln µ

ε + δ
≥ 0. (3.11)

It follows from (3.1), (3.10) and (3.11) that

β1(‖ψ(t)‖) ≤ µδ/ht +1e−(ρ− (δ/ht +1) ln µ
ε+δ )tβ2(‖ψ(0)‖)

≤ µδ/ht +1β2(‖ψ(0)‖),

which means that

‖ψ(t)‖ ≤ β−1
1 (µδ/ht +1β2(‖ψ(0)‖)).

Thus, CTSS (2.1) is AS in light of Definition 1.
When $(t) , 0, given that ψ(0) = 0, from (3.6), one has

Vς(t)(ψ(t), t) ≤
∫ t

0
µN(σ, t)e−ρ(t−σ)‖$(σ)‖dσ,
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for any t > 0, which, together with (3.4), yields that

‖φ(t)‖2 ≤ γ2
∫ t

0
µN(σ, t)e−ρ(t−σ)‖$(σ)‖2dσ. (3.12)

From (3.9)–(3.12), one has

‖φ(t)‖2 ≤ γ2
∫ t

0
µ( t−σ

ε+δ+1)(δ/ht +1)e−ρ(t−σ)‖$(σ)‖2dσ

= γ2µδ/ht +1
∫ t

0
e−

(
ρ−

(δ/ht +1) ln u
ε+δ

)
(t−σ)
‖$(σ)‖2dσ

≤ γ̄2
∫ t

0
‖$(σ)‖2dσ.

Thus, CTSS (2.1) has the EPDAP level γ̄ according to Definition 2.

Now, as in [40–42], we consider a state-feedback-based controller as

u(t) = Kς(t)ψ(t). (3.13)

Based on Lemma 1, a design approach of the controller in (3.13) is given as follows:

Theorem 1. Given scalars δ ≥ 0, µ > 1, ρ > 0, γ > 0, θ > 0 and ht > 0, suppose that, for i1 ∈ M,
there exist matrices Pi1 > 0, Xi1 and Yi1 such that (3.5) and

Ω1
1 Pi1 Ei1 Ω2

1
∗ −I 0
∗ ∗ −θS {Xi1}

 < 0, (3.14)

Pi1 ≤ µPi2 , (3.15)[
−Pi1 GT

i1
∗ −γ2I

]
< 0 (3.16)

hold, where

Ω1
1 = S {Pi1 Ai1 + Bi1Yi1} + ρPi1 ,

Ω2
1 = Pi1 Bi1 − Bi1 Xi1 + θYT

i1 .

Then, CTSS (2.1) is AS with the EPDAP level γ̄ = γ
√
µδ/ht +1 if the controller gains are chosen as

Ki1 = X−1
i1 Yi1 , i1 ∈ M. (3.17)

Proof. Consider the LF

Vς(t)(ψ(t), t) = ψT (t)Pς(t)ψ(t).

Under the conditions of Pi1 > 0, Pi2 > 0 and (3.15), the conditions (3.1) and (3.2) hold true. For any
ς(t) = i1, taking the derivative along CTSS (2.1), we have

V̇i1(ψ(t), t) + ρVi1(ψ(t), t) − ‖$(t)‖2
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= ψT
$(t)Λi1ψ$(t),

where

ψT
$(t) =

[
ψT (t) $T (t)

]
,

Λi1 =

[
S {Pi1(Ai1 + Bi1 Ki1)} + ρPi1 Pi1 Ei1

∗ −I

]
.

Because Ki1 = X−1
i1 Yi1 , we can obtain that S {Pi1 Bi1 Ki1} = S {Bi1Yi1 + (Pi1 Bi1 − Bi1 Xi1)X

−1
i1 Yi1}. Then,

utilizing Proposition 2, from (3.14) we have that Λi1 < 0, which means that (3.3) is satisfied. Further-
more, by applying Proposition 3 to (3.16), (3.4) in Lemma 1 can be guaranteed. Thus, from Lemma 1,
CTSS (2.1) is AS with the EPDAP level γ̄.

