
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(9): 5250–5266.
DOI: 10.3934/era.2023267
Received: 08 May 2023
Revised: 07 July 2023
Accepted: 17 July 2023
Published: 20 July 2023

Research article

The generalization ability of logistic regression with Markov sampling

Zhiyong Qian, Wangsen Xiao and Shulan Hu*

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073,
China

* Correspondence: Email: hu shulan@zuel.edu.cn.

Abstract: In the case of non-independent and identically distributed samples, we propose a new ueMC
algorithm based on uniformly ergodic Markov samples, and study the generalization ability, the learning
rate and convergence of the algorithm. We develop the ueMC algorithm to generate samples from given
datasets, and present the numerical results for benchmark datasets. The numerical simulation shows that
the logistic regression model with Markov sampling has better generalization ability on large training
samples, and its performance is also better than that of classical machine learning algorithms, such as
random forest and Adaboost.
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1. Introduction

The logistic regression model has become one of the most popular machine learning methods
in classification [1–4]. Besides the advantages of good performance and strong interpretability in
practical applications, the logistic regression model also has a complete theoretical basis in terms of
consistency and generalization performance when the training samples are independent and identically
distributed (i.i.d) [5–8]. However, the hypothesis of i.i.d is quite hard to be proved in practice, so it is
natural to consider the logistic regression model with non-i.i.d samples.

The relaxation of the i.i.d hypothesis has been discussed for a long time in machine learning and
statistical literature. For example, Wang et al. [9] pointed out that the statistical learning theory in
the case of small samples cannot be directly applied to large samples and proposed the generalization
bounds of under-sample models based on strict Bayesian network processing. Sun and Wu [10], Sun
and Guo [11] and Chu and Sun [12] used mixed samples to analyze the error of l2-norm least squares
and l1-norm least squares regression, respectively. Guo and Shi [13] proved that the learning speed of
regularized least squares regression was faster than the classical method. Machine learning algorithms
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in the non-i.i.d case are solved by concentration inequalities because the concentration inequalities
can provide probability upper bounds for the deviation [14]. Modha and Masry [15] extended the
classical inequalities in the condition from i.i.d to m-correlation and strong mixing, respectively.
Merlevède et al. [16] obtained a Bernstein type inequality for a class of weakly dependent and bounded
random variables. Fan et al. [17] studied the Hoeffding inequality for general Markov chains and
time-dependent functions.

In the paper, we enhance the performance of the logistic regression model from small samples to
large samples. Machine learning usually performs well in Markov chain samples [18], so we develop
the uniformly ergodic Markov chain algorithm (ueMC algorithm) for the logistic regression model. The
ueMC algorithm can identify samples with classification errors and close to the decision boundary, and
determine the final Markov samples used in the pre-training models. Compared with the algorithm
proposed by Thongkam et al. [19], the ueMC algorithm does not directly eliminate the misclassified
samples, as they are based on a random probability. Similar to the method proposed by Miranda
et al. [20], the previous eliminated samples may be selected later. Inspired by [21], we study the
generalization ability of the ueMC algorithm, and establish the optimal learning rate of the logistic
regression classification for ueMC samples. Through numerical study and the simulation, it is verified
that the performance of the ueMC algorithm based on ueMC samples is more effective than the algorithm
based on other random samples, and the performance of the ueMC algorithm is also better than of the
classical machine learning algorithm.

The paper is organized as follows. In Section 2, some definitions and notations are given. In Section 3,
we present and prove the main results on the learning rates of the logistic regression model with ueMC
samples. In Section 4, we develop a new ueMC algorithm, and present the numerical studies on the
generalization performance of the logistic regression model based on Markov sampling for benchmark
datasets. Finally, the conclusions are given in Section 5.

2. Preliminaries

In this section we introduce the definitions and notations throughout this paper.

