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Abstract: In this study, we present an efficient and novel unconditionally stable Monte Carlo
simulation (MCS) for solving the multi-dimensional Allen–Cahn (AC) equation, which can model
the motion by mean curvature flow of a hypersurface. We use an operator splitting method, where
the diffusion and nonlinear terms are solved separately. The diffusion term is calculated using MCS
for the stochastic differential equation, while the nonlinear term is locally computed for each particle
in a virtual grid. Several numerical experiments are presented to demonstrate the performance of the
proposed algorithm. The computational results confirm that the proposed algorithm can solve the AC
equation more efficiently as the dimension of space increases.
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1. Introduction

In this paper, we propose an explicit hybrid numerical method for solving the multi-dimensional
Allen–Cahn (AC) equation. The AC equation has emerged as a widely studied mathematical model,
playing a pivotal role in the analysis of phase transitions [1]. This equation serves as a powerful tool for
understanding the intricate dynamics that govern the boundary between ordered and disordered states
in various physical systems [2]. With its ability to capture the evolution and behavior of interfaces,
the AC equation has proven instrumental in fields, such as materials science, condensed matter physics
and pattern formation [3, 4]. Its innovative formulation has sparked numerous advancements in our
comprehension of complex phenomena, shaping our understanding of phase transition dynamics and
paving the way for further exploration and discovery in diverse scientific disciplines [5, 6]. The multi-
dimensional AC equation is given by

∂ϕ(x, t)
∂t

= −
F′(ϕ(x, t))

ϵ2 + ∆ϕ(x, t), x ∈ Ω, t > 0, (1.1)
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n · ∇ϕ(x, t) = 0 on ∂Ω,

where n is outer unit normal vector and Ω ⊂ Rd is a domain. Here, d is the dimension of space, ϕ(x, t)
is the concentration, F(ϕ) = 0.25ϕ2(ϕ − 1)2 and ϵ is an interface layer parameter. The AC equation is
the L2-gradient flow of the following total free energy functional:

E(ϕ) =
∫
Ω

(
F(ϕ)
ϵ2 +

1
2
|∇ϕ|2

)
dx.

In the AC Eq (1.1), we have the following diffusion equation:

∂ϕ(x, t)
∂t

= ∆ϕ(x, t), (1.2)

which causes numerical difficulties when the space dimension is high, i.e., the curse of dimensionality
which makes it computationally intractable because of lack of computer memory and excessive
computational cost. Classical discretization schemes encounter a significant challenge known as the
curse of dimensionality, which was initially introduced by Bellman [7] in the realm of optimal control
problems for classical multidimensional partial differential equation (PDE) models [8]. The curse of
dimensionality presents a pervasive challenge across diverse domains, such as mathematics, physics,
data science and any context that deals with the arrangement, aggregation and examination of spaces
with numerous dimensions [9–11]. This predicament becomes particularly conspicuous when
endeavoring to tackle extensively utilized and extensively studied second-order semi-linear parabolic
PDEs within high-dimensional spaces. There have been many studies to solve Eq (1.2) numerically.
Shawn Koohy et al. [11] developed a method to mitigate the curse of dimensionality based on
backward stochastic differential equations and deep neural networks to solve multi-dimensional AC
equations. In [12], the parabolic sine-Gordon equation was solved using an operator splitting method
that splits the linear and nonlinear terms, where the diffusion term is solved using the Fourier spectral
method. Ayub et al. [13] solved the diffusion term in the AC equation using the Fourier spectral
method. Lee [14] proposed the second-order operator splitting Fourier spectral method for the
factional-in-space reaction-diffusion equation and solved the diffusion equation using the discrete
cosine transform. Jeong et al. [15] proposed an explicit hybrid finite difference method using the
explicit Euler method for the diffusion equation and a closed-form analytical solution for the
nonlinear term by splitting the AC equation into a diffusion term and a nonlinear term based on the
operator splitting method.

