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1. Introduction and main results

We are interested in the following discrete second-order Hamiltonian system (SOHS in short):

∆2u(n − 1) = −∇F(n, u(n)), n ∈ Z, (1.1)

where u(n) ∈ RN , ∆2u(n) = ∆(∆u(n)), ∆u(n) = u(n+1)−u(n), and F(n, x) is continuously differentiable
about the first variable. F(n + T, x) = F(n, x), (n, x) ∈ Z × RN , with the positive integer T ≥ 2.

The study of nonlinear Hamiltonian systems (HS) is one of the important research directions in
mathematics, and it is related to many mathematical physics fields. Many scholars are committed to
studying the continuous HS and have obtained a lot of results on nonlinear HS in studies of past decades
via different critical point theories (see [1, 2] and references therein). The critical point theories also
have important applications in nonlocal elliptic problems [3].

Guo and Yu [4–6] first studied the discrete SOHS by using variational method and aroused much
research enthusiasm in this topic. Specially, in [4] the authors obtained the existence of periodic
solutions with the help of the saddle point theorem with F(n, x) satisfying superlinear conditions at the
origin and infinity.

In [7] Tang and Zhang investigated a discrete SOHS under sublinear conditions. Wang, Zhang and
Chen [8] introduced a control function h(s) and discussed a class of non-autonomous SOHS via the
least action principle.

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023263


5152

Tang and Xiao [9] obtained the existence of a nontrivial homoclinic solution for continuous HS via
the mountain pass theorem. Tang and Xue [10] investigated the multiplicity of periodic solutions for
a discrete SOHS under superquadratic conditions via the operator theory. Gradually, more and more
scholars have devoted themselves to studying the non-autonomous SOHS under quadratic conditions.
Some solvable results have been for the non-autonomous SOHS by the minimax methods, such as in
the papers [11–13]. Among them, [11, 13] considered the cases with subquadratic conditions, while
in [12], it was treated with superquadratic conditions. However, Xie, Li and Luo in [14] studied a
continuous SOHS with the help of the linking theorem.

Zhao, Yang and Chen considered an asymptotically linear case for the SOHS in [15], that is,
F(t, x) = W(t, x) − K(t, x), where W satisfies the asymptotically linear condition at infinity, and K
satisfies the coupling condition. Chen, Guo and Liu [16] demonstrated continuous HS with
asymptotically linear terms, which further extended the previous results under coupling conditions.

HS with asymptotically linear terms have been extensively studied in the continuous case, e.g.,
[17–19], whereas few results have been obtained in the discrete case. Inspired by the above literature,
we will discuss a non-autonomous SOHS with asymptotically linear terms in discrete cases. The
difference with [16] is that we construct a new workspace to estimate the minimax level associated
with the energy functional.

We first write the nonlinear term F(n, x) in (1.1) in the form F(n, x) = −G(n, x) + H(n, x) with the
following conditions:

(G1) : for any (n, x) ∈ Z[1,T ] × RN , there exist b > 0 and g1(n) ∈ R satisfying

G(n, x) ≥ −b|x|2 + g1(n);

(G2) : for any n ∈ Z[1,T ], there exists K1 > 0 such that

(∇G(n, x), x) ≤ 2G(n, x), |x| ≥ K1;

(H1) : for any (n, x) ∈ Z[1,T ] × RN , there exist g2(n) ∈ R and

d ∈ (0,
−bT 2 + b + 3

T 2 − 1
)

such that

H(n, x) ≤ d|x|2 + g2(n);

(H2) : (∇H(n, x), x) − 2H(n, x)→ +∞ uniformly for n ∈ Z[1,T ], when |x| → +∞;
(W1) : for all n ∈ Z[1,T ], there exists K2 > 0, such that

max
|x|=a

G(n, x) < min
|x|=a

H(n, x), a ≥ K2;

(W2) : for any n ∈ Z[1,T ], there exists a constant K3 > 0, such that
∇F(n, x) . 0 for all |x| ≤ K3,

T∑
n=1

F(n, x) >
T∑

n=1

[g2(n) − g1(n)] for all |x| > K3.

Theorem 1.1. If (G1), (G2), (H1), (H2), (W1) and (W2) hold, then system (1.1) has a nontrivial
T-periodic solution.
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2. Preliminaries

Define the Hilbert space

HT = {{u(n)} : u(n) ∈ RN , u(n + T ) = u(n), n ∈ Z}

with its inner product

⟨u, v⟩ =
T∑

n=1

[(∆u(n),∆v(n)) + (u(n), v(n))], ∀u, v ∈ HT ,

and the corresponding norm

∥u∥ =
( T∑

n=1

[|∆u(n)|2 + |u(n)|2]
) 1

2

, ∀u ∈ HT .

