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Abstract: In the field of state-of-the-art object detection, the task of object localization is typically
accomplished through a dedicated subnet that emphasizes bounding box regression. This subnet
traditionally predicts the object’s position by regressing the box’s center position and scaling factors.
Despite the widespread adoption of this approach, we have observed that the localization results
often suffer from defects, leading to unsatisfactory detector performance. In this paper, we address
the shortcomings of previous methods through theoretical analysis and experimental verification and
present an innovative solution for precise object detection. Instead of solely focusing on the object’s
center and size, our approach enhances the accuracy of bounding box localization by refining the box
edges based on the estimated distribution at the object’s boundary. Experimental results demonstrate
the potential and generalizability of our proposed method.
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1. Introduction

As a combination of classification and localization, object detection is intended to spot desired
objects in the image and categorize them respectively. In recent years, the field of object classification
has made significant advancements due to the progress in deep learning frameworks. Classifiers [1–4]
now demonstrate impressive performance on diverse and difficult benchmarks [5–8]. However, the
aspect of localization, which involves estimating the precise position and size of objects, still lags
behind and poses limitations on the overall detection performance.

In state-of-the-art object detectors such as faster region-based convolutional neural network
(R-CNN) [9], RetinaNet [10] and CenterNet [11], the task of object localization is carried out by a
box subnet that focuses on bounding box regression. This subnet typically predicts bounding boxes
by regressing the box’s center position (x, y) and scaling factors (w, h). While this design has shown
effective results in conventional frameworks, it suffers from inherent flaws when it comes to precise
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localization. As illustrated in Figure 1, each variable of (x, y,w, h) impacts multiple edges when
adjusting the box’s center position or size. Consequently, all edges of the box shift together, which
compromises the accuracy of localization. Moreover, the center-focus representation method
introduces a feature imbalance, wherein detectors disproportionately emphasize internal features that
are less crucial for localization.

(a) Error in center position (b) Error in box size

Figure 1. Illustration of the center-size box tuning method: the green box represents the
ground truth, while the red box represents the predicted box with either center error or
size error.

The aim of achieving precise localization is to minimize the disparity between predictions and the
ground truth. When humans annotate ground truth boxes, they typically align each side of the box
individually with the corresponding boundary, which is the most efficient approach. Taking
inspiration from this manual annotation method, we introduce a novel solution for precise localization
by refining previous localization results using estimations of the actual boundary distribution. Our
proposed method follows a two-step process. As shown in Figure 2, it first predicts the boundary
within the proposed area of the existing pipeline. Next, the coarse boundary is determined based on
the boundary probability map. For each side of the box, we estimate the corresponding fine boundary
distribution by considering the context of the coarse boundary. This fine boundary distribution is then
utilized to refine the final localization results.

We apply our proposed method to various frameworks and assess their performance on the common
objects in context (COCO) test-dev dataset [5]. Our method demonstrates significant potential through
straightforward functional estimation. Specifically, we achieved an improvement of 2.0% in average
precision (AP) without incurring additional computational costs or requiring additional annotation data,
as compared to the competent Mask R-CNN [12] baseline.

Our main contributions can be summarized as follows:

• We propose a universal method for precise object detection that enhances the accuracy of
bounding box localization by refining the box edges based on estimations of the object’s
boundary distribution. This novel approach improves the overall detection performance.
• In order to accurately generate each side of the bounding box, we evaluated various representation
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methods and conclude that the edge representation method is better suited for precise localization.
This insight further enhances the effectiveness of our method.
• To leverage boundary features effectively, we introduce coarse-to-fine boundary distribution

estimation modules. These modules demonstrate a significant improvement over previous
cascade architectures, leading to more accurate and reliable object detection results.
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Figure 2. Illustration of principal detection pipelines with boundary estimation and box
refinement.

2. Related works

2.1. Localization in detection

Due to the remarkable advancements in deep learning, convolutional neural network (CNN) based
methods have emerged as the dominant solutions in detection applications. These deep learning
detectors can be categorized into three main types based on their structures: two-stage
detectors [9, 12–14], one-stage detectors [15–18] and anchor-free detectors [11, 19, 20].