The stochastic heat equation is one of the representative equations among the stochastic partial
differential equations. In [16], the authors discussed numerical positivity and almost surely
exponential stability of the stochastic heat equation. Sun and Kumar [17] developed a numerical
method for high-dimensional stationary Fokker–Planck equations using a tensor decomposition
approach, focusing on the curse of dimension. Shrestha [18] solved numerically one-dimensional
diffusion equation using the Monte Carlo simulation (MCS). The Fokker–Planck and Langevin
equations with no drift term and constant diffusion coefficient are the diffusion equation. Medved et
al. [19] compared and analyzed the Fokker–Planck and Langevin equations. Naeimi and Farshad [20]
developed the finite volume Monte Carlo (FVMC) method for solving three-dimensional steady-state
heat equations. In [21], Naeimi considered the application of MCS to a general form of heat equations
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and also investigated the floating random walk procedure to solve multi-dimensional problems with
various boundary conditions. Nakagawa [22] verified a proposed method by presenting the results of
numerical experiments applying the MCS to the stochastic heat equation with various boundary
conditions. Venkiteswaran and Junk [23] developed a Quasi-Monte Carlo (QMC) method for
diffusion equations in high dimensions and the numerical results showed faster convergence than the
standard MCS. In [24], Novikov et al. explained Laplacian as a random for Brownian particle location
and analyzed and presented the particle-based numerical method, MCS of Brownian diffusion effects,
for transport equations for spheres (or circles).

Our proposed method is based on the operator splitting scheme. Various methods have been
developed for solving the AC type equations based on the operator splitting method. In [25], Lee
developed a numerical solution us ing the operator splitting scheme for the energy-dissipative and
mass-conservative AC equation. The operator splitting method for the AC equation proposed in [26]
is second-order accurate and stable. Cheng et al. [27] presented fast and stable operator splitting
methods for phase-field models. Chertock et al. [28] proposed a fast explicit operator splitting method
for the convection-diffusion equation. In addition, various studies on the AC equation have been
performed by researchers. Poochinapan and Wongsaijai [29] developed a fourth-order compact
structure-preserving difference method and verified that the numerical method has fourth-order and
second-order accuracy in space and time, respectively. The primary purpose of this paper is to reduce
the curse of dimensionality of the numerical algorithms for the AC equation. To mitigate the curse of
dimensionality, our proposed method uses the MCS for the diffusion term and a closed-form analytic
solution for the nonlinear term. Kai and Wei [30] developed high-order energy-stable methods for the
multi-length-scale incommensurate phase-field crystal equation, which permits studying the phase
behavior of aperiodic structures. The Cahn–Hilliard (CH) equation is one of the famous phase field
models, along with the AC equation. Liupeng and Yunqing [31] developed a second-order scalar
auxiliary variable approach in time and employed the linear finite element method in space to solve
the CH type equation of the phase field crystal model.

The advantages of the proposed method are as follows:

• It can overcome the dimensional curse in solving the multi-dimensional AC equation.
• As the dimensionality increases, the convergence speed is faster compared to that of the finite

difference method.

The contents of this paper are as follows. A detailed numerical solution algorithm is described in
Section 2 and then the proposed method is verified through several numerical experiments in Section
3. Finally, a conclusion is presented in Section 4.

2. Numerical algorithm

Using the operator splitting method, the proposed unconditionally stable MCS of the
multi-dimensional AC equation consists of two steps. First, we solve the following diffusion equation
using MCS.

∂ϕ(x, t)
∂t

= ∆ϕ(x, t). (2.1)
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Second, we solve the following ordinary differential equation (ODE) using a closed-form analytic
solution [4].

∂ϕ(x, t)
∂t

= −
F′(ϕ(x, t))

ϵ2 = −
ϕ3(x, t) − 1.5ϕ2(x, t) + 0.5ϕ(x, t)

ϵ2 . (2.2)

Instead of solving the PDE (2.1), we use the following stochastic differential equation (SDE):

dX(t) =
√

2dW(t), (2.3)

where X(t) is the position of a particle at time t, d is the dimension of the space and dW(t) =
√

dtZ
is the Brownian motion. Here, Z is a random vector variable drawn from a standardized multivariate
normal distribution. Then, Eq (2.1) is the Fokker–Planck equation of Eq (2.3) [18].