2.1. Logistic regression model

Let (X, d) be a compact metric space and Y = {0, 1}. A binary classifier is a function f̂ : X → Y
which labels every point x ∈ X ⊆ R with some y ∈ Y. Let φ be a probability distribution onZ = X×Y
and (X,Y) be the corresponding random variable. Given Xi = (1, xi1, . . . , xik)T

⊆ Rk+1, i = 1, 2, . . . ,N,
the form of the separating hyperplane is as follows:

f̂ = WT X = w0 + w1xn1 + w2xn2 + . . . + wkxnk = 0, (2.1)

where W = (w0,w1, . . . ,wk)T is the coefficient of the variable.
Let P (Yi | Xi,W) = 1

1+e−WT Xi
= sigmod( f̂ ) represent the probability of the sample being a positive

sample (Yi = 1), and 1 − P (Yi | Xi,W) represent the probability of the sample being a negative sample
(Yi = 0). So we have:

ln
P (Yi = 1 | Xi,W)
P (Yi = 0 | Xi,W)

= WT Xi, (2.2)
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where P (Yi = 1 | Xi,W) = eWT Xi

1+eWT Xi
.

The log-likelihood function is:

g (W) =
N∑

i=1

ln (YiP (Yi = 1 | Xi,W) + (1 − Yi) P (Yi = 0 | Xi,W)) . (2.3)

The objective function of the logistic regression model is:

L (W) = arg min
W

N∑
i=1

(
YiWT Xi + ln

(
1 + eWT Xi

))
. (2.4)

Linear models are easy to over-fitting in high dimensions because of the correlation between features.
In the paper, the weight term of the model is constrained to alleviate the problem of over-fitting by
adding a regular term c (W). We choose norm l2 regularization and use BFGS (Broyden-Fletcher-
Goldfarb-Shanno) algorithm [22] to solve the parameters.

L (W) = arg min
W

N∑
i=1

(
YiWT Xi + ln

(
1 + eWT Xi

))
+ c (W) . (2.5)

Let H be Hilbert space, a set of real function on space X ⊆ R. If there is a kernel function
K : X × X → R satisfying ∀x ∈ X,K⟨·, x⟩ ∈ R, then HK is called a reproducing kernel Hilbert space
satisfying ∀x ∈ X,∀ f ∈ H , f (x) = ⟨ f ,K⟨·, x⟩⟩.

For a function f : X → R, sign function sgn( f ) = 1 if f (x) ≥ 0 and sgn( f ) = 0 if f (x) < 0. Then the
logistic regression model is defined as sgn

(
fz,λ
)
, where fz,λ is a minimizer of the following optimization

problem involving a set of random sample S = {zi}
m
i=1 ∈ Z

m :

fz,λ := arg min
f∈HK

{
λ∥ f ∥2

HK
+ Ez( f )

}
. (2.6)

In Formula (2.6), ℓ( f , z) = −[y ln(sigmoid( f (x))) + (1 − y) ln(1 − sigmoid( f (x)))] is the loss function,
Ez( f ) = 1

m

∑m
i=1 ℓ ( f , zi) is the empirical error, E( f ) = E[ℓ( f , z)] denotes the generalization error of the

corresponding function f . λ = 1/(2C) is the regularization parameter, where C is a constant which
depends on m : C = C(m) and often lim

m→∞
C(m) = ∞.

2.2. Uniformly ergodic Markov chains (ueMC)

Suppose a Markov chain on (Z,S) is a sequence of random variables {Zi}i≥1 with a set of transition
probability measures P(n) (A | zi) , A ∈ S, zi ∈ Z. It is assumed that

P(n) (A | zi) = P
{
Zn+i ∈ A | Z j, j < i,Zi = zi

}
, n > 0. (2.7)

For any Markov chain, if the transition probability is independent of time, the Markov chain is
stationary [23].

Definition 1. Given two probabilities ν1, ν2 on the measure space (Z,S), we define ∥ν1 − ν2∥TV =

supA∈S |ν1(A) − ν2(A)| as the total variation distance between the measures ν1 and ν2. Meyn and
Tweedie [24] pointed out that for a Markov chain {Zi}i≥1, if there are 0 < γ0 < ∞ and 0 < ρ0 < 1,∥∥∥Pk(· | z) − π(·)

∥∥∥
TV
≤ γ0ρ

k
0, ∀k ≥ 1, k ∈ N, (2.8)

where π(·) is the stationary distribution of {Zi}i≥1, then {Zi}i≥1 is a ueMC.
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Another equivalent definition of ueMC is the following Doeblin condition [25].

