
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(8): 5039–5055.
DOI: 10.3934/era.2023258
Received: 23 April 2023
Revised: 05 June 2023
Accepted: 19 June 2023
Published: 14 July 2023

Research article

Synchronization of heterogeneous harmonic oscillators for generalized
uniformly jointly connected networks

Xiaofeng Chen

Fuzhou University of International Studies and Trade, Fuzhou 350202, China

* Correspondence: Email: cxf19cxf@163.com.

Abstract: The synchronization problem for heterogeneous harmonic oscillators is investigated.
In practice, the communication network among oscillators might suffer from equipment failures or
malicious attacks. The connection may switch extremely frequently without dwell time, and can thus
be described by generalized uniformly jointly connected networks. We show that the presented typical
control law is strongly robust against various unreliable communications. Combined with the virtual
output approach and generalized Krasovskii-LaSalle theorem, the stability is proved with the help of
its cascaded structure. Numerical examples are presented to show the correctness of the control law.
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1. Introduction

Over the last two decades, synchronization has been a popular topic in the study of cooperative
control theory; see [1–7] and the reference therein. In the problem of oscillator synchronization, all
coupled oscillators are controlled to reach a common state. Each oscillator independently handles
the information of their neighbors. In different contexts, the communication networks are assumed to
operate under different connecting conditions. Among the communication networks, the most common
and trivial one is the static connected network without switching [8, 9]. This condition requires the
connection among the oscillators to be maintained online and reliable over the time. In practice, the
communication network may suffer device failure or a malicious attack, and the controller design
based on a static network may fail. The conditions of switching networks such as the uniformly jointly
connected (UJC) switching network, which is often combined with a dwell-time constraint [9] have
been proposed.

A dwell-time constraint [10] is usually assumed in switching networks to guarantee a common
joint Lyapunov function in the stability analysis. It requires the connection to maintain unchanged
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over a time interval. The dwell-time condition is different from the frequently occurring instantaneous
link failures. The generalized UJC (GUJC) network was newly proposed in [11] to avoid the dwell-
time constraint.

Switched closed-loop systems usually have higher complexity [12,13] that is created by the control
scheme of more loosely switching networks, Different analysis tools [14, 15] have been developed to
deal with the stability such as non-smooth analysis and the generalized Barbalat lemma [16]. Among
them, two categories of techniques have been developed to deal with the UJC networks with dwell
time. One is transition matrix analysis [17] which is dependent on the dwell-time constraint to make
the transition matrix properly defined. The other is Lyapunov analysis based on the system’s stable
states with dwell time [14].

With numerous applications in the real world such as repetitive control, mapping, sampling
movements, the synchronization of harmonic oscillators is among the most fundamental topics in
cooperative control theory [9, 18, 19]. Considering controller design such that all harmonic oscillators
achieve synchrony is meaningful in both theory and application. Cyber-attacks or connection
equipment failures will cause very fast network switching. A question naturally arises whether the
controller design is still valid for the switching network if the dwell-time assumption is not applied. In
real world application, compared with homogeneous harmonic oscillators, the heterogeneous
harmonic oscillators are more common due to the individual differences and parameter uncertainties.
For example, to generate sine waves at the frequency of the leading frequency, one can use the
synchronization control of heterogeneous harmonic oscillators. The heterogeneity makes the static
distributed synchronization [9] algorithm invalid. New synchronization methods such as
event-triggered control protocols [20] and asynchronous sampled-data protocols [21] are applied for
the synchronization of heterogeneous harmonic oscillators.

Motivated by the above observations, in contrast with the existing work with static network
topology [9, 20, 21] or UJC network topology with dwell time [22], in this paper, an unreliable
networked scenario subject to the GUJC condition and heterogeneous harmonic oscillators
synchronization is investigated. The main contributions are two-fold.

(i) We extend the study on the heterogeneous harmonic oscillator synchronization problem to more
loosely switching networks. The dwell-time assumption is avoided. The network assumption allows
for the instantaneous change of communication connection and fast switching which makes its stability
analysis much more challenging.