The controller designed in (3.13) is time-independent. Next, we focus on the time-dependent design.
The controller to be determined takes the form of

u(t) = Kς(t), qtψ(t), (3.18)

where qt is a time scheduler that takes values in N = {0, . . . , bε/htc}, described by

qt =


⌊

t−tm(r)

ht

⌋
, t ∈ [tm(r), tm(r) + ε),⌊

ε
ht

⌋
, t ∈ [tm(r) + ε, tm(r)+1),⌊ t−tη

ht

⌋
, t ∈ [tm(r)+1, tm(r+1))

(3.19)

with tη , maxtl∈[0, t]{tl}.

The following result can be deduced from Lemma 1.

Lemma 2. Given scalars δ ≥ 0, µ > 1, ρ > 0, γ > 0 and ht > 0, suppose that, for t > 0 and r ∈ Z+,
there exists a QTD LF Vς(t)(ψ(t), qt): (Rn,Z+)→ R and two classes of functions β1(·), β2(·) ∈ K∞ such
that

β1(‖ψ(t)‖) ≤ Vς(t)(ψ(t), qt) ≤ β2(‖ψ(t)‖), (3.20)

V̇ς(t)(ψ(t), qt) ≤ −ρVς(t)(ψ(t), qt) + ‖$(t)‖2, (3.21)
‖φ(t)‖2 ≤ γ2Vς(t)(ψ(t), qt), (3.22)

Vς(tm(r)+1)(ψ(tm(r)+κ), 0) ≤
 µVς(t−m(r)+κ)(ψ(tm(r)+κ), Mε), κ = 1,
µVς(t−m(r)+κ)(ψ(tm(r)+κ), Mr, κ−1), κ = 2, . . . , nr + 1

(3.23)

hold, where

Mε =

⌊
ε

ht

⌋
, Mr, κ =

⌊
δr, κ

ht

⌋
.

Then, for any PDT switching signal satisfying (3.5), CTSS (2.1) is AS with the EPDAP level γ̄ =

γ
√
µδ/ht +1.
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Proof. Let V̆ς(t)(ψ(t), t) = Vς(t)(ψ(t), qt). Then, we deduce from (3.20)–(3.22) that

β1(‖ψ(t)‖) ≤ V̆ς(t)(ψ(t), t) ≤ β2(‖ψ(t)‖),
˙̆Vς(t)(ψ(t), t) ≤ −ρV̆ς(t)(ψ(t), t) + ‖$(t)‖2,

‖φ(t)‖2 ≤ γ2V̆ς(t)(ψ(t), t),

which correspond to (3.1), (3.3) and (3.4) in Lemma 1, respectively.
Next, we need to prove that

V̆ς(t)(ψ(t), t) ≤ µV̆ς(t−)(ψ(t), t) (3.24)

holds, which corresponds to (3.2) in Lemma 1. Obviously (3.24) holds true when t is not a switching
instant. When t = tm(r)+1 (r ∈ Z+), from (3.23), we obtain

V̆ς(t)(ψ(t), t) = Vς(tm(r)+1)(ψ(tm(r)+1), qtm(r)+1)
= Vς(tm(r)+1)(ψ(tm(r)+1), 0)
≤ µVς(t−m(r)+1)(ψ(tm(r)+1), Mε)

= µVς(t−m(r)+1)(ψ(tm(r)+1), qt−m(r)+1
)

= µV̆ς(t−)(ψ(t), t),

and for t = tm(r)+κ (κ = 2, . . . , nr + 1, r ∈ Z+), we have

V̆ς(t)(ψ(t), t) = Vς(tm(r)+κ)(ψ(tm(r)+κ), qtm(r)+κ)
= Vς(tm(r)+κ)(ψ(tm(r)+κ), 0)
≤ µVς(t−m(r)+κ)(ψ(tm(r)+κ), Mr, κ−1)

= µVς(t−m(r)+κ)(ψ(tm(r)+κ), qt−m(r)+κ
)

= µV̆ς(t−)(ψ(t), t).

Thus, (3.24) also holds when t is a switching instant. The proof is finished.

Then, based on Lemma 2, the desired QTD controller can be constructed according to the following
theorem.