For simplicity of exposition, let us consider the solution algorithm in two-dimensional space, Ω =
(Lx,Rx) × (Ly,Ry). Let the spatial steps be hx, hy, the temporal step be ∆t, the total number of particles
be M and Nx = (Rx−Lx)/hx, xi = Lx+(i−0.5)hx for i = 1, . . . ,Nx, Ny = (Ry−Ly)/hy, y j = Ly+( j−0.5)hy

for j = 1, . . . ,Ny. We denote the numerical approximations of ϕ(xi, y j, n∆t) by ϕn
i j, the position of k-th

particle at time n∆t by Xn
k and the value of the k-th particle at time n∆t by ψn

k . The initial conditions
for the particle positions X0

k , k = 1, 2, . . . ,M and the corresponding particle values ψ0
k , k = 1, 2, . . . ,M,

are given as follows. If ϕ(xi, y j, 0) > 0.05 for i = 1, 2, . . . ,Nx, j = 1, 2, . . . ,Ny, it is given as

X0
k = (xi, y j), for k = qm, qm + 1, . . . , (q + 1)m − 1,

ψ0
k =

ϕ(X0
k , 0)

m
, for k = qm, qm + 1, . . . , (q + 1)m − 1,

where q is some integer and m is the number of particles given at per point. The particle position
Xn

k and particle value ψn
k form pairs for k = 1, 2, . . . ,M. For a better understanding, a schematic

diagram showing the positions of some initial particles X0
k for k = 1, . . . ,m in one-dimensional space

is presented in Figure 1.
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Figure 1. Schematic diagram of the initial particles position in one-dimensional space.

First, we solve the discretized diffusion equation. We update the particle positions Xn
k for k =

1, . . . ,M according to Eq (2.3) as follows:

Xn+1
k = Xn

k +
√

2∆tZ, for k = 1, . . . ,M. (2.4)
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Second, solve for the discretized nonlinear Eq (2.2). We define the local sum of particle values as
follows:

ϕ∗i j =
∑

Xn+1
k ∈Ωi j

ψn
k , (2.5)

where Ωi j = (Lx + hx(i − 1), Lx + hxi) × (Ly + hy( j − 1), Ly + hy j) is a cell for some i and j. Figure 2(d),
(e) and (g) schematically show this procedure. If ϕ∗i j > tol, i = 1, 2, . . . ,Nx, j = 1, 2, . . . ,Ny, then we
analytically solve the following ODE (2.2):

dΦ(t)
dt
= −

F′(Φ(t))
ϵ2 = −

Φ3(t) − 1.5Φ2(t) + 0.5Φ(t)
ϵ2 (2.6)

with an initial condition Φ(0) = ϕ∗i j, where tol is a given tolerance and is used to avoid division by an
extremely small number. The analytic solution of Eq (2.6) with the initial condition ϕ∗i j after time ∆t is
given as

ϕ∗∗i j = Φ(∆t) =
1
2
+

ϕ∗i j − 0.5√
e−

∆t
2ϵ2 + (2ϕ∗i j − 1)2

(
1 − e−

∆t
2ϵ2

) . (2.7)

Then, we update the particle value ψn
k for the k-th particle position Xn

k for k = 1, 2, . . . ,M as follows:

ψn+1
k =

ϕ∗∗i j

ϕ∗i j
ψn

k , for Xn+1
k ∈ Ωi j. (2.8)

This means that we have analytically solved Eq (2.6) with the initial condition Φ(0) = ϕ∗i j for each
cell Ωi j as follows: ∑

Xn+1
k ∈Ωi j

ψn+1
k =

ϕ∗∗i j

ϕ∗i j

∑
Xn+1

k ∈Ωi j

ψn
k = ϕ

∗∗
i j .

Figure 2(f),(h) show the results of the final procedure when the value of ϕ∗i j is less than 0.5 or greater
than 0.5, respectively.