(ii) We prove that the distributed controller is strongly robust against various unreliable
communications. The common Lyapunov function techniques that rely on the system trajectory is
invalid for the fast switching communication topology. Without a strict negative Lyapunov function,
new methods should be introduced to study the control problem. To overcome the difficulty in
analyzing the stability, the technical contribution of this paper is presented as follows: the virtual
output method and the generalized Krasovskii-LaSalle theorem [23] are applied by using a limiting
zeroing-output solution to describe the stable states.

Notations Rp denotes Euclidean space with p dimensions and Rp×q denotes all real entry p × q
matrices. In represents the n× n identity matrix. For matrix A and matrix B, ∥A∥ is the Euclidean norm
and A ⊗ B is the Kronecker product. A continuous increasing function f : R+ → R+ is a class K
function if f (0) = 0.
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2. Preliminaries and problem

2.1. Graph theory

Let λ : R+ → Λ be a switching signal where Λ is a finite set and Θ is the set of switching signals.
Denote V̄ = {0, 1, . . . ,N} and

δξ(t) =

0, if λ(t) , ξ,
1 if λ(t) = ξ.

(2.1)

Let [s, t) be a time interval with s < t. Denote

λτ[s, t) = {ξ ∈ Λ :
∫ t

s
δξ(u)du ≥ τ}

for any τ > 0. Let
Ḡτλ([s, t)) = (V̄,

⋃
ξ∈λτ[s,t)

Ēξ)

be the τ-joint graphs over [s, t). Denote the adjacency matrices of Gξ as

Aξ = [aξi j]
N
i, j=1

and the adjacency matrices of Ḡξ as Āξ = [aξi j]
N
i, j=0. Let

Hξ = Lξ + diag[aξ10, . . . , a
ξ
N0]

where Lξ is the Laplacian of Gξ. For ξ ∈ Λ, aξi j = aξji.
To discuss the improvement of network conditions, we list the UJC condition and dwell-time

condition, respectively.

Assumption 1. [16][UJC] There is a sequence {tn} ⊂ R
+ with t0 = 0 and ti+1 − ti < χ for some χ > 0;

the joint graph Ḡλ([s, t)) = (V̄,
⋃
ξ∈λ[ti,ti+1) Ēξ) contains a spanning tree rooted at the node 0.

Assumption 2. [24][Dwell time] There exist a constant τ0 > 0 and a sequence {tn} ⊂ R
+ with t0 = 0

such that ti+1 − ti ≥ τ0 satisfied λ(ti+1) , λ(ti) and λ(ti) = λ(t) for ti ≤ t < ti+1.

This paper uses the following GUJC network without any dwell-time.

Assumption 3. [23][GUJC] There exists 0 < τ ≤ T for any t ≥ 0 and any λ ∈ Θ; Ḡτλ([t, t + T ))
contains a spanning tree rooted at the node 0.

Remark 1. Dwell-time Assumption 2 describes the networks in which switching does not occur too
often. In the literatures, the dwell-time assumption is usually adopted when the switching topology
satisfies the UJC condition. Assumption 3 is less strict than the standard UJC Assumption 1 combined
with dwell-time Assumption 2. It rules out the dwell-time requirement and accommodates an
instantaneous attack or link failures. Since it uses the characteristic function in λτ[s, t), the network
can be switched at any frequency at any time within a zero measure time subset of [s, t). For example,
if a network switches at all rational numbers within a time interval [s, t), the switching network can
not be modeled by applying the UJC condition with the dwell-time assumption. For more details, we
refer the reader to [14, Remark 15].
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2.2. Some concepts and a theorem

We recall some concepts and a theorem of switched systems mainly from [23]. Consider the
following switching system:

ẋ = Aλx + Bλu, (2.2a)
y = Cλx, (2.2b)

where Aλ,Bλ ∈ Rm×n, Cλ ∈ Rn×m and x ∈ Rm and y ∈ Rn represents the state and the output, respectively.
The initial time of x and λ is set to be zero.

Definition 1. [23] System (2.2) is said to be in the output-injection form if there is a function ζ : R+ 7→
R+ which is continuous and satisfies the following:
1) ζ(0) = 0;
2) for any ξ ∈ Λ, ∥Bξx∥ ≤ ζ

(
∥Cξx∥

)
.