Theorem 2. Given scalars δ ≥ 0, µ > 1, ρ > 0, γ > 0, θ > 0 and ht > 0, suppose that, for i1 ∈ M,
i2 ∈ {0, . . . ,Mε − 1} and i3 ∈ M, there exist matrices P̃i1, i2 > 0, P̃i1,Mε

> 0, Xi1, i2 , Xi1,Mε
, Yi1, i2 and Yi1,Mε

satisfying 
Ψ1

i1i2 P̃i1, i2 Ei1 P̃i1, i2 Bi1 − Bi1 Xi1, i2 + θYT
i1, i2

∗ −I 0
∗ ∗ −θS {Xi1, i2}

 < 0, (3.25)


Ψ2

i1i2 P̃i1, i2+1Ei1 P̃i1, i2+1Bi1 − Bi1 Xi1, i2 + θYT
i1, i2

∗ −I 0
∗ ∗ −θS {Xi1, i2}

 < 0, (3.26)
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Ψ3

i1 Mε
P̃i1,Mε

Ei1 P̃i1,Mε
Bi1 − Bi1 Xi1,Mε

+ θYT
i1,Mε

∗ −I 0
∗ ∗ −θS {Xi1,Mε

}

 < 0, (3.27)

[
−P̃i1, i2 GT

i1
∗ −γ2I

]
< 0, (3.28)[

−P̃i1, i2+1 GT
i1

∗ −γ2I

]
< 0, (3.29)[

−P̃i1,Mε
GT

i1
∗ −γ2I

]
< 0, (3.30)

and

P̃i1, 0 ≤ µP̃i3, κ, κ = 0, 1, . . . ,Mε (3.31)

for i1 , i3, where

Ψ1
i1i2 = S

(
P̃i1, i2 Ai1 + Bi1Yi1, i2

)
+

1
ht

(P̃i1, i2+1 − P̃i1, i2) + ρP̃i1, i2 ,

Ψ2
i1i2 = S

(
P̃i1, i2+1Ai1 + Bi1Yi1, i2

)
+

1
ht

(P̃i1, i2+1 − P̃i1, i2) + ρP̃i1, i2+1,

Ψ3
i1 Mε

= S
(
P̃i1,Mε

Ai1 + Bi1Yi1,Mε

)
+ ρP̃i1,Mε

.

Then, for any PDT switching signal satisfying (3.5), the time-dependent controller in (3.18) can ensure
that CTSS (2.1) is AS with the EPDAP level γ̄ = γ

√
µδ/ht +1 if the control gains are chosen as

Ki1, i2 = X−1
i1, i2Yi1, i2 , i1 ∈ M, i2 ∈ N . (3.32)

Proof. Define ηi2 = i2ht. Then, the switching interval [tm(r), tm(r)+1) can be reformulated as

[tm(r), tm(r)+1) =
Mε−1
∪

i2=0
[tm(r) + ηi2 , tm(r) + ηi2+1) ∪ [tm(r) + ηMε

, tm(r)+1).

Consider the following LF

Vς(t)(ψ(t), qt) = ψT (t)P(ς(t), qt)ψ(t), (3.33)

where

P(ς(t), qt)=


P̃ς(t), qt +

(
P̃ς(t), qt+1 − P̃ς(t), qt

)
ϕ(t), t ∈ [tm(r) + ηqt , tm(r) + ηqt+1), 0 ≤ qt ≤ Mε − 1,

P̃ς(t),Mε
, t ∈ [tm(r) + ηMε

, tm(r)+1),
P̃ς(t), qt +

(
P̃ς(t), qt+1 − P̃ς(t), qt

)
ϕ(t), t ∈ [tm(r)+κ + ηqt , tm(r)+κ + ηqt+1), 0 ≤ qt ≤ Mr, κ − 1,

P̃ς(t),Mr, κ , t ∈ [tm(r)+κ + ηMr, κ , tm(r)+κ+1),

ϕ(t)=
t − (tm(r)+κ + ηqt)

ht
, κ = 1, 2, . . . , nr.