While different in their implementation, all of these methods adhere to the
classification-localization paradigm. At its core, representing a bounding box requires four
independent variables. In anchor-based detectors like Faster R-CNN [9] and RetinaNet [10], the
bounding box is regressed from proposals or predefined anchors and represented as offsets of the
center (δx, δy) and relative scaling factors (δw, δh). Similarly, anchor-free methods such as fully
convolutional one-stage (FCOS) [20] and CenterNet [11] predict the object’s center and its
corresponding size. These center-size box tuning methods effectively locate objects but are still prone
to inherent errors. To address this issue, CornerNet [21] introduces a novel approach by utilizing the
object’s top-left corner and bottom-right corner to form the bounding box. However, this method
introduces additional computational costs due to corner pair grouping. In contrast, our method
combines the strengths of these two approaches by refining the edges of previous localization results.
By doing so, we can effectively enhance the accuracy of object detection without incurring the
computational overhead associated with grouping corner pairs.
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2.2. Boundary in computer vision

The semantic importance of edges and boundaries has long been recognized in various tasks at
different levels. In Figure 3, we present two representative applications to highlight the similarities and
differences between object detection and these tasks.

Edge detection, typically considered a low-level task, focuses on extracting visually prominent
edges and object boundaries from natural images. It can be categorized into three main approaches:
early filter methods [22–24], information theory methods [25,26] and learning-based methods [27,28].
Recent CNN-based methods [29–31] aim to automatically learn hierarchical features, but they still face
challenges in accurately distinguishing object boundaries from detection results. Utilizing low-level
cues, such as edges, to perform object-level tasks proves to be a challenging endeavor.

Instance segmentation aims to provide dense inference by generating pixel-wise masks for each
instance of objects belonging to the same class. Some instance segmentation methods [12,32,33] build
upon existing detectors. They first utilize the detector to obtain object proposals and subsequently
predict masks for these regions. However, these methods typically rely on pixel-level annotations,
which are often unavailable in the context of object detection. While object detection shares some
similarities with these tasks, such as the utilization of edges and boundaries, it also presents distinct
challenges and requirements, such as precise localization, classification and the handling of multiple
instances of objects. Overcoming these challenges often requires tailored approaches and adaptations
specific to object detection scenarios.

(a) original (b) edges (c) bounding box (d) mask

Figure 3. Illustration of some boundary-related applications in computer vision (edge
detection, object detection, and instance segmentation).

2.3. Detection with boundary features

Boundary context, including the surroundings and shapes of objects, contains valuable information
that can benefit detection applications. Traditional detectors, such as Sobel [24], Canny [22], and
Marr-Hildreth [23], typically rely on smoothing filters or image gradients to extract local features at a
low level. Edge boxes [34] introduces a proposed algorithm based on edges in the input image, which
works well for single objects but struggles to accurately separate multiple objects. These image-based
detectors have limitations as they primarily consider the low-level visual context of objects and are
challenging to apply to modern detectors. To address these limitations, recent deep learning-based
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methods have introduced novel techniques to incorporate context information. For example, the
deformable R-FCN [35] utilizes deformable convolution to include context information in object
detection. The BAN [36] includes a boundary-aware network that leverages boundary context for
improved performance. Side-aware boundary localization (SABL) [37] aims to predict precise object
boundaries using bucket-based approaches. Inspired by these deep learning-based methods, we
referred to them and developed our estimation module to effectively leverage the boundary context of
objects in our detection approach. By doing so, we enhance the overall accuracy and performance of
object detection.

3. Method

In this research, our primary focus is to enhance the localization module in modern object
detectors. Taking inspiration from the manual annotation method, we introduce an edge-focused box
representation as a key component for achieving precise localization. Furthermore, we devise a novel
boundary estimation method that effectively leverages boundary features. The overall pipeline of our
proposed method is depicted in Figure 2.

Our approach aligns with the fundamental detection pipeline, which considers object detection as a
combination of localization and classification. Initially, features corresponding to the object are
cropped and resized based on the previous localization results. These features are then utilized to
predict the coarse boundary, which is subsequently refined to estimate the fine boundary. Each side of
the bounding box is refined using the corresponding estimated fine boundary. Importantly, our method
is not dependent on a specific detection pipeline and does not require any additional annotations. By
employing this approach, we significantly improve the localization accuracy in object detection,
without the need for extra annotations or modifications to the existing detection pipeline.