Denote all possible forward complete solution pair sets as Φ(Θ) = {(x, λ)|x ∈ Rp, λ ∈ Θ}. It satisfies
the following, for all t ≥ 0:

x(t) = x(0) +
∫ t

0
(Aλ(τ) + Bλ(τ))x(τ)dτ.

Definition 2. [23] If it holds that {(ηn, λn)} ⊆ Φ(Θ), tn ≥ 2n and the following is true: 1) {ηn(· +
tn) : [−n, n] 7→ Rp} satisfies

lim
n→∞
ηn(t + tn) = η̄(t)

uniformly on R; 2) for almost all t ∈ R,

lim
n→∞

Cλn(t+tn)η̄(t) = 0;

then η̄(t) is a limiting zeroing-output solution of (2.2) w.r.t. Φ(Θ).

The limiting zeroing-output solution satisfies

η̄(t) = η̄(0) + lim
n→∞

∫ t

0
Aλn(τ+tn)η̄(τ)dτ,

for all tn ≥ 2n and all t ∈ R. We list the stability concepts of the system (2.2) as follows.

Definition 3. [23] If there is a function ν of class K that satisfies

∥x(t)∥ ≤ ν(x(s))

for any (x, λ) ∈ Φ(Θ) and any 0 < s < t, then system (2.2) is uniformly globally stable at the origin
w.r.t. Φ(Θ).

Definition 4. [23] If there exist γ1 > 0, γ2 > 0,

∥x(t)∥ ≤ γ1e−γ2(t−s)∥x(s)∥

for all (x, λ) ∈ Φ(Θ) and 0 < s < t, then system (2.2) is uniformly globally exponentially stable at the
origin w.r.t. Φ(Θ).
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In this paper, with respect to Φ(Θ) and with respect to Θ are omitted for convenience. The
generalized Krasovskii-LaSalle theorem is introduced as follows.

Lemma 1. [23] Let λ ∈ Θ. Assume that the following is true:
1) system (2.2) is in the output injection form and uniformly globally stable at the origin;
2) there is a continuous function µ : R+ 7→ R+ that satisfies∫ +∞

s
∥Cλ(τ)x(τ)∥2dτ ≤ µ(∥x(s)∥)

for any s ≥ 0;
3) each limiting zeroing-output solution η̄ of system (2.2) which is bounded satisfies

inf
t∈R
∥η̄(t)∥ = 0;

then, system (2.2) is uniformly globally exponentially stable at the origin.

2.3. Problem formulation

We consider N heterogeneous harmonic oscillators and a leader oscillator under Assumption 3. Let
the leader oscillator associate with node 0 and the i-th oscillator associates with node i. The dynamics
of the i-th oscillator can be described by

ẋ1i = x2i,

ẋ2i = −βix1i + ui,
(2.3)

where βi > 0 is the square of the frequency of the i-th harmonic oscillator, xi = [x1i, x2i]⊤ ∈ R2 is
the state of the i-th oscillator and the input is ui(t) ∈ R. The dynamics of the leader oscillator can be
described by

ẋ10 = x20,

ẋ20 = −βx10,
(2.4)

where β > 0 is the square of the frequency of the leader harmonic oscillator and x0 = [x10, x20]⊤ is the
state of the leader oscillator.

Definition 5. The synchronization control problem for the GUJC network is to find the control ui(t) for
each oscillator i ∈ V,

lim
t→∞

(x1i(t) − x10(t)) = 0

and
lim
t→∞

(x2i(t) − x20(t)) = 0.

3. Main results

Assume that every oscillator can only use the state information of the neighbors in the switching
graph. We adopt the following control law for the i-th oscillator:

ui = −k1x1i − k2x2i + (βi − β + k1)η1i + k2η2i, (3.1a)
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η̇i = Υηi − µ
∑
j∈V̄

aλi j

(
ηi − η j

)
, (3.1b)

where η0 = x0 and ηi = [η1i, η2i]⊤ ∈ R2 is a dynamic compensator with the leader’s state for the i-th
oscillator; the parameters µ, k1, k2 are arbitrary positive constants. Moreover,

Υ =

[
0 1
−β 0

]
.

Our main result is that the synchronization control problem can be achieved by applying the
distributed controller (3.1) under Assumption 3. For j = 1, 2, denote the synchronization error as

e ji = x ji − x j0

and the state error as
ẽ ji = η ji − x j0.