Proposition 1. (Doeblin condition): Suppose {Zi}i≥1 is a Markov chain with transition probability
Pn(· | ·), and µ is a specific non-negative metric with nonzero mass µ0. If there is some integer k such
that ∀z ∈ Z and for all measurable sets A, Pk(A | z) ≤ µ(A), then for any integer n, ∀z1, z2 ∈ Z, we have∥∥∥Pk (· | z1) − Pk (· | z2)

∥∥∥
TV
≤ 2βn/k

1 , (2.9)

where β1 = 1 − µ0.

3. Bounds of generalization ability

In this section, we estimate the bounds on the generalization performance of the logistic regression
model based on the ueMC sampling by following the enlightening ideas of [26].

3.1. Bounds of generalization ability

To measure the generalization ability of fz,λ, we identify how sgn
(
fz,λ
)

converges (with respect to the
misclassification error) to the best classifier as C(m) tends to infinity. Recall the regression function of φ,
fφ =
∫

y
ydφ(y|x), x ∈ X. Then the Bayes rule is given by the sign of the regression function fc = sgn( fφ).

Referring to Vapnik [27], the speed at which fz,λ approaches fφ is measured by excess generalization
error E

(
fz,λ
)
− E( fφ). Since the minimization (2.6) is taken over the discrete quantity Ez( f ), we have to

regulate the capacity of the function set. Here the capacity is measured by the covering number.
We should estimate the excess misclassification errorR

(
sgn
(
fz,λ
))
−R ( fc) to bound the generalization

ability of fz,λ. The relation between excess misclassification error and excess generalization error
E( f ) − E

(
fφ
)

for convex loss is for f : X → R,

R(sgn( f )) − R ( fc) ≤ E( f ) − E
(

fφ
)
. (3.1)

Definition 2. Let U > 0, and BU =
{
f : f ∈ HK , ∥ f ∥HK ≤ U

}
be the sphere with radius U in HK , let

N(ϵ) = N (BU , ϵ) , ϵ > 0 be the covering number of BU .

Definition 3. The complexity index ofHK is s, if there is some Cs > 0 such that ∀ϵ > 0,

lnN(ϵ) ≤ Cs(1/ϵ)s.

Proposition 2. Let fz,λ be the function defined by (2.6), and define fλ := arg min f∈HK {λ∥ f ∥
2
HK
+ E( f )} as

a regularizing function, then for any λ > 0,

E
(
fz,λ
)
− E
(

fφ
)
≤ RS + Rλ, (3.2)

where sample error:
RS =

(
E
(
fz,λ
)
− Ez
(
fz,λ
)
+ Ez ( fλ) − E ( fλ)

)
,

and regularization error:
Rλ =

(
E ( fλ) − E

(
fφ
)
+ λ ∥ fλ∥2HK

)
.
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Proof. According to the definition of fz,λ,

λ
∥∥∥ fz,λ

∥∥∥2
HK
+ Ez
(
fz,λ
)
≤ λ ∥ fλ∥2HK

+ Ez ( fλ) ,

we have
Ez ( fλ) − Ez

(
fz,λ
)
+ λ ∥ fλ∥2HK

≥ λ
∥∥∥ fz,λ

∥∥∥2
HK
≥ 0.

So
E
(
fz,λ
)
− E
(

fφ
)

≤E
(
fz,λ
)
− E
(

fφ
)
+ Ez ( fλ) − Ez

(
fz,λ
)
+ λ ∥ fλ∥2HK

=
(
E
(
fz,λ
)
− Ez
(
fz,λ
)
+ Ez ( fλ) − E ( fλ)

)
+
(
E ( fλ) − E

(
fφ
)
+ λ ∥ fλ∥2HK

)
.

In Proposition 2, sample error

RS = RS 1 + RS 2 =

Eξ1 −
1
m

m∑
i=1

ξ1 (zi)

 +
 1

m

m∑
i=1

ξ2 (zi) − Eξ2

 ,
where ξ1 = ℓ

(
fz,λ, z
)
− ℓ( fφ, z) and ξ2 = ℓ ( fλ, z) − ℓ( fφ, z). □

Definition 4. We say the function fφ can be approximated by HK with exponent 0 < β ≤ 1, if there
exists a constant Cβ such that for any λ > 0,Rλ ≤ Cβλβ. In the paper, we assume that there is a constant
B such that

∣∣∣ fφ∣∣∣ ≤ B.