The corresponding functional of the equation is

φ(u) =
1
2

T∑
n=1

|∆u(n)|2 +
T∑

n=1

G(n, u(n)) −
T∑

n=1

H(n, u(n)), ∀u ∈ HT , (2.1)

which is continuously differentiable. So,

⟨φ
′

(u), v⟩ =
T∑

n=1

(∆u(n),∆v(n)) +
T∑

n=1

(∇G(n, u(n)), v(n)) −
T∑

n=1

(∇H(n, u(n)), v(n)), ∀u, v ∈ HT . (2.2)

Clearly, the critical point of functional (2.1) is the T-periodic solution of problem (1.1).

Proposition 2.1. [16] Suppose that H(n, x) satisfies (H2), G(n, x) satisfies (G2), for any n ∈ Z[1,T ].
Then, there is a sufficiently large M > 0, such that

H(n, x) ≥
|x|2

M2 min
|x|=M

H(n, x), |x| ≥ M, (2.3)

G(n, x) ≤
|x|2

M2 max
|x|=M

G(n, x), |x| ≥ M. (2.4)

Recall that (PS ) condition in [8], a sequence {up} ⊂ HT has a convergent sequence when φ(up) is
bounded, and ∥φ

′

(up)∥ → 0, p→ +∞. Similarly, we can see (C) condition in [16], if φ(up) is bounded,
and ∥φ

′

(up)∥(1 + ∥up∥)→ 0, p→ +∞, then the sequence {up} ⊂ HT has a convergent sequence.

Lemma 2.2. If G satisfies (G1) and (G2), H satisfies (H1) and (H2), then the functional φ fulfills the
(C) condition.

Proof. Assume that {up} ⊂ HT is a (C) sequence, i.e.,

sup
p∈N∗
{|φ(up)|} < +∞, (1 + ∥up∥)∥φ

′

(up)∥ → 0, p→ +∞.
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In addition, there exists M1 > 0 sufficiently large, such that

|φ(up)| ≤ M1, (1 + ∥up∥)∥φ
′

(up)∥ ≤ M1, p→ +∞.

We claim that {up} is bounded. Conversely, we obtain ∥upk∥ → +∞, as k → +∞. We replace {upk}

with {up}.
Let sp = up/∥up∥, and obviously, we know that ∥sp∥ = 1. There exists s ∈ HT , such that sp → s in

HT .
As

∥sp∥ − ∥s∥ ≤ ∥sp − s∥ → 0, ∥s∥ − ∥sp∥ ≤ ∥sp − s∥ → 0,

we have ∥s∥ = ∥sp∥ = 1. Therefore, s . 0.
As s . 0, we set

L = {n ∈ Z[1,T ] : |s(n)| > 0}.

From the previously described results, we obtain

|up(n)| = ∥up∥|sp(n)| → +∞, p→ +∞. (2.5)

When p ∈ N∗, λ > max{K1,M}, set

M2 = T max
n∈Z[1,T ]

max
|x|≤λ
{2|G(n, x)| + |∇G(n, x)||x|, 2|H(n, x)| + |∇H(n, x)||x|},

by (G2), we have

T∑
n=1

[2G(n, up(n)) − (∇G(n, up(n)), up(n))]

≥
∑

{n∈Z[1,T ]:|up(n)|≤λ}

[2G(n, up(n)) − (∇G(n, up(n)), up(n))]

≥ −M2. (2.6)

We set
Lc = Z[1,T ]\L.

By (H2), we obtain∑
Lc

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]

≥
∑

Lc∩{n∈Z[1,T ]:|up(n)|≤λ}

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]

+
∑

Lc∩{n∈Z[1,T ]:|up(n)|>λ}

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]

≥
∑

Lc∩{n∈Z[1,T ]:|up(n)|≤λ}

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]

≥ −M2. (2.7)
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Combining (H2) with (2.5), we obtain∑
L

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]→ +∞, p→ +∞. (2.8)

As |φ(up)| ≤ M1, one has

∥⟨φ
′

(up), up⟩∥ ≤ ∥φ
′

(up)∥∥up∥ ≤ ∥φ
′

(up)∥(1 + ∥up∥) ≤ M1. (2.9)

Therefore, we have
2φ(up) − ⟨φ

′

(up), up⟩ ≤ 3M1. (2.10)

Combining (2.1) and (2.2), we have

2φ(up) − ⟨φ
′

(up), up⟩ =

T∑
n=1

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]

+

T∑
n=1

[2G(n, up(n)) − (∇G(n, up(n)), up(n))].

(2.11)

To be convenient, we denote

T∑
n=1

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]

by I1 and
T∑

n=1

[2G(n, up(n)) − (∇G(n, up(n)), up(n))]

by I2. By (2.6), (2.7) and (2.8), we see that

I1 + I2 =
∑

L

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]

+
∑

Lc

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))]

+

T∑
n=1

[2G(n, up(n)) − (∇G(n, up(n)), up(n))]

≥
∑

L

[(∇H(n, up(n)), up(n)) − 2H(n, up(n))] − 2M2

→ +∞, p→ +∞. (2.12)

By (2.10)-(2.12), we have
3M1 ≥ +∞,

which contradicts the boundedness of M1.
Therefore {up} is bounded in HT , and then we have up → u in HT , which demonstrates that φ fulfills

(C) condition. □
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3. Proof of Theorem 1.1

Set

ū =
1
T

T∑
n=1

u(n), ũ(n) = u − ū for all u ∈ HT .