3.1. Bounding box representation

The objective of precise localization is to minimize the discrepancy between predictions and the
ground truth. In manual annotation, the most efficient approach is to align each side of the box with the
object boundary individually. However, conventional detectors typically choose to predict the centers
and sizes of bounding boxes instead of adjusting the edges directly.

As depicted in Figure 1, the center-size tuning method inherently faces challenges when attempting
to adjust individual edges. Let us consider a scenario in which each side of the box can be represented
by its respective vertical and horizontal lines. The vertical and horizontal edges of the rectangular box
(El, Er, Et, Eb) can be represented by a set of scalars (l, r, t, b), or alternatively, by the box center and
size (x, y,w, h):

El = fl(l) = gl(x,w/2) (3.1)

Er = fr(r) = gr(x,w/2) (3.2)

Et = ft(t) = gt(y, h/2) (3.3)

Eb = fb(b) = gb(y, h/2) (3.4)

Each edge is influenced by both the center and size of the box. Consequently, adjusting a single
edge becomes more difficult when employing the center-size method. This dilemma is prevalent in
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modern detectors, whether they predict the center and size directly or use the offset from the proposal
relative to the ground truth box. A similar notion for precise localization is also reflected in the corner
representation method [21]. The top-left corner and bottom-right corner can be viewed as the
intersection points of the corresponding edges, denoted as Ctl(l, t) and Cbr(r, b) respectively.

3.2. Coarse boundary localization

As depicted in Figures 2 and 4, our method can be broken down into a two-step scheme: coarse
boundary localization and fine boundary estimation. Initially, we utilize the region of interest align
(RoIAlign) [12] operation to extract and resize features within the proposal area. The resulting
bounding box features, with dimensions of 14 × 14 ×C (where C = 256 in our experiments), are
subjected to four 3 × 3 convolutional layers with a stride of 1, followed by a 2 × 2 deconvolutional
layer with a stride of 2, and finally a 1 × 1 convolutional layer to produce the 28 × 28 × cls (where
cls = 80 in the COCO dataset [5]) boundary probability map. In conjunction with the classification
result obtained from the previous detector, we extract a single-channel probability map for a specific
class. Subsequently, we compute the maximum value along each row and column, resulting in two
compressed vectors. These vectors serve as inputs to the coarse boundary localization module.
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Figure 4. Illustration of part of the boundary estimation and box refinement module.

Within the coarse boundary localization module, we first binarize the vector using a threshold (in
our case, the threshold is set to 1 × 10−4) and multiply it by a scoring matrix and its transposed matrix.
The scoring matrix, denoted as Ms in Figure 4, undergoes matrix multiplication with the binarized
vector vb according to the following equation:

v⃗b × Ms = [v⃗bm⃗c1, ..., v⃗bm⃗c28] (3.5)
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And for each v⃗bm⃗ci, it follows that

v⃗bm⃗ci =


0, i < i f p

1, i = i f p

1 − k′, i f p < i ≤ ilp

−k, i > ilp

(3.6)

i f p and ilp represent the indices of the first and last positive elements in the vector, respectively.
Additionally, k and k′ are integers that satisfy k, k′ ∈ [0, 28]. These matrices are designed to identify
the approximate positions of the left/top and right/bottom boundaries within the probability map. The
resulting product is then activated using the rectified linear unit (ReLU) function.

3.3. Fine boundary estimation

As shown in Figure 4, the operation of the fine boundary estimation module begins by extracting
the contextual information of the coarse boundary. The estimated fine boundary is then used to refine
the bounding box. Assuming that the pixel values of the image are uniformly sampled from a
continuous distribution, and that the variations near the object boundary can be described by an
elementary function, we derive the precise boundary points based on this assumption and the pixel
values near the object boundary. Our estimation method differs from the conventional interpolation
approaches because it focuses on the distribution of the boundary rather than estimating values
between known points. This allows us to select a relatively low threshold (in our experiments, we
used a threshold of 0) to minimize the outward expansion of the boundary during the
interpolation process.