3.2. Main tools

To prove the main results, there are four lemmas.

Lemma 1. Let f be a continuous function defined on X and ∥ f ∥∞ = supx∈X | f (x)|. Let κ =
supx∈X

√
K⟨x, x⟩, then ∥ f ∥∞ = supx∈X | f (x)| ≤ κ∥ f ∥HK ,∀ f ∈ HK .

Proof. According to the Cauchy-Schwartz inequality of PSD kernel and the reproducing property of
reproducing kernel Hilbert space, we have:

f 2(x) ≤ ⟨ f , f ⟩ · K⟨x, x⟩,

it follows that
sup
x∈X
| f (x)| ≤ κ∥ f ∥HK ,∀ f ∈ HK .

□

Lemma 2. ξ2 = ℓ ( fλ, z) − ℓ( fφ, z), | fφ| ≤ B, we have

|ξ2| ≤ d := κ
√

Rλ/λ + B + ln
(
1 + eκ

√
Rλ/λ
)
+ ln(1 + eB). (3.3)

Proof. Due to
Rλ = E ( fλ) − E

(
fφ
)
+ λ ∥ fλ∥2HK

≥ λ ∥ fλ∥2HK
,
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then ∥ fλ∥HK
≤
√

Rλ/λ. By applying Lemma 1, there holds ∥ fλ∥∞ ≤ κ
√

Rλ/λ as ξ2 = ℓ ( fλ, z) − ℓ( fφ, z)
and | fφ| ≤ B, and when y = 1,

ξ2 = ln(sigmod( fλ)) − ln(sigmod( fφ)) = fφ − fλ + ln(1 + e f
λ ) − ln(1 + e fφ);

when y = 0,

ξ2 = ln(1 − sigmod( fλ)) − ln(1 − sigmod( fφ)) = ln(1 + e fλ) − ln(1 + e fφ).

Then, the proof ends with |ξ2| = |ℓ ( fλ, z) − ℓ( fφ, z)| ≤ | fλ| + | fφ| + | ln(1 + e fφ)| + | ln(1 + e fλ)|. □

Lemma 3. (proved in [21]): Hoeffding’s inequality: Let Z = {Zi}
m
i=1 be a ueMC sample and F be

a set of bounded and measurable functions, i.e. there is a constant C, such that ∀z ∈ Z, ∀g ∈ F ,
0 ≤ g(z) ≤ C. For any ε > 0, we have

Pr


∣∣∣∣∣∣∣ 1m

m∑
i=1

g (zi) − E(g)

∣∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

{
−mε2

56C ∥Γ0∥
2 E(g)

}
, (3.4)

where Γ0 =
√

2/(1 − β1/2t) and β = 1 − µ0. Here µ0 and t are from Doeblin condition [25].

According to Lemma 3, for any ε > 0,

Pr

 1
m

∑m
i=1 ξ2 (zi) − E (ξ2)√

E (ξ2) + ε
≥
√
ε

 ≤ exp
{
−εm

56 ∥Γ0∥
2 d

}
. (3.5)

Let δ1 = exp
{
−εm

56∥Γ0∥
2d

}
, so ε = −56∥Γ0∥

2d ln(δ1)
m and

√
ε
√
ε( f ) + ε ≤ 1

2ε( f ) + ε. Then for any 0 < δ1 < 1,
we obtain

RS 2 =
1
m

m∑
i=1

ξ2 (zi) − Eξ2 ≤
1
2

Rλ −
56 ln (δ1) d ∥Γ0∥

2

m
, (3.6)

with probability at least 1 − δ1.
Let U > 0 and FU = {g = ℓ( f , z) − ℓ( fφ, z), f ∈ BU}, we have

E(g) = E( f ) − E( fφ) ≥ 0,
1
m

m∑
i=1

g(zi) = Ez( f ) − Ez( fφ).

From the definition of BU , it can be seen that for any f ∈ BU , there are ∥ f ∥∞ ≤ κ∥ f ∥HK ≤ κU and
then
∣∣∣ fφ∣∣∣ ≤ B. It follows that

|g(z)| ≤ b := κU + B + ln(1 + eκU) + ln(1 + eB).