Note that Vς(t)(ψ(t), qt) is continuous on [tm(r), tm(r+1)) and differentiable at t , tm(r)+κ. Obviously, (3.20)
is satisfied. In addition, (3.23) is guaranteed by (3.31).
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Next, we only need to show that (3.21) and (3.22) hold true for any t ≥ 0. In order to simplify the
notations, we take ς(t) = i1 and qt = i2. For any r ∈ Z+, when t ∈ [tm(r), tm(r) + ηMε

), we can get from
(3.33) that

Vi1(ψ(t), i2) = ψT (t)
(
P̃i1, i2 +

(
P̃i1, i2+1 − P̃i1, i2

)
ϕ(t)

)
ψ(t). (3.34)

Then, we obtain

V̇i1(ψ(t), i2) = 2ψT (t)
(
P̃i1, i2 +

(
P̃i1, i2+1 − P̃i1, i2

)
ϕ(t)

)
ψ̇(t) +

1
ht
ψT (t)

(
P̃i1, i2+1 − P̃i1, i2

)
ψ(t). (3.35)

According to CTSS (2.1) and (3.35), we have

V̇i1(ψ(t), i2) + ρVi1(ψ(t), i2) − ‖$(t)‖2

= 2ψT (t)
(
P̃i1, i2 +

(
P̃i1, i2+1 − P̃i1, i2

)
ϕ(t)

) (
(Ai1 + Bi1 Ki1, i2)ψ(t) + Ei1$(t)

)
+ ρψT (t)P̃i1, i2ψ(t)

+ ρψT (t)
(
P̃i1, i2+1 − P̃i1, i2

)
ϕ(t)ψ(t) +

1
ht
ψT (t)

(
P̃i1, i2+1 − P̃i1, i2

)
ψ(t)) − ‖$(t)‖2

= (1 − ϕ(t))
(
ψT (t)S

(
P̃i1, i2(Ai1 + Bi1 Ki1, i2)

)
ψ(t) + ψT (t)S

(
P̃i1, i2 Ei1

)
$(t) + ρψT (t)P̃i1, i2ψ(t)

+
1
ht
ψT (t)

(
P̃i1, i2+1 − P̃i1, i2

)
ψ(t) − ‖$(t)‖2

)
+ ϕ(t)

(
ψT (t)S

(
P̃i1, i2+1(Ai1 + Bi1 Ki1, i2)

)
ψ(t)

+ ψT (t)S
(
P̃i1, i2+1Ei1

)
$(t) + ρψT (t)P̃i1, i2+1ψ(t) − ‖$(t)‖2

+
1
ht
ψT (t)

(
P̃i1, i2+1 − P̃i1, i2

)
ψ(t)

)
= (1 − ϕ(t))ψT

$(t)Θ1i1i2ψ$(t) + ϕ(t)ψT
$(t)Θ2i1i2ψ$(t), (3.36)

where

Θ1i1i2 =

[
Θ1

1i1i2
P̃i1, i2 Ei1

∗ −I

]
, Θ2i1i2 =

[
Θ1

2i1i2
P̃i1, i2+1Ei1

∗ −I

]
,

Θ1
1i1i2 = S

(
P̃i1, i2

(
Ai1 + Bi1 Ki1, i2

))
+

1
ht

(
P̃i1, i2+1 − P̃i1, i2

)
+ ρP̃i1, i2 ,

Θ1
2i1i2 = S

(
P̃i1, i2+1

(
Ai1 + Bi1 Ki1, i2

))
+

1
ht

(
P̃i1, i2+1 − P̃i1, i2

)
+ ρP̃i1, i2+1.

