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Abstract: As speech recognition technology continues to advance in sophistication and computer 
processing power, more and more recognition technologies are being integrated into a variety of 
software platforms, enabling intelligent speech processing. We create a comprehensive processing 
platform for multilingual resources used in business and security fields based on speech recognition 
and distributed processing technology. Based on the federated learning model, this study develops 
speech recognition and its mathematical model for languages in South China. It also creates a speech 
dataset for dialects in South China, which at present includes three dialects of Mandarin and Cantonese, 
Chaoshan and Hakka that are widely spoken in the Guangdong region. Additionally, it uses two data 
enhancement techniques—audio enhancement and spectrogram enhancement—for speech signal 
characteristics in order to address the issue of unequal label distribution in the dataset. With a macro-
average F-value of 91.54% and when compared to earlier work in the field, experimental results show 
that this structure is combined with hyperbolic tangent activation function and spatial domain attention 
to propose a dialect classification model based on hybrid domain attention. 
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1. Introduction  

The goal of the research is voice recognition, which is the ability of a machine to automatically 
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interpret and recognize human speech using techniques like speech signal processing or pattern 
recognition [1]. Acoustics, pattern recognition theory, phonetics, physiology, information theory, 
artificial intelligence and many other fields are strongly related to speech recognition [2,3]. Speech 
recognition technology is increasingly important in human-computer speech communication, and its 
use is developing into a more competitive sector of the economy. 

In the field of speech research, the most intuitive question that is usually faced is: “Who, in what 
language, says what?” It is important for speech research to solve this problem efficiently and with 
high accuracy [4]. In the key sentence above, “who” is the main object of study for voice recognition, 
i.e., to solve the labeling or identity determination of the key speaker; “in what language” is the main 
object of study for language recognition, which mainly determines the protocol criteria of this 
communication, i.e., What language is the main research object of language recognition, which mainly 
determines the agreement criteria of this communication, i.e., what language the speaker is using, i.e., 
Chinese or English or a local dialect, etc.; finally, “what was said” is the main research category of 
speech recognition [5]. Therefore, it is easy to see that language recognition, as the determiner of the 
agreement criteria, plays a very important qualitative role and is a key part of the speech research field. 

There are several nations, ethnicities and languages in the world. The world’s languages are 
typically divided into nine major language families according to the genealogical classification: Sino-
Tibetan, Ural, Caucasian, South Island, Indo-European, Altaic, Semitic, South Asian and Dravidian [6]. 
Language groups, language branches and languages are further categories for the language family. The 
world’s languages are numerous and diverse, as can be observed. According to UNESCO, there are 
roughly 7000 languages spoken worldwide, and nearly half of them are in danger of extinction. Dialect 
extinction is a serious issue because some languages have few speakers and the technology available 
cannot identify them. As a result, speakers slowly assimilate into other languages, learning and using 
some of the more popular ones as the original languages slowly disappear. As a result, research into 
computer-assisted language recognition and the study of language culture can, to some extent, advance 
human understanding of languages and language civilizations and delay the rate of those civilizations’ 
extinction [7,8]. The process of automatically identifying the language to which a speech sample 
belongs using a computer or other electronic equipment is the focus of language recognition research 
[9,10]. As seen in Figure 1, the primary study in language recognition involves feeding the audio to be 
measured into a model system that has been predesigned, and then using the system’s internal 
judgement to determine the language genus to help with other practical applications. In this study, we 
concentrate on the mathematics and recognition model research of speech language recognition in 
South China. 

Feature extraction Model Output

1 2

 

Figure 1. Speech language recognition path.  

Federated learning is a new term that has emerged in recent years, evolving step by step from the 
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past stages of development of artificial intelligence machine learning. Initially, and currently, the most 
used is centralized learning, where the basic idea is “the model does not move, the data moves” [11,12], 
which means that the training task is performed entirely by the central server (where all the data are 
transferred), and this approach allows the main server to have comprehensive data and better training 
results. Additionally, local model parameters must be exchanged between iterations in typical 
distributed federated learning training methods, larger local models are needed for difficult tasks and 
uploading local models significantly increases the communication burden. Federated learning is 
frequently used on wirelessly linked devices, which dramatically increases the communication 
overhead. In practise, federated learning’s communication burden is also made worse by network 
bandwidth and node density. In the classic federated learning framework, the system disables client 
devices that have restricted or down access during this training round, which means that the client 
stops optimizing updates and the server stops delivering global models to the client, which has an 
impact on the direct user experience. Therefore, how to reduce the communication overhead has 
become a key bottleneck in federated learning.  