Under the condition of Lemma 3, for any ϵ > 0

Pr

 sup
f∈BU

(E( f ) − Ez( f )) − (E( fφ) − Ez( fφ))√
E( f ) − E( fφ) + ε

≥
√
ε


=Pr

sup
g∈FU

E(g) − 1
m

∑m
i=1 g (zi)√

E(g) + ε
≥
√
ε


≤N (FU , ϵ) exp

{
−εm

56b ∥Γ0∥
2

}
.

(3.7)
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For any g1, g2 ∈ FU , |ln (1 + ex1) − ln (1 + ex2)| ≤ |x1 − x2|, it follows that |g1(x) − g2(x)| ≤
∥ f1 − f2∥∞.

According to inequality (3.7), for any ε > 0

Pr

 sup
f∈BU

(E( f ) − Ez( f )) − (E( fφ) − Ez( fφ))√
E( f ) − E( fφ) + ε

≥
√
ε

 ≤ N ( εU
)

exp
{
−εm

56b ∥Γ0∥
2

}
. (3.8)

Therefore, according to N
(
ε
U

)
≤ exp

{
Cs

(
U
ε

)s}
by Definition 3, there holds, for fz,λ,

Pr

 sup
f∈BU

(
E
(
fz,λ
)
− Ez
(
fz,λ
))
− (E( fφ) − Ez( fφ))√

E
(
fz,λ
)
− E( fφ) + ε

≥
√
ε

 ≤ exp
{

Cs

(U
ε

)s
−

εm
56b ∥Γ0∥

2

}
. (3.9)

In the (3.9), let

exp
{

Cs

(U
ε

)s
−

εm
56b ∥Γ0∥

2

}
= δ2,

so
εm

56b ∥Γ0∥
2 −Cs

(U
ε

)s
= − ln (δ2) ,

it is obtained that

εs+1 −
CsU s56b ∥Γ0∥

2

m
+
εs ln (δ2) 56b ∥Γ0∥

2

m
= 0. (3.10)

Lemma 4. (Lemma 4 in [28]) Let c1, c2 > 0, and p1 > p2 > 0, then the equation xp1 − c1xp2 − c2 = 0
has a unique positive zero x∗. In addition, x∗ ≤ max

{
(2c1)1/(p1−p2) , (2c2)1/p1

}
.

3.3. Main results

Through the above inference process, we form the following main results.

Theorem 1. Let Z = {Zi}
m
i=1 be a ueMC sample, then for any 0 < δ < 1,

E
(
fz,λ
)
− E( fφ) + 2λ

∥∥∥ fz,λ

∥∥∥2
HK
≤ 3Rλ + 2Ê +

112d ∥Γ0∥
2 ln(1/δ)

m
(3.11)

holds true with probability at least 1 − δ, where

ε̂ ≤ max {ε1, ε2} , ∥Γ0∥
2 =
√

2/
(
1 − β1/2t

1

)
,

ε1 =
112b ∥Γ0∥

2 ln(1/δ)
m

, ε2 =

[
112CsU sb ∥Γ0∥

2

m

]1/(1+s)

,

here β1 and t are defined as that in Proposition 1.

Proof. According to Lemma 4, Eq (3.10) has a solution ε̂ = max {ε1, ε2} with

ε1 = −
112b ∥Γ0∥

2 ln (δ2)
m

, ε2 =

[
112CsU sb ∥Γ0∥

2

m

]1/(1+s)

.
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Since
√
ε
√
ε( f ) + ε ≤ 1

2ε( f ) + ε, in combination with inequality (3.9), inequality (3.12) holds at
least with a probability of 1 − δ2,

RS 1 = Eξ1 −
1
m

m∑
i=1

ξ1 (zi) ≤
1
2

(
E
(
fz,λ
)
− E( fφ)

)
+ ε̂. (3.12)

Combining inequality (3.6) with inequality (3.12), inequality (3.13) holds at least 1 − δ probability
for any 0 < δ < 1,

E
(
fz,λ
)
− E( fφ) ≤ 3Rλ + 2ε̂ − 2λ

∥∥∥ fz,λ

∥∥∥2
HK
−

112d ∥Γ0∥
2 ln(δ)

m
. (3.13)