Additionally,
ei = [e1i, e2i]⊤,

ẽi = [ẽ1i, ẽ2i]⊤.

Then, let
e = [e⊤1 , e

⊤
2 , · · · , e

⊤
N]⊤

and
ẽ = [ẽ⊤1 , ẽ

⊤
2 , · · · , ẽ

⊤
N]⊤.

Denote

Ψai =

[
0 1

−k1 − βi −k2

]
and

Ψbi =

[
0 0

β − k1 − βi −k2

]
and

Ψa = diag[Ψa1,Ψa2, · · · ,ΨaN],

Ψb = diag[Ψb1,Ψb2, · · · ,ΨbN].

It is worth to noting that Ψa is then a Hurwitz matrix. In fact, for the i-th oscillator, the eigenvalues λ1i

and λ2i of Ψai satisfy that λ1i + λ2i = −k2 < 0 and λ1iλ2i = k1 + βi > 0. Thus, for arbitrary k1 > 0 and
k2 > 0, we have that λ1i < 0 and λ2i < 0.

The closed-loop is in compact form:

ė = Ψae + Ψbẽ, (3.2a)
˙̃e = (IN ⊗ Υ − µHλ ⊗ I2)ẽ. (3.2b)

We use the coordinate transform
θ(t) = (IN ⊗ e−Υt)ẽ(t).
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Then, the origin does not need to be changed since

0 = (IN ⊗ e−Υt)0;

the initial state is also maintained since θ(0) = (IN ⊗ e0)ẽ(0) = ẽ(0). Then, we have

θ̇ = −(IN ⊗ Υe−Υt)ẽ + (IN ⊗ e−Υt)˙̃e
= −(IN ⊗ Υe−Υt)ẽ + (IN ⊗ e−Υt)(IN ⊗ Υ − µHλ ⊗ I2)ẽ
= −(IN ⊗ e−Υt)(µHλ ⊗ I2)ẽ
= −(µHλ ⊗ I2)θ.

(3.3)

We first prove the following theorem.

Theorem 1. System (3.3) is uniformly globally exponentially stable at the origin under Assumption 3,.

Proof: Now, for system (3.3), we define the virtual output as

Y =
√
Hλ ⊗ I2θ.

System (3.3) has the output-injection form given by (2.2); let x = θ, y = Y and

Aλ = 0,

Bλ = −(µHλ ⊗ I2),

Cλ =
√
µHλ ⊗ I2

and let ζ(x) be given as
ζ(x) = x2.

Let V = θ⊤θ. Then, V is positive definite. Moreover,

V̇ = θ̇⊤θ + θ⊤θ̇ = −2θ⊤(µHλ ⊗ I2)θ ≤ 0. (3.4)

We obtain
V(t) ≤ V(s)

for t > s. System (3.3) is then uniformly globally stable at the origin.
By [14, Lemma 1], let α1(t) = V(t), α2(t) =

√
2µHλ(t) ⊗ I2θ(t) and α3(t) = 0. We have∫ +∞

s
∥Y(τ)∥2 dτ ≤ α1(s) + (1 + α1(s))ϖ(s) = α1(s) = V(s)

for any s ≥ 0, where

ϖ(s) =
∫ +∞

s
α3(τ)dτe

∫ +∞
s α3(τ)dτ.

We have checked that the condition 2 of Lemma 1 is satisfied. Assume that θ̄ : R → R2N is any
bounded limiting zeroing-output solution of system (3.3); then there exist tn ≥ 2n and {λn} ⊆ Θ such
that

lim
n→∞

√
Hλn(t+tn) ⊗ I2θ̄(t) = 0 (3.5)
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for almost all t in R and
˙̄θ = 0. (3.6)

Thus, by (3.6), we obtain that θ̄ = θ̄(0).Moreover, by (3.5), we obtain

lim
n→∞

(Hλ(t+tn) ⊗ I2)θ̄(t) = 0 (3.7)

for almost all t in R. Thus, we have

lim
n→∞

(Hλn(t+tn) ⊗ I2)θ̄(0) = 0.