We note that once ψn+1
k > 0.5, then ψn̂

k > 0.5 is satisfied for all time, n̂ > n+1. To avoid this situation,
if ψn+1

k > 0.5, then we add one additional particle Xn+1
M+1 at the same position Xn+1

k , i.e., Xn+1
M+1 = Xn+1

k .
In addition, we divide the value of particle ψn+1

k by 2, i.e., ψn+1
k = ψn+1

k /2 and set ψn+1
M+1 = ψ

n+1
k .

3. Numerical experiments

For an appropriate interfacial parameter value, we consider an equilibrium solution of the AC
equation, which is given by ϕ(x) = 0.5(1 + tanh(x/(2

√
2ϵ))). Based on this equilibrium solution, we

define the interfacial layer parameter ϵl as follows:

ϵl = lh/[4
√

2 tanh−1(0.9)],

which implies that we have approximately lh width across the interfacial transition layer [32]. The
schematic diagram for the interfacial layer is presented in Figure 3.
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Figure 2. (a) Position of Xn
k , (b) ψn

k values at Xn
k , (c) new position Xn+1

k according to Eq (2.3),
(d) Xn+1

k and Ωi j, (e) ϕ∗i j in Ωi j and ϕ∗i j < 0.5, (f) ϕ∗∗i j in Ωi j and ϕ∗∗i j < 0.5, (g) ϕ∗i j in Ω′i j and
ϕ∗i j > 0.5 and (h) ϕ∗∗i j in Ω′i j and ϕ∗∗i j > 0.5.
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Figure 3. Schematic diagram of the interfacial layer.

3.1. Stability tests

In this section, we demonstrate the stability of the proposed algorithm. For simplicity of proof, we
consider the proposed algorithm in two-dimensional space as in Section 2. Similarly, we can prove
this in another multi-dimensional space. We verify the unconditional stability and energy decreasing
for the proposed algorithm through numerical experiments. We have used the zero Neumann boundary
condition as

ϕn
0, j = ϕn

1, j, ϕ
n
Nx+1, j = ϕ

n
Nx, j, for j = 1, 2, . . . ,Ny,

ϕn
i,0 = ϕn

i,1, ϕ
n
i,Ny+1 = ϕ

n
i,Ny
, for i = 1, 2, . . . ,Nx.

The discrete total energy Ed
h(ϕn), discrete total massMd

h(ϕn) and discrete maximum value Maxd(ϕn)
are defined as:

Ed
h(ϕn) =

Nx∑
i=1

Ny∑
j=1

F(ϕn
i j)

ϵ2 +
1
2

(
ϕn

i+1, j − ϕ
n
i j

h

)2

+
1
2

(
ϕn

i, j+1 − ϕ
n
i j

h

)2 h2,

Md
h(ϕn) =

Nx∑
i=1

Ny∑
j=1

ϕn
i jh

2, Maxd(ϕn) = max
1≤i≤Nx,1≤ j≤Ny

(ϕn
i j).

The first test is a stability test of the proposed method for the spatial steps. In this section, we use
the following initial condition on a computational domain Ω = (−3, 3) × (−3, 3)

ϕ(x, y, 0) =
1
2

1 + tanh
1 −

√
x2 + y2

2
√

2ϵ

 , (x, y) ∈ Ω.

Here, the parameters used are ∆t = 0.0025, T = 0.5, ϵ = 0.2 and different spatial steps h =
0.2, 0.1, 0.05 with corresponding m = 1000, 2000, 4000, respectively. Numerical experiments were
performed to assess the stability for different spatial steps h = 0.2, 0.1, 0.05 and the results of the
stability test are depicted in Figure 4.
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Figure 4. The results of stability tests with different spatial steps h = 0.2, 0.1, 0.05. (a) The
normalized discrete total energy, (b) discrete total mass and (c) discrete maximum value.