The main contribution of this paper is to design a new deep learning-based model structure and 
optimize it by combining the traditional speech features of South China, and the multi-task model has 
a higher recognition accuracy than the single-task model in the dialect language recognition problem, 
with an average improvement of 5%. Moreover, the model is more lightweight without involving 
speech information, and the deep learning features can be trained on a large scale, which provides great 
convenience for practicality. In summary, the speech recognition of languages in South China based on 
federated learning model and its mathematical model construction have important research significance. 

2. Related works 

A new AI learning algorithm, federated learning, was first proposed in [13]. A distributed joint 
averaging algorithm for efficient communication is proposed in literature [14]. The authors take the 
Structured updates approach to learn from a restricted space, use fewer variables for parameterization 
and propose Sketched updates to compress the model updates sent to the server, reducing the 
communication overhead. 

The mapping of variable-length audio sequences into fixed-dimension vectors, which are 
subsequently fed into classifiers like support vector machines and probabilistic linear discriminant 
analysis, has been one of language recognition’s more successful uses in recent years [15]. The federal 
model’s GMM-based identification vector architecture is one of its early applications. The federal 
model maps speech into a whole variability space incorporating language variations and channel 
differences as opposed to the aforementioned approaches, which begin at the feature level, and 
classifies languages by transforming, deleting unnecessary information and extracting language-
related information. Deep neural networks are also incorporated in the process of extracting the 
federation model; DNNs are used in the literature [16], replacing the role of GMM; DNNs are used in 
the literature [17] to extract the bottleneck features, which are then fed into the GMM-UBM model to 
extract the federation model; however, the aforementioned studies are still based in the GMM-UBM 
framework, and subsequently, with the in-depth study of deep neural networks, a framework based on 
front- and back-end frameworks were developed and applied to language recognition [18,19]. First 
DNN-based d-vector models were proposed, followed by TDNN-based x-vector models, and recently, 
end-to-end models have also been used in the study of language recognition, where feature extraction 



4988 

Electronic Research Archive  Volume 31, Issue 8, 4985–5005. 

and back-end classifiers are jointly trained in an end-to-end language recognition system, thus reducing 
errors in language classification. 

More functionality and usability are the constant goals of computer technology development, and 
application needs are what propel this progress [20–23]. In the literature [24], DNNs were first applied 
to ASR systems for English in combination with HMMs, and subsequently, recurrent neural networks 
have all been used to mine more and richer contextual information and thus build more powerful 
acoustic models for English; and DNN-based ASR systems for English have reached a level 
comparable to human level for speech recognition tasks. End-to-end approaches have initially emerged, 
and attention mechanisms have been applied to ASR systems to further improve recognition 
performance. In addition, based on the THUYG-20 database, researchers have explored various novel 
ASR systems. In the literature [25], the acoustic model was improved and combined with CNN to 
build an acoustic model and optimize the model as a whole; in the literature [26], optimization methods 
and transfer learning were used to improve the recognition rate of South Chinese dialects; however, 
since Tsinghua University did not release a decoder for the lexical element-based language model when 
it released the THUYG-20 database and its baseline model, the literature [27] did not exceed the 
baseline model released by Tsinghua University in its attempt. In the literature [28], an attempt was 
made to develop a new lexeme-based language model and decoder to improve the recognition rate of 
the ASR system. However, the literature [29] mentions that the development of ASR for South Chinese 
dialects has not been as rapid as ASR for mainstream languages. South Chinese dialect is a typical 
dependent language, where the same stem can be connected with different affixes to form different 
words [30–31].  

Speech recognition-related evolutions for South Chinese dialects may be somewhat hampered by 
language models in ASR systems running into more severe data sparsity issues, which are more likely 
to lead to higher out-of-word rates with a fixed vocabulary. The languages covered in this paper include 
many small languages, such as South China dialect, Minnan language, Hakka language, etc. Therefore, 
this paper constructs a low resource-based automatic speech recognition system for small languages 
from small languages, taking South China dialect as an example. 

3. Speech recognition and mathematical  

The federal model-based language recognition technique maps speech into the whole variability 
space, which includes linguistic variances and channel differences, and then classifies the languages 
by scrubbing out extraneous data and retrieving language-specific data through transformation. It was 
formerly the best model in the field of language recognition and has been the most effective application 
in the field in the last ten or so years. The federal model model is still very valuable today. 