□

Theorem 2. Let Z = {Zi}
m
i=1 be a ueMC sample, Taking λ = (1/m)ϑ. For any ϵ > 0 and 0 < δ < 1, there

exists a constant Ĉ independent of m such that

R
(
sgn
(
fz,λ
))
− R ( fc) ≤ Ĉ(1/m)θ, (3.14)

holds true with probability at least 1 − δ, providing m ≥ 112b ∥Γ0∥
2 ln(1/δ) (ln(1/δ)/Cs)1/s /U, where

ϑ = min
{

2
β + 1

,
2

(1 + β)(1 + s)

}
,

θ = min
{

2β
β + 1

,
2β

(1 + β)(1 + s)
− ϵ

}
.

Proof. The proof is easily obtained from Theorem 1 with the proof of Theorem 2 in [21]. □

4. Markov sampling and numerical studies

In this section, we introduce a ueMC algorithm to generate the samples from a given dataset. We
give numerical studies on the learning performance of the logistic regression model and present some
useful discussions.

4.1. Markov sampling algorithm

Here are the notations:

• S T : the initial training set
• S iid: a i.i.d sample from S T

• S mkv: a ueMC sample from S T

• NT : the number of positive samples in S mkv

• NF: the number of negative samples in S mkv

• k,m,N, n, a, max iteration: super-parameters

The pseudocode of the ueMC algorithm is as follows:
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The ueMC algorithm: Markov sampling for Logistic Regression
Input: S T ,m, k,N, n, max iteration, a.
Output: fk.
Step 1: Set i = 0, draw randomly m samples from S T called S iid, and train S iid, get the
premilinary mode fi.
Step 2: Let S mkv = ∅, NT = 0, NF = 0, t := 1.
Step 3: Draw randomly a sample zt from S T , let S mkv = S mkv ∪ zt, NT = NT + 1, if yt = 1;
NF = NF + 1, if yt = 0. set j := 0.
Step 4: Draw randomly another sample zcandidate from S T , calculate p1 =

e−ℓ( fi, zcantididete)/e−ℓ( fi,zt), j := j + 1.
Step 5: Draw randomly a number prandom from U(0, 1).
Step 6: If 1 > p1 > prandom, accept zcandidate with p1; If p1 ≥ 1 and ytycandidate = 1,
calculate p2 = e−ycandidate fi/e−yt fi , if p2 > prandom, accept zcandidate with p2; If p1 ≥ 1 and
ytycandidate = −1, accept zcandidate with p1; If n samples are rejected continuously, accept
zcandidate with p3 = ap1.
Step 7: If ycandidate = 1 and NT <

N
2 , let NT = NT+1, S mkv = S mkv∪zcandidate; If ycandidate = −1

and NF <
N
2 , let NF = NF + 1, S mkv = S mkv ∪ zcandidate.

Step 8: If j > max iteration or NT + NF > N, train S mkv to get fi+1, else go to Step 4.
Step 9: If i < k, let i := i + 1 and go to Step 2, else output fi+1.

Compared with data noise, the over-fitting problem caused by small sample size has a stronger impact
on the generalization performance of the classifier ( [29]). Different from the methods from [11, 19]
based on threshold to eliminate noise data, the ueMC is constructed to avoid the problem of over-fitting
caused by small training samples.

The ueMC algorithm uses the initial model f0 of S iid and the loss function ℓ( f , z) to construct the
transition probability p1, p2, p3 of ueMC. Since p1, p2, p3 is greater than 0 and the sample size in S T is
limited, S mkv obtained by the ueMC algorithm is a ueMC, according to the research conclusion of [30].

Different from the MCMC algorithm proposed by [31, 32], the ueMC algorithm does not need to
know the probability distribution information of the training set samples. In addition, when k = 0,
the algorithm degenerates into the classical logistic regression model. In order to make the following
experimental results without loss of generality, we take k = 2 and a = 1.2.