As a second test, we consider the stability of the temporal step. We used parameters h = 0.05,
T = 0.5, m = 1400, ϵ = ϵ10 and different temporal steps ∆t = 2h2, h2, 0.5h2. Figure 5 (a)–(c) show
the results of stability tests as discrete total energy, discrete total mass and discrete maximum value,
respectively.
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Figure 5. The results of stability tests with different temporal steps ∆t = 2h2, h2, 0.5h2. (a)
The normalized discrete total energy, (b) discrete total mass and (c) discrete maximum value.

We numerically performed spatial and temporal stability tests and observed that the numerical
solution does not explode over various spatial and temporal steps.

3.2. Convergence test

The proposed method is affected by the initial total number of particles M. However, the M required
to obtain a numerical solution up to the total time T is theoretically impossible or difficult to obtain.
Therefore, we performed a numerical test for the initial number of particles per point m required to
obtain the enough M in two-and three-dimensional spaces. Note that this numerical test is a test to
show the approximate m required for the proposed method. The numerical test repeats the numerical
simulation by adding 5 to m until the absolute error between the analytical solution and the numerical
solution of the proposed method is less than tolerance 0.001. The parameters used are r = 0.8, spatial
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step h = 0.05, total time T = 0.01, ϵ = ϵ8 and xi = −2.025+0.05 j for i = 1, . . . , 80, y j = −2.025+0.05 j
for j = 1, . . . , 80. Here, m particles are given to the (xi, y j) when ϕ(xi, y j, 0) is greater than 0.05 at
the (xi, y j), therefore the initial total number of particles M becomes 1264 m and 33,552 m in two-
and three-dimensional space, respectively. Figure 6(a),(b) show the absolute errors of numerical and
analytic solutions in two-and three-dimensional space for the initial number of particles per point m,
respectively. As a result of the numerical test, the m required for the absolute error to be smaller than
the absolute error is 200 in two-dimensional space and 105 in three-dimensional spaces. We observe
that the absolute error decreases sharply as m increases and the required m decreases as the dimension
of space increases. However, because the initial total number of particles M used is 252, 800 in the
two-dimensional space and 3, 522, 960 in the three-dimensional space, it increases as the dimension of
space increases.

(a) 2D
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0.1

(b) 3D

10 20 30 40 50 60 70 80 90 100
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0.02

0.03

0.04

0.05

0.06

Figure 6. Absolute error of numerical and analytical solutions for initial number of particles
per point m in two-and three-dimensional spaces.

3.3. Motion by mean curvature and ratio of CPU times

As ϵ goes to zero, the zero level set of the solution of the AC equation converges to the mean
curvature flow [33, 34]. Thus, we consider the mean curvature flow of (d − 1)-dimensional spheres in
d-dimensional space. Let us define the gamma function as

Γ(s) =
∫ ∞

0
e−tts−1dt, for s > 0,

thus Γ(k) = (k − 1)!, Γ(k + 1/2) = (k − 1/2)(k − 3/2) · · · (1/2)
√
π, for a positive integer k. Then, the

area of sphere with radius R = 1 at the origin is A(R) = 2π
d
2 /Γ

(
d
2

)
. We define a d-ball as a region
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comprising of all points within a radius R of a given point in d-dimensional space. The volume of
d-ball with radius R = 1 at the origin is

V(R) = A(R)
∫ R

0
rd−1dr =

2π
d
2

d Γ
(

d
2

) .
Therefore, we obtain volume of d-ball with any radius R > 0 at the point x ∈ Rd as V(R) =

2π
d
2 Rd/[d Γ(d

2 )]. More details can be found in [35]. Then, we can express the radius R in terms of V:

R(V) =

(
d Γ

(
d
2

)) 1
d

2
1
d
√
π

V
1
d . (3.1)

In d-dimensional space, the radius of d-ball can be calculated using the volume of d-ball and the
calculated radius becomes the radius of the (d − 1)-dimensional sphere. Then, mean curvature of
sphere of radius R is H = (d − 1)/R. The mean curvature flow equation reduces to the following
ordinary differential equation, for a sphere of initial radius R0:

d
dt

R(t) = −
d − 1
R(t)

, R(0) = R0. (3.2)

The solution of Eq (3.2) is R(t) =
√

R2
0 − 2(d − 1)t. The volume of the numerical solution is

obtained as follows: V(n∆t) =
∑M

k=1 ψ
n
khd. Therefore, by substituting the obtained volume V(n∆t) into

Eq (3.1), the radius R(n∆t) is obtain. Because the proposed method is used in high-dimensional, instead
of calculating the radius using the distance from the center to the zero-contour, we use the volume of the
solution to calculate the radius. In numerical experiments, the initial radius R0 is calculated numerically
using the volume of the initial condition. Consequently, we assumed that for the analytic solution of
the zero level set of the AC equation for the motion by mean curvature, ϵ becomes zero.