The i-vector approach is to map speech to a language- and channel-dependent total variability 
space and to separate it. While the predecessor of i-vector, i.e., the joint factor analysis method, an 
utterance can be represented as a supervector, which contains both language-related and channel-
related contents, so that the supervector can be expressed as: 

𝑀 ൌ 𝑚 ൅ 𝑉 𝑦 ൅ 𝑈 𝑥 ൅ 𝐷         (1) 

where M denotes the hypervectors from the generic background model independent of both language 
and channel, V and D denote the space associated with language, U denotes the space associated with 
channel and the vectors x, y and m denote the factors associated with language and channel. 
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The total variability space is a total variability matrix constructed from the feature vectors. 
Mapping the feature vector of speech into the total variability space, the GMM-based hypervector can 
be expressed as:  

𝑀 ൌ 𝑚 ൅ 𝑇𝜔         (2) 

This supervector is language and channel dependent. Where m is computed by a generic 
background model and is not correlated with a particular language or channel, which are often referred 
to as the i-vector learning model. Assuming that we have an N-frame of statements from South China 

൛𝑦ଵ,𝑦ଶ,. . . 𝑦ேൟ, and 𝑈𝐵𝑀: 𝛺 that have been trained, and that 𝛺 includes a total of C mixed Gaussians, 

then the statistics needed about extracting the i-vector can be expressed as follows: 

𝑁௖  ൌ  ∑ 𝑃ே
௧ୀଵ ሺ𝑐 ∣ 𝑦௧, 𝛺ሻ        (3) 

𝐹௖  ൌ  ∑ 𝑃ே
௧ୀଵ ሺ𝑐 ∣ 𝑦௧, 𝛺ሻ𝑦௧       (4) 

This process requires the calculation of the first-order statistics as follows.  

𝐹௖ ൌ ∑ 𝑃ே
௧ୀଵ ሺ𝑐 ∣ 𝑦௧, 𝛺ሻሺ𝑦௧ െ 𝑚௖ሻ       (5) 

The final i-vector mathematical model can be represented as 

𝜔 ൌ ሺ𝐼 ൅ 𝑇௧𝛴ିଵ𝑁ሺ𝑢ሻ𝑇ሻିଵ𝑇௧𝛴ିଵ𝐹෨ሺ𝑢ሻ       (6) 

where 1𝑁ሺ𝑢ሻ is a diagonal moment 𝐶𝐹 ൈ 𝐶𝐹 of dimension 𝐹
~

ሺ𝑢ሻ, is a hypervector of dimension 

𝐶𝐹 ൈ 1 and T is the total variability matrix.  
Thereafter, we can construct SDC features to improve the language recognition model in South 

China. SDC features are one of the most widely used acoustic features in the field of language 
recognition at present, which are mainly extended by shift difference based on the underlying spectral 
parameter features MFCC or PLP. The process of SDC feature extraction for speech recognition of 
South China languages is shown in Figure 2. 

Spectral parameter 
feature extraction 

MFcc, PLP
RASTA filtering

Shift differential 
expansion

Fast cosine score

Speech 
signal

SDC features

11X 21X 1NX

12X 22X 2NX

1dX 2dX NdX

. . ... .

1t 2t Nt t  

Figure 2. SDC model for language speech recognition. 

First, the underlying acoustic spectral parameter features are extracted by adding windows to the 
speech of South China, and MFCC features or PLP features are usually extracted in the language 
recognition task. After extracting the spectral parameter features, RASTA filtering is adopted to 
suppress the influence of the non-speech spectral part of the parameter representation. In order to 
obtain the dynamic change features of the spectral parameters, the first- and second-order differences 



4990 

Electronic Research Archive  Volume 31, Issue 8, 4985–5005. 