In addition, utilizing CTSS (2.1) and (3.34), we can get

‖φ(t)‖2 − γ2Vi1(ψ(t), i2)

= ψT (t)GT
i1Gi1ψ(t) − γ2ψT (t)

(
P̃i1, i2 +

(
P̃i1, i2+1 − P̃i1, i2

)
ϕ(t)

)
ψ(t)

= (1 − ϕ(t))ψT (t)
(
GT

i1Gi1 − γ
2P̃i1, i2

)
ψ(t) + ϕ(t)ψT (t)

(
GT

i1Gi1 − γ
2P̃i1, i2+1

)
ψ(t). (3.37)

Similarly, when t ∈ [tm(r) + ηMε
, tm(r)+1), we have from (3.33) that

Vi1(ψ(t), Mε) = ψT (t)P̃i1,Mε
ψ(t).
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This, together with CTSS (2.1), enables us to get that

V̇i1(ψ(t), Mε) + ρVi1(ψ(t), Mε) − ‖$(t)‖2 = ψT
$(t)Θ3i1 Mε

ψ$(t), (3.38)

‖φ(t)‖2 − γ2Vi1(ψ(t), Mε) = ψT (t)
(
GT

i1Gi1 − γ
2P̃i1,Mε

)
ψ(t), (3.39)

where

Θ3i1 Mε
=

 S
(
P̃i,Mε

(Ai1 + Bi1 Ki1,Mε
)
)

+ ρP̃i,Mε
P̃i,Mε

Ei1

∗ −I

 .
Utilizing Proposition 2, we can deduce from (3.25)–(3.27) that

Ψ1i1i2 + S
(
U1i1i2 X−1

i1, i2V
T
i1i2

)
< 0, (3.40)

Ψ2i1i2 + S
(
U2i1i2 X−1

i1, i2V
T
i1i2

)
< 0, (3.41)

Ψ3i1 Mε
+ S

(
U3i1 Mε

X−1
i1,Mε

VT
i1 Mε

)
< 0, (3.42)

where

Ψ1i1i2 =

[
Ψ1

i1i2 P̃i1, i2 Ei1

∗ −I

]
,Ψ2i1i2 =

[
Ψ2

i1i2 P̃i1, i2+1Ei1

∗ −I

]
,Ψ3i1i2 =

[
Ψ3

i1i2
P̃i1,Mε

Ei1

∗ −I

]
,

U1i1i2 =

[(
P̃i1, i2 Bi1 − Bi1 Xi1, i2

)T
0
]T
,U2i1i2 =

[(
P̃i1, i2+1Bi1 − Bi1 Xi1, i2

)T
0
]T
,

U3i1 Mε
=

[(
P̃i1,Mε

Bi1 − Bi1 Xi1,Mε

)T
0
]T
,Vi1 Mε

=
[
Yi1,Mε

0
]T
.

From (3.32) and (3.40)–(3.42), we can obtain that Θ1i1i2 < 0, Θ2i1i2 < 0 and Θ3i1 Mε
< 0, which, together

with (3.36) and (3.38), ensure (3.21) for t ∈ [tm(r), tm(r)+1). In addition, by means of Proposition 3,
(3.28)–(3.30), (3.37) and (3.39) ensure (3.22) for t ∈ [tm(r), tm(r)+1). Furthermore, due to the fact that
Mr, κ ≤ Mε, (3.25)–(3.30) guarantee (3.21) and (3.22) for t ∈ [tm(r)+1, tm(r+1)). Thus, (3.21) and (3.22)
hold true for any t ∈ [tm(r), tm(r+1)). Considering the arbitrariness of r, by Lemma 2, CTSS (2.1) is
shown to be AS with the EPDAP level γ̄ = γ

√
µδ/ht +1. The proof is finished.

Remark 2. As commonly reported in the literature on SSs with PDT switching (see, e.g., [43–45],
the design strategy proposed in Theorem 1 is time-independent. In order to reduce conservativeness,
Theorem 2 presents a QTD design strategy by incorporating the time scheduler qt effectively. The
benefits of this approach will be demonstrated in Section 4. However, it may be worth noting that this
improvement comes at the cost of increased computational complexity.

4. Example

Consider CTSS (2.1) subject to the following parameters:

A1 =

[
−0.5 0.6
0.83 −0.55

]
, B1 =

[
0.1

0.28

]
,

A2 =

[
−0.6 0.55
0.5 −0.3

]
, B2 =

[
0.1
0.2

]
,
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Table 1. Optimal EPDAP level γ̄min for different values of ρ given µ = 1.2.