For better understanding, let us assume that the one-dimensional vector obtained from the
coarse-boundary localization process is denoted as V lr. By considering V lr as a uniform sampling of a
continuous distribution, with sampling points located at the pixel centers, we can transform the
discrete V lr into a continuous representation. Assuming that the distribution near the left boundary of
the object can be approximated by an elementary function f (x), we utilize limit calculations and
indices to demonstrate that the elementary function f (x) used to approximate the distribution near the
boundary needs to pass through the coordinates (0, 0) and (1, 1) in the Cartesian coordinate system.
The calculation process for the right boundary and the upper and lower boundaries of the target box
follows a similar procedure, akin to the calculation based on V lr. Consequently, several key
requirements must be fulfilled during the process. First, the boundary distribution function
fB : [0, 1]→ [0, 1] should be a monotonically increasing and differentiable function. Additionally, the
gradient of the function should be smooth to alleviate numerical instability issues. For instance, the
function f (x) =

√
x is unsuitable as a distribution function because its derivative f ′(x) tends to infinity

as x approaches 0, rendering it untrainable. In this study, we experimented with three elementary
functions that meet the aforementioned requirements to fit the distribution of objects near the
boundary, as detailed in Section 4.2. Ultimately, a linear function was chosen as the fitting solution
for this research.
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4. Experiments

4.1. Evaluation

We present the evaluation results for our proposed estimation method, which were obtained by
training and evaluating the networks on the COCO dataset [5]. To ensure fairness and consistency,
we adhere to the universal splitting method for the training, validation and testing of our model on the
COCO dataset. The detection results were evaluated using the standard COCO-style AP metric.

In our experiments, we chose Mask R-CNN [12] as the baseline model. The parameters of the mask
head in Mask R-CNN were used to initialize the network described in Section 3.2. This is because the
mask head has an inherent advantage in predicting the boundary probability map.

We observed that most elements inside the object are similar (close to 1), which renders them
insignificant for estimation purposes. Consequently, we employed a functional estimation approach,
denoted as f (x), with the value x at the coarse boundary serving as the variable.

The detection results are presented in Figure 5, where the blue box represents the baseline method
and the red box represents our method. As shown in Table 1 and Figure 6, our method demonstrates
improvements in overall AP, individual AP metrics and category-wise AP metrics as compared to the
ResNet-50-FPN baseline with linear estimation f (x) = x. Notably, our method exhibits higher
precision than the baseline even when both results are classified as positive examples. It is also
noteworthy that our method outperforms the baseline when using a deeper ResNet-101-FPN
backbone, despite the increased computational cost associated with this backbone.

Figure 5. Detection results on the COCO test-dev dataset, with the baseline model shown in
blue and our model shown in red.
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Table 1. Comparison with other methods on COCO test-dev dataset.

Method Backbone AP AP50 AP75 APS APM APL

SSD513 [17, 38, 39] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
YOLOv3-608 [18] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
Faster R-CNN [9] ResNet-101-FPN 37.3 59.6 40.3 19.8 40.2 48.8
RetinaNet [10] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
Mask R-CNN [12] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
RetinaMask [40] ResNet-50-FPN 39.4 58.6 42.3 21.9 42.0 51.0
Mask R-CNN (baseline) ResNet-50-FPN 37.6 59.0 40.9 21.5 40.1 46.9
Ours ResNet-50-FPN 39.6 59.4 42.5 22.2 42.2 49.8

Figure 6. Illustration of the mean average precision (mAP) difference between our method
and the baseline method on the COCO test-dev dataset for each category.

In addition, we conducted experiments using the pattern analysis, statical modeling and
computational learning visual object classes (PASCAL VOC) dataset [8]. To expedite model
convergence and reduce training costs, we fine-tuned the weights of the model pre-trained on the
aforementioned COCO dataset. Subsequently, we evaluated the model’s performance using the
VOC 2012 validation set. The experimental results demonstrate the enhanced accuracy of our
proposed method across various categories compared to Mask R-CNN [12]. Specifically, our method
achieves a notable improvement in the mAP metric, with an accuracy increase of 2.1 mAP
(48.0 → 50.1). Additionally, we observed a significant precision gain of 2.8 on the AP for large
objects (APL) metric (56.3 → 59.1). Notably, the airplane category resulted in the largest
improvement, with a precision gain of 3.5 mAP (54.9 → 58.4). Overall, our proposed method
significantly outperforms Mask R-CNN on the PASCAL VOC dataset.