(△ and △-△) of the spectral parameters are usually calculated and then spliced with the original 
static spectral parameter features to form the final features (for example, the 13-dimensional static 
MFCC features are spliced with the first- and second-order differential dynamic features to form the 
final 39-dimensional MFCC features). Although the use of first-order and second-order differential 
dynamic features has been successfully applied in the fields of speech recognition and speaker 
recognition, it cannot meet the requirements of language recognition tasks. This is mostly due to the 
statistical distribution features of the underlying acoustic units of speech, which are strongly tied to 
the content of speech, reflecting language information. The traditional first- and second-order 
differences have a short time domain extension and can reflect information that is less robust to the 
content, where as it is required that the underlying acoustic features can correspond to the acoustic 
units reflecting the speech content as much as possible. Based on this, this study proposes a time-
domain shifted difference calculation method based on static spectral parameters. At this point, the 
resulting SDC feature is a stitching together of the static features and the k shift difference vectors 
𝛥𝑐ሺ𝑡, 𝑘ሻ to form the final SDC feature 𝑋௧: 

𝑥௧ ൌ

⎣
⎢
⎢
⎢
⎡

𝑐ሺ𝑡ሻ
𝛥𝑐ሺ𝑡, 0ሻ
𝛥𝑐ሺ𝑡, 1ሻ

⋯
𝛥𝑐ሺ𝑡, 𝑘 െ 1ሻ⎦

⎥
⎥
⎥
⎤

         (7) 

The dimension of the feature is generally ൫𝑁 ൈ ሺ𝐾 ൅ 1ሻ൯. For the setting of the SDC feature 

parameters, the empirical parameter 7-1-3-7 is generally chosen, which is the best configuration 
obtained through a large number of experiments. At this time, each frame of the SDC feature 
calculation covers 21 frames of static parameter information of speech languages in South China, 
which can reflect the time duration of 210 ms (considering the window length of 10 ms when extracting 
static spectral parameters). It is shown that the performance of language recognition using SDC 
features is significantly better than that using first- and second-order differential features, and makes 
the acoustic feature-based approach comparable or even better than the PR-based approach. 

4. Methods 

This study builds a dialect classification model using the audio of South Chinese speaking 
languages as the research subject. Mandarin and three widely spoken dialects in the Guangdong 
region—Cantonese, Chaoshan and Hakka—are the focus of the research; however, there aren’t any 
public speech datasets in the market that include these categories, so we had to gather the audio 
ourselves, screen it and then manually annotate it. This chapter outlines the procedure for obtaining 
this audio dataset, its statistical properties, and the assessment metrics utilised in this research after 
first introducing the background and characteristics of the Cantonese dialects that were used. 

4.1. Phonological categories and distribution of features 

The clear and turbid opposites of the Mandarin vowels in South China are absent, and the turbid 
vowels only comprise border, nasal and backward tongue fricatives. Mandarin also contains a limited 
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number of tones, a straightforward tonal structure, pedalized rhymes and gentle sounds. Chinese 
syllables can contain up to four phonemes and are often made up of vowels, rhymes and tones that 
form vowels and consonants separately and in a predictable way when the tones pass through the 
syllables. Table 1 lists all 21 vowels in order of their phonetic symbols. 

Table 1. Initials of phonetic languages. 

- Labial sound Apical G k h 

International 

phonetic alphabet    

Phonetic Symbols - - - - - - - - - - - 

Chinese Pinyin b p m f d t n l g k h 

- Alveo-palatal sound Cocky tongue sound Lingual and dental sounds

International 

phonetic alphabet 

- - - - - - - - - - 

Phonetic Symbols - - - - - - - - - - 

Chinese Pinyin j q x zh ch sh r z c s 

The ability of native speakers of South Chinese dialects to identify whether a specific speech 
segment, such as the distinctive Cantonese word “pretty boy”, belongs to their own dialect suggests 
that the audio content already contains the necessary data for classification. Therefore, this paper 
classifies them by listening to the audio content. There isn’t a publicly accessible dialect dataset in 
China for this study that has all four categories, although it is possible to find them all in other datasets. 
Speech datasets have incorporated non-speech information to the audio during recording, such as 
device impact and background noise, which results in interference noise. There have been previous 
lessons that when a certain irrelevant feature in the dataset is too obviously distributed along the data 
category, the final learning result visualization can find that the learned classification is based on such 
irrelevant features and does not have generalization value. Therefore, the construction of this research 
dataset is unique. 