Method
γ̄min

ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5
Theorem 1 0.0849 0.0990 0.1182 0.1463 0.1917
Theorem 2 0.0724 0.0837 0.0991 0.1210 0.1556

Table 2. Optimal EPDAP level γ̄min for different values of µ given ρ = 0.5.

Method
γ̄min

µ = 1.25 µ = 1.3 µ = 1.35 µ = 1.4 µ = 1.45
Theorem 1 0.2301 0.2741 0.3246 0.3821 0.4472
Theorem 2 0.1845 0.2180 0.2567 0.3010 0.3515

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

Figure 2. Trajectory of ς(t).

E1 =

[
0.1
0.1

]
, E2 =

[
0.5
0.5

]
,

G1 =
[

0.1 −0.1
]
, G2 =

[
0.2 −0.2

]
.

We set δ = 2, ht = 0.2 and θ = 0.1. Then, by solving the LMIs of Theorems 1 and 2, respectively,
we can get the comparison outcomes of the optimal EPDAP level γ̄min for different values of ρ and µ,
as described in Tables 1 and 2, respectively. From these two tables, we have two observations. First,
when one of the values of ρ and µ is fixed, the optimal EPDAP level γ̄min increases as the value of the
other parameter increases. Second, when comparing the controller design method given in Theorem
1 with the one in Theorem 2, it is evident that the latter always yields better performance levels γ̄min.
This improvement can be attributed to the fact that the design method in Theorem 2 is QTD.

Next, we set ρ = 0.4 and µ = 1.1. By solving the LMIs of Theorem 2, we get the EPDAP level
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Figure 3. Trajectory of qt.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
104

Figure 4. The trajectories of ψ(t) for the open-loop CTSS.

γ̄min = 0.0866 and the controller gains as follows:[
K1,0 K1,1

K1,2 K1,3

]
=

[
−3.7775 0.5573 −2.5836 −0.7731
−1.7309 −1.7872 −3.8081 1.3118

]
,[

K2,0 K2,1

K2,2 K2,3

]
=

[
−2.3377 −0.4988 −1.4927 −1.4947
−0.7562 −2.3323 −3.2563 0.2743

]
.

In the simulation, we take the exterior disturbance as $(t) = e−0.2t sin(2t) and set the initial value
as ψ(0) = [5 − 2]T . Figures 2–4 show the trajectories of PDT switching mode ς(t), time scheduler qt

and states of the closed-loop CTSS, respectively. It is evident from Figure 4 that the open-loop CTSS
is unstable. The trajectories of the states and control input of the closed-loop CTSS are depicted in
Figure 5. It is apparent that the curves tend to zero as time t → ∞, indicating that QTD controller
(3.18) can ensure that the closed-loop CTSS is AS.
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Figure 5. Trajectories of ψ(t) and u(t) for the closed-loop CTSS.
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Figure 6. Trajectory of γ(t).

At last, we introduce

γ(t) =

√√
sups≥0

{
‖φ(s)‖2

}∫ t

0
‖$(s)‖2ds

.

Figure 6 further describes the curve of γ(t) given that ψ(0) = [0 0]T . Apparently, γ(t) progressively
converges to 0.0077, which is smaller than the optimal EPDAP level γ̄min = 0.0866. This shows the
effectiveness of controller (3.18) in ensuring the EPDAP of the closed-loop CTSS.

5. Conclusions

This work investigated the issue of energy-to-peak control for CTSSs with PDT switching. With
the aid of an LF and a few decoupling techniques, a time-independent controller design approach
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was proposed in Theorem 1. To reduce conservatism, a QTD controller design method was further
presented in Theorem 2. The required gains of these two types of controllers can be acquired by solving
LMIs. Finally, an example was utilized to illustrate the validity of our controller design approaches.

The controllers under consideration are based on full-state feedback, which utilizes state variables
as feedback signals to generate control inputs. However, there are certain scenarios in which imple-
menting such controllers becomes challenging because directly measuring all of the state variables
is often difficult [46]. The issue of energy-to-peak control for CTSSs with PDT switching based on
output feedback will be explored as an extension of the current work.
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