Thus, there exists cθ ∈ R2N that satisfies
θ̄(0) = cθ

and
lim
n→∞

(Hλn(t+tn) ⊗ I2)cθ = 0.

By Assumption 3, there exists a spanning tree of Ḡτλ([t, t + T )) that is rooted at the node 0. By [23,
Lemma 3], there is ϵ1 > 0 that satisfies

u⊤
[∫ t+T

t
Hλ(τ) ⊗ I2dτ

]
u ≥ ϵ1

for all u ∈ R2N with ∥u∥ = 1, all λ ∈ Θ and all t ≥ 0. If cθ , 0, by (3.7), we have

ϵ1 ≤ lim
n→∞

c⊤θ
∥cθ∥

(∫ tn+T

tn
(Hλn(τ) ⊗ I2)dτ

)
cθ
∥cθ∥

=
c⊤θ
∥cθ∥2

(
∫ T

0
lim

n→+∞
(Hλn(τ+tn) ⊗ I2)cθdτ)

= 0.

A contradiction exists. Thus,
cθ = 0

and it implies that
inf
t∈R
∥θ̄(t)∥ = 0,

which verifies that condition 3 of Lemma 1 is satisfied; we have completed the proof. □
By Theorem 1, we obtain that subsystem (3.2b) is also uniformly globally exponentially stable at

the origin. In fact, there exist a > 0, b > 0 such that

∥θ(t)∥ < ae−b(t−s)∥θ(s)∥

for any t > s > 0. We can see that

∥ẽ(t)∥ = ∥(IN ⊗ eΥt)∥∥θ(t)∥ < a∥(IN ⊗ eΥt)∥e−b(t−s)∥θ(s)∥ < ace−b(t−s)∥ẽ(s)∥

for some c > 0 since Υ is marginally stable. The main theorem is given as follows.
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Theorem 2. Under Assumption 3, system (3.2) is uniformly globally exponentially stable at the
origin. The synchronization control problem for a GUJC network can be achieved by the distributed
controller (3.1).

Proof: Since Ψa is Hurwitz by k1 > 0 and k2 > 0, there is a positive definite matrix P such that

Ψ⊤a P + PΨa ≜ Ψc < 0.

We also denote
Ψd = Ψ

⊤
b P + PΨb.

Define
Y1 = [(

√
−Ψce)⊤, ẽ⊤]⊤ (3.8)

as the virtual output of system (3.2). We claim that system (3.2) combined with (3.8) is in the output-
injection form given by (2.2). Indeed, let x = [e⊤, ẽ⊤]⊤, y = Y1, and

Aλ = 0,

Bλ =
[
Ψa Ψb

0 IN ⊗ Υ − µHλ ⊗ I2

]
,

and

Cλ =
[√
−Ψc

I2N

]⊤
.

one has
∥Bλx∥

=
∥∥∥∥[Ψa(

√
−Ψc)−1√−Ψce + Ψbẽ + (IN ⊗ Υ − µHλ ⊗ I2)ẽ

]∥∥∥∥
≤

∥∥∥∥Ψa(
√
−Ψc)−1

∥∥∥∥ ∥√−Ψce∥ + ∥Ψb∥∥ẽ∥ + ∥IN ⊗ Υ∥∥ẽ∥ +max
ξ∈Λ
∥µHξ ⊗ I2∥∥ẽ∥

≤ A(∥
√
−Ψce∥ + ∥ẽ∥)

≤ 2A(∥[
√
−Ψce⊤, ẽ⊤]⊤∥)

with A = max{
∥∥∥Ψa(

√
−Ψc)−1

∥∥∥ ∥, ∥Ψb∥, ∥IN ⊗Υ∥,maxξ∈Λ ∥µHξ ⊗ I2∥}. Then, system (3.2) combined with
(3.8) is in the output injection form if we choose that ζ(x) = 2Ax. Let V1 = e⊤Pe; we obtain that

V̇1 = ė⊤Pe + e⊤Pė = e⊤Ψce + e⊤Ψdẽ.

Thus, we have

V̇1 ≤ e⊤Ψce +
1
2

(1 + V1)∥Ψd∥ace−b(t−s)∥ẽ(s)∥.

Let
γ(t) =

1
2
∥Ψd∥ace−b(t−s)∥ẽ(s)∥.