For audio that is obviously noise does not help in categorization labeling, and is categorized by 
noise category, specifically subdivided into current noise, pure music and silence, which is left for 
subsequent research on noise impact or other topics; for audio mixed with multiple dialects, which is 
not very helpful for this topic at present, but has greater value for speaker segmentation, multi-dialect 
identification and other topics, it is also categorized separately and left for subsequent use; for audio 
containing the information required for categorization, i.e., the human ear can judge it accordingly, but 
the effective duration of the audio is too short, less than 1 s, i.e., the duration of the audio in which 
someone speaks is less than 1 s; the data set is additionally labeled, which may be helpful for the 
subsequent classification of short duration audio. For the audio that can be accurately categorized as a 
subject research category, it is additionally subdivided into the area to which the dialect belongs while 
categorizing it for subsequent research on the influence of region on dialect accent and other subjects. 
Table 2 shows the relationship between the dialects and the regions they belong to, with each category 
subdivided into several subcategories according to the regional differences in pronunciation. For 

 P hP    m  f  t ht    n  I  K hK    X
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example, Cantonese is subdivided into five subcategories, such as Guangzhou, Siyi, Zhaoqing, 
Gaoyang and Wuchuan, and then the main geographical distribution of each subdivision is listed. When 
an audio is judged to be Cantonese, it is then divided into detailed subcategories to determine the 
regional accent it belongs to. 

Table 2. Speech language recognition and regional correspondence. 

Voice Language classification Region 

Hakka dialect Meizhou dialect Meizhou, Heyuan, Huizhou, Shenzhen, 

Guangzhou, Dongguan, Qingyuan, 

Shaoguan 

Heyuan dialect Headwater of river 

Huizhou dialect Huizhou 

Shaoguan dialect Shaoguan, Qingyuan 

Mandarin Cantonese accent Guangzhou 

Guest accent Meizhou, Shaoguan 

Chao accent Shantou, Chaozhou, Jieyang, Shanwei 

No accent - 

Cantonese Cantonese speech Guangzhou, Panyu, Nanhai, Hong Kong 

Siyi dialect Dialects in Xinhui, Enping, Kaiping, 

Taishan, etc. 

Zhaoqing dialect Zhaoqing, Sihui, Luoding, Guangning, 

Huaiji, Fengkai, Deqing, Yunan, Yangshan, 

Lianxian, Lianshan and other counties and 

cities 

Gaoyang dialect Maoming (Xinyi, Gaozhou), Yangjiang, 

Zhanjiang 

Wuchuan dialect Wuchuan, Zhanjiang 

In this study, for the dialect dataset of South China obtained through multiple rounds of screening, 
the audio collected in this region was classified according to Cantonese, Chaoshan and Hakka by 
finding native speakers of the corresponding dialects in each round of labeling. 

4.2. Evaluation index calculation 

In this paper, we study the topic of dialect classification and categorize the labels to be predicted 
for input audio in South China as one of four labels, namely, Mandarin, Cantonese, Chaoshan and 
Hakka. There are no audio containing two labels in the experimental dataset, so the problem can be 
considered as a single classification problem with multiple labels. However, the labels in the dataset 
are unevenly distributed, and using only accuracy or recall cannot measure the classification ability of 

the model for dialects, and the results are not convincing. 𝐹ఉ𝑆𝑐𝑜𝑟𝑒 widely used in the classification 

problem of unbalanced data sets with high reliability, the accuracy and recall are fused into a single 
evaluation metric by a weight ratio of 1: 𝛽, calculated are shown below. 
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𝐹ఉ ൌ ሺ1 ൅ 𝛽ଶሻ ൈ  precision ൈ recall 

ሺఉమൈ precision ሻା recall 
       (8) 

The experiments in this paper use 𝐹ఉ𝑆𝑐𝑜𝑟𝑒  as the evaluation metric, which is the summed 

average of recall and accuracy, and takes values from 0 to 1, where 𝛽 taken as 1 means that recall and 
accuracy are equally important. 

In this paper, the macro-average 𝐹1 value, which is the largest of the two, is chosen as the main 
index and referred to the micro-average F1 value and accuracy rate. The macro-average first calculates 
the F1 value of each category separately and then arithmetic average to find the 𝐹1 value of the test 
set, which is calculated in Eq (9); the micro-average will consider all categories of prediction cases all 
at once and calculate the overall F1 value, which is calculated as shown below. 

ሺ𝐹ଵሻ௞ ൌ ଶൈ precision ೖൈ recall ೖ
 precision ೖା recall ೖ

        (9) 

𝑚𝑎𝑐𝑟𝑜ሺ𝐹ଵሻ ൌ ଵ

|௅|
∑ 𝐹ଵ௞∈௅ ሺ𝑦, 𝑦ොሻ ൌ ଵ

|௅|
∑ ଶൈ precision ೖൈ recall ೖ

 precision ೖା recall ೖ
௞∈௅      (10) 

𝑚𝑖𝑐𝑟𝑜ሺ𝐹ଵሻ ൌ 𝐹ଵሺ𝑦, 𝑦ොሻ ൌ 2 ൈ  precision ൈ recall 

 precision ା recall 
      (11) 

On this basis, the prediction for each category can be considered as one binary classification, and 
the four possible combinations of predicted labeling and actual labeling are shown in Table 3. 