4.2. Experiment results

In this subsection, we present the numerical study on the learning performance of the
logistic regression model based on linear prediction models for 9 real-world datasets (from
http://archive.ics.uci.edu/ml/datasets and https://www.fml.tuebingen.mpg.de/). The information of
these data sets is summarized in Table 1, and all these datasets are 2-classes realworld datasets. The
samples in these datasets obey non-independent identical distribution. We use the SMOTE algorithm to
deal with unbalanced data. For each data set, it is randomly divided into two parts: the training set and
the test set.
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Table 1. General Information about 9 Real-world Datasets.

Dataset Training Size Test Size Input Dimension
UCI- Heart Disease 800 225 13
UCI-Skin 160000 85057 3
UCI-HTRU2 20000 12518 8
UCI-Wine 1200 399 11
UCI-Diabetes 600 168 8
UCI-Waveform 4000 1000 21
MNIST 60000 10000 784
ELEC2 35000 10312 6
Splice 20000 43500 60

In order to simplify the experimental process, we take N = m in the ueMC algorithm , and carry
out 50 repeated experiments for each dataset. The experimental results are shown in Table 2, where
“MR (i.i.d.)” and “MR (Markov)” denote the misclassification rates of the logistic regression model
based on random sampling and Markov sampling, respectively. In the following, we also discuss the
experimental results based on N < m.

Table 2. Misclassification Rates (%) for 500 Training Samples.

Dataset MR (i.i.d.) MR (Markov)
UCI- Heart Disease 20.94 ± 0.98 19.90 ± 1.07
UCI-Skin 8.92 ± 0.48 8.86 ± 0.54
UCI-HTRU2 17.38 ± 1.71 14.65 ± 1.45
UCI-Wine 24.91 ± 1.40 24.34 ± 1.38
UCI-Diabetes 35.25 ± 1.61 30.00 ± 1.22
UCI-Waveform 17.42 ± 2.19 12.48 ± 1.67
MNIST 0.51 ± 0.10 0.49 ± 0.09
ELEC2 26.83 ± 0.68 25.89 ± 0.36
Splice 12.85 ± 5.12 9.30 ± 3.77

From Table 2, we can find that for 500 training samples, the standard deviations and means of average
misclassification rates of the logistic regression model based on Markov sampling are smaller than that of
random sampling except UCI-Heart Disease and UCI-Skin, and the means of average misclassification
rates based on Markov sampling in UCI-Heart Disease and UCI-Skin datasets are still smaller than that of
random samples. To show the learning performance of the logistic regression model based on Markov
sampling, we present the average misclassification rates for 50 experimental results of the logistic
regression model based on Markov sampling (non-i.i.d) and random sampling (i.i.d.) for different
training sizes and four datasets in Figures 1–4.
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Figure 1. Average misclassification rates for UCI-HTRU2 and m = 1000, 1500, 2000, 2500, 3000.

Figure 2. Average misclassification rates for UCI-Waveform and m = 500, 800, 1000, 1500, 2000.

Figure 3. Average misclassification rates for ELEC2 and m = 1000, 2000, 3000, 4000, 5000.
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Figure 4. Average misclassification rates for UCI-Diabetes and m = 100, 200, 300, 400, 500.

To have a better understanding of learning performance of the logistic regression model based on
Markov sampling, the following figures are presented to show the 50 experimental misclassification
rates of the logistic regression model based on Markov sampling.

Figure 5. UCI-HTRU2, m = 3000.

Figure 6. UCI-Waveform, m = 2000.
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Figure 7. ELEC2, m = 5000.

Figure 8. UCI-Diabetes, m = 500.

Figures 1–8 show that for UCI-HTRU2, UCI-Waveform, ELEC2 and UCI-Diabetes, the logistic
regression model based on Markov sampling would have better learning performance than that of
random sampling as the number of training samples is large. For other datasets, since the experimental
results are similar, we do not present all of them here.

Table 3. Misclassification Rates for Different Training Sizes.

Dataset i.i.d. (2000) Markov (600) Markov (800) Markov (1000)
UCI-HTRU2 16.18 ± 0.94 9.54 ± 0.55 10.23 ± 0.47 11.10 ± 0.65
ELEC2 26.94 ± 0.28 25.53 ± 0.21 25.55 ± 0.20 25.49 ± 0.25
UCI-Waveform 15.41 ± 0.76 8.48 ± 0.42 8.42 ± 0.42 8.28 ± 0.33

For the case of N < m, Table 3 shows that for the datasets of UCI-HTRU2, ELEC2 and UCI-
Waveform, the logistic regression model based on smaller Markov chain samples (600 samples for
UCI-HTRU2, ELEC2 and UCI-Waveform) can present smaller misclassification rates compared to more
i.i.d. samples (2000 samples) .