Apart from evaluating the accuracy, we thoroughly assessed the speed performance using frames
per second (FPS) as a metric. To ensure reliable results, we conducted five measurements of FPS, with
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each measurement based on the processing time for 100 images of resolution 1024 × 1024. Mask R-
CNN achieved an average FPS of 6.00, while our model achieved a slightly lower average FPS of 5.97,
indicating a marginal 0.5% reduction in FPS compared to Mask R-CNN. Therefore, the impact on
speed can be considered negligible.

4.2. Additional experiments and analysis

Comparison between different estimation functions. In order to investigate the impact of
different boundary distribution functions, we conducted comparative experiments with three cases (in
Table 2): linear, exponential and logarithmic, represented by the functions f (x) = x, f (x) = x2, and
f (x) = ln((e − 1)x + 1), respectively. From the experiment, we observed that the linear method
achieved better overall performance, particularly on large objects. The convex logarithmic function
performed better on smaller objects, exhibiting a higher AP50 and AP75. On the other hand, the
concave exponential function did not demonstrate significant advantages.

Table 2. Comparison between different estimation functions on COCO val dataset.

Method AP AP50 AP75 APS APM APL

Baseline 37.5 58.6 40.8 21.8 41.0 48.9
W/ lin 39.5 59.0 42.4 22.4 43.0 52.0
W/ exp 39.3 58.9 41.9 22.4 42.9 51.7
W/ log 39.4 59.2 42.6 22.8 43.0 51.9

Influence of extra mask annotation. Although our method does not use annotation data during
training, the initialization of the boundary prediction network with parameters from Mask R-CNN [12]
introduces additional mask information. To assess the impact of mask annotation, we replaced the
parameters in the boundary prediction network with randomly initialized parameters. As shown in
Table 3, our method remains effective, with an overall AP improvement of 1.8%. These results indicate
that extra annotation, such as masks, can provide benefits but are not essential for the proposed method.

Table 3. Ablation study on extra mask annotation.

Method AP AP50 AP75 APS APM APL

Baseline 37.5 58.6 40.8 21.8 41.0 48.9
W/o mask 38.5 58.3 41.1 21.6 42.3 50.5
W/ mask 39.5 59.0 42.4 22.4 43.0 52.0

Comparison with extra regression. Cascading methods have demonstrated competence in
precise localization. To highlight the superiority of our boundary estimation method, we compare it to
baseline methods with an additional regression stage. As shown in Table 4, our approach consistently
outperforms the Mask R-CNN baselines, leading by up to 0.8% in overall AP. These results validate
the effectiveness of our method in achieving precise localization.

Electronic Research Archive Volume 31, Issue 8, 5025–5038.



5035

Table 4. Comparison between extra regression method and our edge refinement method.

Method AP AP50 AP75 APS APM APL

Baseline 37.5 58.6 40.8 21.8 41.0 48.9
W/ reg 38.7 58.1 41.5 21.9 42.2 51.2
W/ ref 39.5 59.0 42.4 22.4 43.0 52.0

5. Conclusions

In this paper, we propose a novel approach to achieve precise object detection by estimating object
boundary distributions. Our primary goal is to improve detection accuracy. Drawing inspiration from
manual annotation techniques, we harness the advantages of the edge-focus box representation
method. By predicting the coarse boundary and refining it through fine boundary estimation, our
method significantly enhances the accuracy of bounding box edges based on previous localization
results. Extensive experiments conducted on the COCO dataset demonstrate the potential of our
boundary estimation method across various detection pipelines, eliminating the need for additional
annotation. In future research, we aim to extend the application of our boundary detection procedure
to diverse domains, including medical imaging. This extended application holds significant value,
particularly in optical coherence tomography imaging, where our procedure enables the precise
detection of boundaries in retina tissue layers with high accuracy. This advancement has the potential
to facilitate the accurate diagnosis of ocular or neuropathological disorders [41, 42]. Furthermore, we
plan to explore the utilization of a lighter ResNet18 backbone or a more complex ResNet101
backbone to address the specific requirements of speed and accuracy in different scenarios.
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