Table 3. Binary classification of speech recognition indicators. 

 Actual dimensions 
Predictive annotation TP FP 
(Expectation) FN TN 

4.3. Model construction and operation 

The model chooses support vector machines to transform the samples into another linear space 
using nonlinear transformation, and then determines the best classification surface in that 
transformation space when the sample set for South China voice recognition is nonlinear and separable. 
The dimensionality of the transformed space is typically higher than that of the original space because 
this method is utilized to linearly separate high-dimensional spaces more easily than low-dimensional 
ones. The computational complexity is independent of the dimensions of the space and only depends 
on the number of samples because support vector machines convert the original problem into a paired 
problem. As seen in Figure 3, this opens up the prospect of tackling high-dimensional issues. 
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DJSENUF Feature space

 

Figure 3. Input space mapping of speech recognition. 

The schematic diagram of the support vector machine in the federated learning model is shown 
in Figure 4. 
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Figure 4. Mapping mode of speech recognition in federated learning. 

Based on the above, the speech language recognition scheme proposed in this paper mainly 
consists of speech sample selection, speech pre-processing, feature parameter extraction, classifier 
training and testing, as shown in Figure 5. 
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of 10 speakers

Statement sample 
characteristic parameters of 

40 speakers
 

Figure 5. System block diagram of speech recognition. 
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The data arrangement samples for the speech language recognition model in South China are 
shown in Table 4. For each language, we selected 20 male speakers and 20 female speakers, each 
with 100 discourse samples, each with a length of approximately 60 seconds, and a total corpus 
size of 200 M for each language as sample data.  

Table 4. Sample data arrangement of speech recognition. 

Languages Spokesman Corpus size 
Chinese 20 Men, 20 Women 40 Mb 
Naxi 20 Men, 20 Women 40 Mb 
Bai language 20 Men, 20 Women 40 Mb 
Miao language 20 Men, 20 Women 40 Mb 
Tibetan 20 Men, 20 Women 40 Mb 

Intuitively, the more the number and types of feature parameters selected, the more 
comprehensive the speaker’s linguistic features can be, but the computational cost of feature parameter 
extraction also increases, thus reducing the practicality of language recognition. In the experiments of 
the proposed ethnolinguistic language recognition scheme, different sets of feature parameters were 
used as the input of the classifier, i.e., the three selected feature parameters were used as the input of 
the classifier, and then the fusion of the three features was used as the input of the speech language 
recognition classifier. The experimental results are analyzed to find the best set of feature parameters 
with a certain correct recognition rate and minimum computational cost for ethnic languages. 

4.4. Resnet-GRU based speaker recognition study 

They can be identified once the mixed speech signals have been separated. Prior to speaker 
recognition, the speech signal must be preprocessed, which entails pre-emphasis, framing and 
windowing, endpoint detection and modelling using the Mel frequency spectrum’s feature parameters. 
In this section, a speaker recognition model based on the convolutional neural network Resnet and the 
recurrent neural network GRU is proposed. The model uses a self-attention mechanism to assign 
different weights to channels with different contribution degrees, reducing the impact of redundant 
information and enhancing the recognition effect. A different attention mechanism module is employed 
than in the preceding section due to the differences in feature parameters and the volume of data 
required for recognition and separation. 

The architecture of the speaker recognition system built in this section is shown in Figure 6: 
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Figure 6. Functional structure of the speaker recognition system. 

The functions of each part are as follows 
1) Speech signal input module: the port where the speech signals from the training set and the test 

set enter the system, and the file input by importing the speech signals in wav format. 
2) Pre-processing and feature extraction module: the input speech signal is pre-emphasized to 

improve the resolution of the high-frequency part and make the spectrum smoother; then, a long 
segment of speech signal is divided into several short segments by framing and windowing; then, the 
endpoint detection is used to filter out the silent segments to reduce invalid data; finally, the feature 
parameters are extracted and saved in Python format. 