We compare the performance of the logistic regression model with the ueMC samples with the
classical logistic regression model, SVMC, Adaboost, RandomForest and other classical machine
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learning models on UCI-HTRU2, UCI-Skin and MNIST. Tables 4 and 5 show the average classification
error rates and Wilkeson signed rank test results of 50 experiments.

Table 4. Classification Error Rates Comparison Results.

Dataset Markov Logistic Classical Logistic SVM RandomForest Adaboost
MNIST 0.4054 0.5201 0.6374 0.7292 0.4657
SKIN 6.6451 9.2786 7.6901 3.1789 4.4347
HTRU2 10.2353 14.5536 13.5935 11.6205 11.9470

Table 5. Wilkerson signed rank test results of classification error rate.

Comparison Statistic P-value Optimal
Markov Logistic

vs.
Classical Logistic

MNIST 109.0000 6.1 × 10−04 Markov Logistic
SKIN 0.0000 7.5 × 10−10 Markov Logistic
HTRU2 0.0000 7.5 × 10−10 Markov Logistic

Markov Logistic
vs.

RandomForest

MNIST 0.0000 7.5 × 10−10 Markov Logistic
SKIN 0.0000 7.5 × 10−10 RandomForest
HTRU2 0.0000 7.5 × 10−10 Markov Logistic

Markov Logistic
vs.

Adaboost

MNIST 302.5101 5.3 × 10−04 Markov Logistic
SKIN 0.0000 7.5 × 10−10 Adaboost
HTRU2 0.0000 7.5 × 10−10 Markov Logistic

On the three real data sets, the difference between the logistic regression model based on the ueMC
sampling and classical logistic regression models in classification error rates is statistically significant.
It can be concluded that: 1) The generalization ability of the logistic regression model based on the
ueMC sampling is better than that of the classical logistic regression model classifier, and it is robust. 2)
The generalization ability of the logistic regression model with the ueMC samples is comparable to that
of complex classifiers, such as random forest and Adaboost.

4.3. Explanation of learning performance

The ueMC algorithm divides the samples into three categories according to the model pre-trained
in the previous step. The first one is the samples with correct classification and close to the decision
boundary, the second one is the samples with correct classification but far away from the decision
boundary, and the third one is the samples with wrong classification.

According to the definition of the loss function, the distance between the sample and the decision
boundary determines the size of the loss. Samples close to the decision boundary would train a better
decision boundary for classification. The ueMC algorithm designs the acceptance probability p1 and p2

which ensure that the samples obtained according to the acceptance probability are close to the decision
boundary. Therefore, when the initial logistic regression model can better fit the data set, the ueMC
algorithm can ensure that the ueMC samples are excellent samples. In addition, we do not directly
eliminate the samples with classification errors or far away from the decision boundary, but accept them
with a small probability, which not only ensures the excellent properties of the training set, but also
maintains the diversity of the training set samples to a certain extent, and can reduce the error caused
by the misjudgment of the pre-training model. Therefore, the learning performance of the logistic
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regression model based on Markov sampling is better than that of random sampling, and the classifier
based on Markov sampling is more sparse compared to random sampling.

5. Conclusions

To study the generalization performance of the logistic regression model based on the ueMC
sampling, inspired by the idea from [21], we estimate first the generalization error of logistic model
algorithm based on the ueMC sampling. The generalization error is deconstructed into sample error and
regularization error by error decomposition, and the convergence of the algorithm is proved. In addition,
we also generate the samples from given dataset by the ueMC algorithm. The numerical studies show
that as the number of training samples is large, the learning performance of the logistic regression model
based on Markov sampling is better than that of random sampling, and its performance is also better
than that of classical machine model algorithms, such as random forest and Adaboost. In other words,
the ueMC algorithm significantly improves the learning performance of the logistic regression model.
To our knowledge, this study is the first on this topic.
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