Let
H̃T = {u ∈ HT | ū = 0},

and therefore
HT = H̃T

⊕
RN .

Just as in [7], we have

∥̃u∥2∞ ≤
T 2 − 1

6T

T∑
n=1

|∆u(n)|2. (3.1)

Next, we will prove Theorem 1.1 in two steps.
Step 1 Set W = X

⊕
Y as H = V

⊕
X in [16, Lemma 4], where X = RN and Y = H̃T . As is

discussed in [16], (PS ) condition can be replaced by (C) condition, and [16, Lemma 4] holds under
(C) condition. Now, we will prove that (i) holds in [16, Lemma 4]. By (W1) and Proposition 2.1, let
m0 ∈ R

N , and |m0| = 1. If z ≥ max{M,K2}, we obtain

φ(zm0) =
T∑

n=1

[G(n, zm0) − H(n, zm0)]

≤
z2

M2

T∑
n=1

[max
|m|=M

G(n,m) − min
|m|=M

H(n,m)]

≤
z2T
M2 max

n∈Z[1,T ]
[max
|m|=M

G(n,m) − min
|m|=M

H(n,m)]

→ −∞, z→ +∞. (3.2)

There exist r > 0 large enough and a constant

α :=
T∑

n=1

[g1(n) − g2(n)] − 1,

such that
φ|∂Br(0)∩X ≤ α.

Step 2 We will show that (ii) holds in [16, Lemma 4]. By (G1), (H1), and (3.1), for all u ∈ H̃T , we get

φ(u) =
1
2

T∑
n=1

|∆(n)|2 +
T∑

n=1

[G(n, u(n)) − H(n, u(n))]

≥
1
2

T∑
n=1

|∆u(n)|2 − (b + d)
T∑

n=1

|u(n)|2 +
T∑

n=1

[g1(n) − g2(n)]
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≥

(1
2
−

(b + d)(T 2 − 1)
6

) T∑
n=1

|∆u(n)|2 +
T∑

n=1

[g1(n) − g2(n)]

≥

T∑
n=1

[g1(n) − g2(n)]. (3.3)

Let constant

β =

T∑
n=1

[g1(n) − g2(n)],

and then φ|Y ≥ β. From [16, Lemma 4], we know that φ has a critical value

c ≥ β.

Therefore, there is a u ∈ HT such that

T∑
n=1

(∆u(n),∆l(n)) − (∇F(n, u(n)), l(n)) = 0, ∀l(n) ∈ HT .

Finally, we can get our conclusion according to (W2).

4. Example

We provide an example to demonstrate the rationality of Theorem 1.1.
Example 1 Suppose T = 2 and set

G,H : Z[1,T ] × RN → R

with

G(n, x) =
cos2 πn

6
(D(n)x, x),

where
D(n) = diag((−1)2, (−1)3, ..., (−1)1+n).

Let

H(n, x) =
1 + cos2 πn

5
|x|2(1 −

1
ln(e10 + |x|2)

),

where n ∈ Z[1,T ] and x ∈ RN .
First of all, set

g1(n) ≡ 0, b =
1
6
.

Then, we have
cos2 πn

6
(D(n)x, x) ≥ −

1
6
|x|2,

and

(∇G(n, x), x) =
2 cos2 πn

6

n∑
i=1

(−1)1+iX2
i ≤

2 cos2 πn
6

n∑
i=1

(−1)1+iX2
i = 2G(n, x).
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Then, G satisfies (G1) and (G2) conditions.
In the same way, let

g2(n) ≡ 0, d =
1
2
∈ (0,

5
6

).

Then, we obtain
1 + cos2 πn

5
|x|2(1 −

1
ln(e10 + |x|2)

) ≤
1
2
|x|2,

and

(∇H(n, x), x) − 2H(n, x) =
2(1 + cos2 πn)|x|2

5
(1 −

1
ln(e10 + |x|2)

)

+
2(1 + cos2 πn)|x|4

5
(

1
(e10 + |x|2) ln2(e10 + |x|2)

)

−
2(1 + cos2 πn)

5
|x|2(1 −

1
ln(e10 + |x|2)

)

=
2(1 + cos2 πn)|x|4

5(e10 + |x|2) ln2(e10 + |x|2)
→ +∞.

Obviously, H(n, x) satisfies (H1) and(H2) conditions. Also,

max
|x|=a

G(n, x) ≤
1
6

a2 < min
|x|=a

H(n, x)

for any a ∈ R and n ∈ Z[1,T ], so that (W1) holds. In addition,

F(n, x) = −G(n, x) + H(n, x) ≥ −
1
6

a2 + H(n, x) > 0.

Therefore,

T∑
n=1

F(n, x) >
T∑

n=1

[g2(n) − g1(n)],

which means that (W2) holds.
According to Theorem 1.1, we can get the existence of a nontrivial 2-periodic solution for system

(1.1).
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