3) Model training/recognition module: Resnet-GRU model is established. The feature information 
of MFCC speech spectrogram is extracted by Resnet network. Although the speech signal is pre-
processed, it still cannot reach the standard of noise-free and silent segments, which will lead to the 
degradation of recognition effect. CNN Resnet is good at extracting spatial features in the speech 
spectrogram, but is weak at handling temporal information in speech signals, so the recurrent neural 
network GRU is introduced to extract temporal features of speech signals for better speaker recognition. 
The traditional cross-entropy function tends to lead to huge computational overhead when training 
with large data volumes, so a ternary loss function is used for training, and the speech to be tested can 
be input to the system for recognition after the training is completed. 

5. Case study 

5.1. Recognition rate of speech language recognition model in South China 

After pre-processing the experimental speech samples, we extracted three different types of 
feature parameters, including the MFCC parameter, fundamental frequency parameter and average 
energy parameter. We combined these feature parameter types into three different feature parameter 
sets as the classifier’s input, and through 8-layer cross-validation, we were able to obtain the language 
recognition confusion matrices for the corresponding feature parameter sets of male and female 
speakers. By arithmetically averaging the diagonal values, which are represented in Tables 5 and 6, 
wherein, it represents HY Chinese, NX represents Naxi language, BY represents Bai, MY represents 
Miao and ZY represents Tibetan, it is possible to determine the average language recognition rates of 
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male and female speakers for the respective feature parameter sets. 

Table 5. Male speech language recognition rate. 

Languages HY NX BY MY ZY 
HY 96.37 15.00 4.17 6.67 2.31 
NX 23.33 89.17 2.50 2.51 0 
BY 17.50 5.00 77.50 0 2.84 
MY 10.83 2.50 0 86.67 0.35 
ZY 9.29 0 0.193 0.338 79.57 

Table 6. Recognition rate of female and male voice languages. 

Languages HY NX BY MY ZY 
HY 86.37 5.83 0 1.84 0.23 
NX 16.79 97.35 0 0.45 0 
BY 5.85 0 77.5 0 2.84 
MY 12.78 0.83 0 88.67 1.32 
ZY 2.54 0 2.91 0.43 71.53 

From Tables 5 and 6, the recognition rate of fundamental frequency is the highest in the single 
feature experiment, and the recognition rate of dialect languages in South China is also very good, 
while the recognition rate of some dialects in remote areas is slightly lower, but also reaches more 
than 70%. The basic frequency parameter characteristic is more likely to be recognized by male and 
female speakers than other aspects. As a result, language recognition systems frequently use base-
frequency features. The fusion of the three chosen features performed better and had a higher 
identification rate than utilizing a single feature in the experiment, hence it is worthwhile to further 
investigate this method. However, combining more features is not recommended because doing so will 
result in redundant feature data and worse language recognition rates, as illustrated in Figure 7. 
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TV MODEL ING BACKENDTV 
Front end of model

DBF

 

Figure 7. Flow chart of DBF-TV system with relevant features of voice. 

After the recognition rate of this model is trained, the backend classification is also trained from 
the same training set and the i -vectors of the training set need to be extracted before training the 
backend. The backends used in this paper include cosine distance, logistic regression (LR), PLDA and 
SVM. After the backend training is completed, the i  -vectors of the training set are normalized 
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according to the language, representative features of each language are extracted and the normalized 
features of each language in the training set are compared with the i -vectors of the test and validation 
sets, and the classification is scored. After the model testing is completed, the whole experimental 
optimization process is shown in Figure 8. 

Data 
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Scoring by Cosine/LR/SVM/PLDA
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Figure 8. Optimization model of speech recognition training. 

The performance of the model on the speech language recognition database in South China is 
shown in Table 7.  

Table 7. Speech recognition results. 

Model Test set Validation set 
𝐶௔௩௚ EER% 𝐶௔௩௚ EER% 

I-vector cosine 0.0692 7.83 0.05 6.19 

I-vector LR 0.0542 5.53 0.045 4.55 

I-vector RBF SVM 0.0559 5.47 0.034 3.23 

I-vector PLDA 0.0505 7.51 0.0339 5.17 

According to the test results, it can be seen that due to the different selection of classifiers, the 
results have great differences although they are the same i-vector, among which SVM as the back-end 
classifier has the best recognition effect. Specifically, for each language, different backends, although 
there is a big difference in the results, such as i-vector+SVM has an EER of 5.47% on the test set; i-
vector+cosine has an EER of 7.83% on the test set, but the classification ability for each language is 
similar, only the recognition rate in the current language has improved performance varies, as shown 
in Figure 9 in the confusion matrix III is shown. 
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Figure 9. The confusion matrix of speech recognition test. 