3.3.1. Two-dimensional space

The initial condition is given as

ϕ(x, y, 0) =
1
2

1 + tanh
r −

√
x2 + y2

2
√

2ϵ


on the computational domain Ω = (−2, 2)× (−2, 2), where r is radius. The analytic solution of the zero
level set of the AC equation, as ϵ converges to zero, is given by:

R(t) =
√

R2
0 − 2t,

which represents the analytic solution for the motion by mean curvature of a 1-dimensional sphere in
2-dimensional space. The parameters used are r = 0.8, spatial step h = 0.05, total time T = 0.1, ϵ = ϵ8,
m = 600 and xi = −2.025 + 0.05 j for i = 1, . . . , 80, y j = −2.025 + 0.05 j for j = 1, . . . , 80. Because
the initial radius is 0.8, the analytic solution to the motion by mean curvature of the AC equation
is R(t) =

√
0.64 − 2t. To verify the temporal convergence of the proposed method and compare the
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explicit Euler method, we used different temporal steps ∆t = 10h2, 5h2, 2.5h2 for the proposed method
and ∆t = 0.1h2 for the explicit Euler method. We used the initial number of particles per point m = 600,
thus the initial particles are given 600 particles at position (xi, y j) if ϕ(xi, y j, 0) is greater than 0.05 at the
cell center (xi, y j). Therefore, the initial number of particles M = 758, 400 for numerical experiments in
two-dimensional space. In addition, for explicit Euler method, a value was given only when ϕ(xi, y j, 0)
at the cell center (xi, y j) was greater than 0.05 to make the initial radius R0 the same. We consider the
effects of temporal steps on the dynamics of the AC equation. Figure 7 shows temporal evolutions of
the radius R(t) using the proposed method with different temporal steps ∆t = 10h2, 5h2, 2.5h2 and the
explicit Euler method with temporal step ∆t = 0.1h2 in two-dimensional space. As the temporal step
∆t decreases, we can observe that the numerical solutions converge to the analytic solution R(t). In
addition, it can be seen that the proposed method is unconditional stable with respect to time when a
enough initial total number of particles M is given.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.65

0.7

0.75

0.8

Figure 7. Temporal evolution of radius for the proposed method with different temporal
steps and for the explicit Euler method in two-dimensional space.

To verify the computational speed of the numerical algorithm, we defined CPU time as the elapsed
time of the main algorithm and defined the CPU timeRatio as the value obtained by dividing the CPU
time of the numerical method by the CPU time of the explicit Euler method. Table 1 lists the CPU
time and CPU timeRatio to solve the AC equation up to total time T = 0.1 for the proposed method with
different temporal steps and the explicit Euler method in two-dimensional space. In low dimensional
space, such as two-dimension space, the explicit Euler method computes faster than the proposed
method. However, we perform numerical experiments in three- and four-dimensional space to show
that our proposed method is more efficient in solving the AC equation as the dimension of space
increases.

Table 1. CPU time to solve the AC equation in two-dimensional space up to total time
T = 0.1 and the CPU timeRatio accordingly.

Proposed method Explicit Euler method

temporal step ∆t = 10h2 ∆t = 5h2 ∆t = 2.5h2 ∆t = 0.1h2

CPU time (s) 2.029 2.334 2.987 0.258
CPU timeRatio 7.858 9.040 11.569 1.000
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Unless otherwise specified, parameters used in two-dimensional space expand equally in three- and
four-dimensional spaces.