We have ∫ +∞

s
γ(τ)dτ < ∞.
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Therefore,
V̇1 ≤ e⊤Ψce + γ(1 + V1).

Thus, let α1(t) = V1(t), α2(t) = −e⊤(t)Ψce(t) and α3(t) = γ(t); we can apply [14, Lemma 1]. There exist
a1 > 0 and b1 > 0 such that

V1 ≤ ea1γ(s))(1+b1∥e(s)∥2 − 1

and then
∥e(t)∥ ≤

√
c1(ea1γ(s))(1+b1∥e(s)∥2 − 1)

for some c1 > 0. Thus,

∥[e⊤(t), ẽ⊤(t)]⊤∥ ≤
√

c1(e1/a1γ(s))(1+b1∥e(s)∥2 − 1) + a2c2e2bs∥ẽ(s)∥2.

System (3.2) is then uniformly globally stable at the origin. By [14, Lemma 1] again,∫ +∞

s
∥Y1(τ)∥2 dτ =

∫ +∞

s
e⊤(τ)(−Ψc)e(τ) dτ ≤ α1(s) + (1 + α1(s))ϖ1(s) (3.9)

where

ϖ1(s) =
∫ +∞

s
α3(τ)dτe

∫ +∞
s α3(τ)dτ.

Therefore, by (3.9), the condition 2 in Lemma 1 is now satisfied. Next, we consider [ē⊤, ¯̃e⊤]⊤ : R →
R4N as any bounded limiting zeroing-output solution of system (3.2). Then, there exist the sequences
{λn} ⊆ Θ and tn ≥ 2n such that [√

−Ψcē(t)
¯̃e(t)

]
= 0. (3.10)

for almost all t in R. We have [ ˙̄e
˙̃̄e

]
= 0. (3.11)

By (3.11), we obtain [
ē(t)
¯̃e(t)

]
=

[
ē(0)
¯̃e(0)

]
. (3.12)

By (3.10), we have [
ē(t)
¯̃e(t)

]
=

[√
−Ψc

−1√−Ψcē(t)
¯̃e(t)

]
= 0 (3.13)

for almost all t in R. Thus, by (3.12) and (3.13), one can obtain that[
ē(t)
¯̃e(t)

]
= 0. (3.14)

Thus, the condition 3 of Lemma 1 is satisfied. Thus, system (3.2) is uniformly globally exponentially
stable at the origin. Then, there exist γ1 > 0, γ2 > 0 such that

∥[e⊤(t), ẽ⊤(t)]⊤∥ ≤ γ1e−γ2(t−s)∥[e⊤(s), ẽ⊤(s)]⊤∥

for all ([e⊤, ẽ⊤]⊤, λ) ∈ Φ(Θ) and 0 < s < t. It follows that limt→∞ (x1i(t) − x10(t)) = 0 and
limt→∞ (x2i(t) − x20(t)) = 0. In other words, the synchronization control is achieved by the distributed
controller (3.1).

The proof is then completed. □
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Remark 2. Since the harmonic oscillators are heterogeneous in this paper, the classical controller
in [9] is invalid. The controllers in [20, 21] were designed for a static network. In contrast, we
consider the switching network in this paper. Controller (3.1) comes from controller (4) in [25] which
is a typical distributed dynamic state feedback controller [25] ui = K1ixi + K2iηi i = 1, . . . ,N

η̇i = Υηi − µ
∑

j∈V̄ aλi j

(
ηi − η j

) , (3.15)

where K1i and K2i are the gain matrices which can be determined as follows:
1, Select K1i such that Ai + BiK1i is Hurwitz.
2, Let K2i be as follows:

K2i = Ui − K1iXi, i = 1, . . . ,N

where Xi,Ui are the solutions of the linear matrix equations of (8) in [25]. In our paper, the
corresponding gain matrices are

K1i =

[
−k1 0
0 −k2

]
and

K2i =

[
βi − β + k1 0

0 k2

]
.

We omit the computation for solving the linear matrix regulator equations. As compared to the stability
result of [25] with dwell time in a switching network, our result has the advantage of uniform and
exponential stability when subjected to a fast switching network.