According to the experimental results, it can be found that the recognition accuracy of the 
validation set outperforms the test set on different backends in the Oriental language database, and the 
difference between the two lies in whether the speaker is the same as the training set, and the speaker 
mismatch causes a significant performance degradation of the system. 

5.2. Optimization efficiency of speech language recognition models in South China 

The data is processed before the model is trained, including returning pairs (both positive and 
negative pairs) and target values. For the training set: a positive pair or a negative pair is created 
randomly for each sample. If target = 1, then select training data 2 with the same label as training 
data 1 to form a positive pair; if target = 0, then select training data 2 with labels other than those 
belonging to training data 1 to form a negative pair. For the validation set: create fixed pairs for testing. 
Iterate through the training data of the validation set (N) in steps of 2 to generate N/2 positive pairs 
and N/2 negative pairs, respectively. If positive pairs are generated, target = 1; if negative pairs are 
generated, target = 0. For the test set: create fixed pairs for testing and iterate through the training data 
(N) of the test set in order, in steps of 2, to generate N/2 positive pairs and N/2 negative pairs, 
respectively. If positive pairs are generated, target = 1; if negative pairs are generated, target = 0. The 
recognition results are shown in Table 8.  

Table 8. Twin network recognition results of speech languages. 

Database Model Validation set Test set 
- - EER% EER% 

Oriental languages X-vector DNN 5.02 6.67 

- X-vector Siamese 4.79 5.67 

Broadcast voice X-vector DNN - 13.44 

- x-vector Siamese - 13.0 

Following the method described in Section 3, this section tests the recognition accuracy of 
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different models trained on the test set when the set of Fbank feature vectors is used as input. The 
specific models include LDnn built by DNN, LCnn built by CNN and LClstm, LCgru based on CNN 
and RNN as mentioned above. The recognition results of each model are shown in Table 9. We can see 
that the recognition accuracy of LClstm is the best, but at the same time this network is also the most 
complex network structure. 

Table 9. The accuracy of different optimization model structures. 

Network structure Accuracy 
Baseline system 77.8% 

LSTM 83.9% 

GRU 84.3% 

CNN 85.2% 

CNN+LSTM 89.2% 

In addition, in the task of multiple language recognition, the model can define multiple tasks, i.e., 
recognizing each dialect language as a task, and each task corresponds to a loss function, and jointly 
training multiple loss functions, so that the multi-task model learns the implicit features that are easily 
ignored among each other, including intonation, pitch, curl and other features. MTLNet, a multilingual 
task dialect language recognition model for South China, is built, and the optimized model structure is 
shown in Figure 10. 

LSTM LSTM LSTM LSTM

Loss ＆ ＆ acc
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FC1 FC1
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   






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Figure 10. Optimization model of speech multitask recognition. 

After optimization of the model, we apply the same data input and feature extraction strategy to 
the speech language recognition task and auxiliary task in South China, and we can get Figure 11. 
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Figure 11. Speech assistant task recognition model. 

After model optimization, the multilingual task model uses a single language recognition task 
from South China for each subtask of multilingual recognition, and the multitask neural network is 
jointly trained. The network was enhanced by linearly increasing the number of tasks, and after each 
increment, it was retrained, tested and its performance was statistically assessed. The experimental 
results in Figures 12 and 13 illustrate a comparison and analysis between the single-task dialect 
language recognition model and the multilingual task dialect language recognition model. 

From Figure 13, it can be seen that the increase of data dimensions in single-task network and the 
increase of task dimensions in multi-task network can both reduce the loss and improve the model 
recognition accuracy. In the single-task model, the improvement of accuracy mainly comes from the 
increase of input data dimensions to make the training samples richer [32]. 
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Figure 12. Comparison results of speech recognition. 
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Figure 13. Comparison results of speech recognition communication rounds. 

6. Conclusions 

This paper integrates established techniques for speech language identification in South China, 
creates fresh deep learning model architectures and enhances their usefulness. In the meantime, 
strategies that are appropriate for the investigation of dialect recognition with high similarity and 
simple confusion are put forth. The experimental findings demonstrate that combining attention 
mechanism, data enhancement and tuning reference for model optimization ultimately leads to a good 
fitting of the language recognition neural network, with the recognition accuracy reaching about 98% 
for two languages and 90% for five languages. The multi-task model also performs better than the 
single-task model in the dialect language recognition problem, with an average improvement of 5%. 
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