3.3.2. Three-dimensional space

Numerical experiments similar to those in two-dimensional space are performed in
three-dimensional space as well. We consider the initial conditions as

ϕ(x, y, z, 0) =
1
2

1 + tanh
r −

√
x2 + y2 + z2

2
√

2ϵ

 , (x, y, z) ∈ Ω

on computational domain Ω = (−2, 2) × (−2, 2) × (−2, 2). The analytic solution of the zero level set of
the AC equation, as ϵ converges to zero, is given by:

R(t) =
√

R2
0 − 4t,

which represents the analytic solution for the motion by mean curvature of a 2-dimensional sphere
in 3-dimensional space. The parameters used in the three-dimensional space are extensions of the
parameters used in two-dimensional except for the initial number of particles per point m = 300 and
therefore initial number of particles M = 10, 065, 600. Because the initial radius is 0.8, the analytic
solution to the motion by mean curvature of the AC equation is R(t) =

√
0.64 − 4t.

Figure 8 shows the temporal evolution of radius of the proposed method with difference temporal
steps ∆t = 10h2, 5h2, 2.5h2 and explicit Euler method with temporal step ∆t = 0.1h2 in
three-dimensional space. We can observe that, given an enough initial total number of particles M in
three-dimensional space, the proposed method generates good results despite of the large temporal
steps ∆t.
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Figure 8. Temporal evolution of radius in three-dimensional space for the proposed method
with different temporal steps and for the explicit Euler method.

Table 2 lists the CPU time and CPU timeRatio to solve the AC equation up to total time T = 0.1 for
the proposed method with different temporal steps and the explicit Euler method in three-dimensional
space. Compared with Table 1, we can observe that the overall CPU timeRatio is reduced, which means
that the efficiency of the proposed method in three-dimensional space is better than that in
two-dimensional space.
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Table 2. CPU time to solve the AC equation in three-dimensional space up to total time
T = 0.1 and the CPU timeRatio accordingly.

Proposed method Explicit Euler method

temporal step ∆t = 10h2 ∆t = 5h2 ∆t = 2.5h2 ∆t = 0.1h2

CPU time (s) 21.330 26.535 38.671 18.182
CPU timeRatio 1.173 1.459 2.127 1.000

3.3.3. Four-dimensional space

We also perform the same numerical experiments on the four-dimensional space. The initial
condition is given as

ϕ(x, y, z, u, 0) =
1
2

1 + tanh
r −

√
x2 + y2 + z2 + u2

2
√

2ϵ


in computational domain Ω = (−2, 2) × (−2, 2) × (−2, 2) × (−2, 2). The analytic solution of the zero
level set of the AC equation, as ϵ converges to zero, is given by:

R(t) =
√

R2
0 − 6t,

which represents the analytic solution for the motion by mean curvature of a 3-dimensional sphere in
4-dimensional space. The parameters used in four-dimensional space are the same to two-and three-
dimensional spaces except for the initial number of particles per point m = 150 and therefore initial
number of particles M = 118, 560, 000. Because the initial radius is 0.8, the analytic solution to the
motion by mean curvature of the AC equation is R(t) =

√
0.64 − 6t.

In Figure 9, we can observe that the numerical solution of the proposed method converges to the
analytical solution when the temporal step ∆t is decreased.
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Figure 9. Temporal evolution of radius in four-dimensional space for the proposed method
with different time steps and for the explicit Euler method.

Table 3 lists the CPU time to solve the AC equation up to total time T = 0.1 using the proposed
method with different time steps and for the explicit Euler method in four-dimensional space and the
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CPU timeRatio accordingly. Contrary to the numerical experiment on the computational speed in two-
dimensional space, we can observe that the CPU time of the proposed method is faster than the CPU
time of the explicit Euler method.

Table 3. CPU time to solve the AC equation in four-dimensional space up to total time
T = 0.1 and the CPU timeRatio accordingly.