Remark 3. To show the stability with dwell time, it is possible to use the information of the system
trajectory and find a common joint Lyapunov function [14] when the network is UJC with a dwell
time. If there is no dwell time, only UJC network topology is assumed; then, the graph switching that
occurs very fast makes the trajectory incomputable and the techniques relying on the trajectory cannot
be used. The multi-systems lose controllability in the fast switching moment. Under the conditions
of GUJC networks, V1 cannot be a strict Lyapunov function and one cannot use the system trajectory
since the network is not maintained where there is no dwell time; thus the stability analysis is not easy.
With the help of the virtual output and newly developed stability analysis tool, we show the stability of
system (3.2). In particular, the stable states are described by the limiting zeroing-output solution.

4. Numerical examples

To show the correctness of the theoretical results, three examples are presented. Consider one leader
oscillator and five heterogeneous harmonic oscillators. We set β = 1 and βi = i + 1, [x1(0), x2(0)] =
[3,−1]; also, [x1i(0), x2i(0)] = [i, i], [η1i(0), η2i(0)] = −[i, i] for all 1 ≤ i ≤ 5.

The controller parameters are set as µ = 1, k1 = 1 and k2 = 2. We consider the switching graphs
Ḡξ, with ξ ∈ {1, 2, 3, 4} which are shown in Figure 1. It is worth noting that Ḡ4 has an empty edge
set and there is no connection among the oscillators. The arrow means that the two oscillators can
communicate between each other. And we set

aλi j =

1, if oscillator i connects with oscillator j,
0, if oscillator i disconnects from oscillator j.
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Ḡ1 Ḡ2 Ḡ3 Ḡ4

Figure 1. The communication topology for switching cases.

We investigate three cases of switching graphs as follows.
First, we consider the static graph case. The network graph is the joint graph of Ḡξ with ξ ∈

{1, 2, 3, 4}. The correspondingH is

H =


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1


.

Figures 2 and 3 show the synchronization states and the errors, respectively.
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Figure 2. The synchronization states in the static graph case.
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Figure 3. The synchronization errors in the static graph case.

Second, we adopt the following UJC network with a switching signal

λ1(t) =


1, if nH ≤ t < (n + 1/4)H
2, if (n + 1/4)H ≤ t < (n + 2/4)H
3, if (n + 2/4)H ≤ t < (n + 3/4)H
4, if (n + 3/4)H ≤ t < (n + 1)H

with H = 10 and n = 0, 1, 2, . . . . Then, the switching signal λ1(t) is UJC with a dwell time τ0 = H/4.
The synchronization states and errors are shown in Figures 4 and 5, respectively.
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Figure 4. The synchronization states under the UJC condition with dwell time.
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Figure 5. The synchronization errors under the UJC condition with dwell time.

Finally, we adopt the following GUJC network with a switching signal

λ2(t) =


1, if (n + l

m+1 )H ≤ t < (n + l+1/4
m+1 )H

2, if (n + l+1/4
m+1 )H ≤ t < (n + l+2/4

m+1 )H
3, if (n + l+2/4

m+1 )H ≤ t < (n + l+3/4
m+1 )H

4, if (n + l+3/4
m+1 )H ≤ t < (n + l+1

m+1 )H

with n = 0, 1, 2, . . . , m = k, l = 0, 1, . . . ,m and H = 10. Then λ2(t) does not have any dwell time. The
switching time slot converges to 0. The switching frequency tends to infinity. In other words, the
network demonstrates Zeno switching, i.e., the switching happens infinitely in finite time.
Assumption 3 holds with τ = H/8 and T = H. The synchronization states and errors are shown in
Figures 6 and 7, respectively.
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Figure 6. The synchronization states under the GUJC condition without dwell time.
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Figure 7. The synchronization errors under the GUJC condition without dwell time.

As shown in the simulation results, the control law (3.1) can solve the synchronization control
problems in the three cases.

5. Conclusions

We have investigated the synchronization control problem for jointly connected switching networks
for heterogeneous harmonic oscillators. The dwell-time assumption for the network is avoided, which
makes the stability analysis challenging. By applying the generalized Krasovskii-LaSalle theorem, the
stability is proved. In the future, we may further consider some more practical issues, such as control
based on sampling in fast-switching networks.
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