Proposed method Explicit Euler method

time step ∆t = 10h2 ∆t = 5h2 ∆t = 2.5h2 ∆t = 0.1h2

CPU time (s) 760.154 865.778 1109.417 1962.491
CPU timeRatio 0.387 0.441 0.565 1.000

Next, we perform numerical experiments to demonstrate that the proposed method can solve the
AC equation even for a long time, provided that the total number of particles is sufficient. The initial
condition is given as

ϕ(x, y, z, u, 0) =
1
2

1 + tanh
r −

√
x2 + y2 + z2 + u2

2
√

2ϵ


in computational domain Ω = (−3, 3) × (−3, 3) × (−3, 3) × (−3, 3). The parameters used are r = 2,
T = 0.6, h = 0.1, ∆t = 5h2, ϵ = ϵ10 and m = 70. Consequently, the total initial number of particles
was M = 134, 482, 880 according to the initial number of particles per point (m). Figure 10 shows the
temporal evolution of the radius using the proposed method and the explicit Euler method for a long
time.
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Figure 10. Temporal evolution of radius in four-dimensional space for a long time.

We observed that the proposed method solves the AC equation well when an adequate initial number
of particles is provided.

Electronic Research Archive Volume 31, Issue 8, 5104–5123.



5119

3.4. Other nonlinear term

We consider the following Fisher–Kolmogorov–Petrovsky–Piscounov (Fisher–KPP) equation in
two-dimensional space with ϕ(1 − ϕ) as an other nonlinear term [36, 37].

∂ϕ(x, y, t)
∂t

= ϕ(x, y, t)(1 − ϕ(x, y, t)) + ∆ϕ(x, y, t). (3.3)

We modify Eq (2.6) of the numerical algorithm to solve the nonlinear term of the Fisher–KPP
equation using the proposed method.

dΦ(t)
dt

= Φ(t) (1 − Φ(t)) (3.4)

with an initial condition Φ(0) = ϕ∗i j. Equation (3.4) is a logistic growth model and an analytic solution
can be obtained [38]. The analytic solution of Eq (3.4) with the initial condition ϕ∗i j after time ∆t is
given as

ϕ∗∗i j = Φ(∆t) =
ϕ∗i j

ϕ∗i j +
(
1 − ϕ∗i j

)
e−∆t

.

To solve Eq (3.3) in the domain (−20, 20)×(−20, 20), we set the computational domain to (−25, 25)×
(−25, 25) because the boundary must be considered for the initial condition.

ϕ(x, y, 0) =
1
4

[
1 − tanh

(
x

2
√

6

)]2

.

The exact solution is given by

ϕ(x, y, t) =
1
4

[
1 − tanh

(
x

2
√

6
−

5t
12

)]2

.

For detailed information on the exact solution, please refer to [39]. The parameters used are h = 2,
T = 4, ∆t = 0.01h2 and m = 10, 000. We conduct numerical experiments by adjusting the standard
value of 0.05, which provides particles at the beginning of the proposed algorithm, to 0.001 while
considering smooth initial conditions. Figure 11 shows the temporal evolution of the numerical
solution of the Fisher–KPP equation.

Figure 11. Numerical solution of the Fisher-KPP equation by the proposed method.
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We observe that the proposed method can be applied to an other nonlinear equation with the
nonlinear term which is different from −F′(ϕ)/ϵ2.

4. Conclusions

In this paper, we presented an efficient and novel unconditionally stable MCS for solving the
multi-dimensional AC equation that can model the motion by mean curvature flow of a hypersurface.
We used an operator splitting method in which the diffusion and nonlinear terms are separately
solved. The diffusion term is calculated using MCS for the stochastic differential equation and the
nonlinear term is locally computed for each particle in the virtual grid. Therefore, the proposed
method is unconditionally stable with respect to time, given an enough number of particles to solve
the AC equation up to the total time. We performed numerical experiments in two-, three- and
four-dimensional spaces to verify the performance of the proposed algorithm. The proposed
algorithm is more efficient in high-dimensional space because the algorithm can be easily scaled
despite the increase in the space dimension. Through numerical experiments, we observed that the
proposed algorithm solves the AC equation more efficiently as the dimension of space increases.
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