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1. Introduction

LetA be an associative algebra andM be anA-bimodule. Recall that a linear mapping δ : A →M
is called a derivation, Jordan derivation if δ(AB) = δ(A)B+ Aδ(B), δ(A ◦ B) = δ(A) ◦ B+ A ◦ δ(B) hold
for all A, B ∈ A, respectively, where A ◦ B = AB + BA is the usual Jordan product. Also, δ is called
Jordan triple derivation if δ(A ◦ B ◦C) = δ(A) ◦ B ◦C + A ◦ δ(B) ◦C + A ◦ B ◦ δ(C) for all A, B,C ∈ A.
If there is no assumption of additivity for δ in the above definitions, then δ is said to be nonlinear. δ
is called Jordan derivable mapping if δ satisfies δ(A ◦ B) = δ(A) ◦ B + A ◦ δ(B), for every A, B ∈ A
with A ◦ B ∈ Ω where Ω is a set which satisfies some conditions. δ is called nonlinear generalized
semi-Jordan triple derivable mapping if there is no assumption of additivity for δ but δ satisfies

δ(ABC + BAC) = δ(A)BC + Aδ(B)C + ABδ(C) + δ(B)AC + Bδ(A)C + BAδ(C)

for all A, B,C ∈ A with ABC ∈ Ω. Clearly, every derivation is a Jordan derivation as well as triple
derivation, and every triple derivation is a Jordan triple derivation. The converse is not true in
general(see [1–3]).

The standard problem is to find out whether (under some conditions) a Jordan (triple) derivation is
necessarily a derivation. In 1957, Herstein [4] proved that every Jordan derivation on 2-torsion free
prime rings is a derivation, and it is the first result in this direction. Then, many mathematicians studied
this problem and obtained abundant results. Zhang [5] extended Herstein’s result to the triangular
algebra. Later, Ma [2] proved that each generalized Jordan derivation from the upper triangular matrix
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algebra into its bimodule can be uniquely decomposed into the sum of a generalized derivation and an
anti-derivation. With the development of research, many achievements have been obtained that linear
(or nonlinear) mappings on operator algebras are derivations, such as Jordan triple derivable mappings.
Li [6] proved that every Jordan derivable mapping on nest algebras is a derivation. Ashraf and Jabeen
[7] showed that each nonlinear Jordan triple higher derivable mapping of triangular algebras is an
additive derivation. Zhao and Li in [8] proved that every nonlinear Jordan triple ∗-derivation on von
Neumann algebras with no central summands of type I1 is an additive ∗-derivation, and Darvish [9]
extended the result to ∗-algebra. An and He in [10] study (m, n)-Jordan derivable mappings at zero on
generalized matrix algebras. Recently, Fei and Zhang in [11] proved that every nonlinear nonglobal
semi-Jordan triple derivable mapping on triangular algebras is an additive derivation. For more details
see [12–18] and references therein.

Let H be a Hilbert space over real or complex field F and L be the subspace lattice of H . A
subspace lattice L is called a commutative subspace lattice(CS L) if each pair of projections in L
commutes, and AlgL = {T ∈ B(H) : T (L) ⊆ L,∀L ∈ L} is the associated subspace lattice algebra
in L, which is called CS L algebra. A totally ordered subspace lattice is called a nest. Recall that a
subspace lattice is called completely distributive if e =

∨
{L ∈ L : N− ⊉ L} for every 0 , e ∈ L, where

N− =
∨
{P ∈ L : P ⊉ N}. Accordingly, its associated subspace lattice algebra is called completely

distributive CS L algebra(CDC algebra). For standard definitions concerning completely distributive
subspace lattice algebras see [19,20].

In [21], they proved that the collection of finite sums of rank-one operators in a CDC algebra is
strongly dense. This result will be frequently used in the study of CDC algebra. Let AlgL be a CDC
algebra. SetU(L) = {e ∈ L : e , 0, e− , H}.We say e, e′ ∈ U(L) are connected if there exist finitely
many projections e1, e2, ..., en ∈ U(L), such that ei and ei+1 are comparable for each i = 0, 1, . . . , n,
where e0 = e, en+1 = e′. C ⊆ U(L) is called a connected component if each pair in C is connected
and any element inU(L)⧹C is not connected with any element in C. Recall that a CDC algebra AlgL
is irreducible if and only if the commutant is trivial, i.e. (AlgL)′ = F I, which is also equivalent to
the condition that L

⋂
L⊥ = {0, I}, where L⊥ = {e⊥ : e ∈ L}. Clearly, Nest algebra is irreducible. In

[22,23], it turns out that any CDC algebra can be decomposed into the direct sum of irreducible CDC
algebras.

Lemma 1.1[22, 23]. Let AlgL be a CDC algebra on a separable Hitbert space H . Then, there are
no more than countably many connected components Cn : n ∈ Λ of E(L) such that E(L) = ∪{e : e ∈
Cn, n ∈ Λ}. Let en = ∨{e : e ∈ Cn, n ∈ Λ}. Then, {en, n ∈ Λ} ⊆ L∩L⊥ is a subset of pairwise orthogonal
projections, and the algebra AlgL can be written as a direct sum:

AlgL =
∑
n∈Λ

⊕(AlgL)en,

where each (AlgL)en viewed as a subalgebra of operators acting on the range of en is an irreducible
CDC algebra. Thus, all convergence means strong convergence.

From the definition of en, we know that its linear span is Hilbert spaceH , and pairwise orthogonal
projection. It follows that the identity and center of AlgL are I =

∑
n∈Λ ⊕en andZ(AlgL) =

∑
n∈Λ ⊕λnen,

respectively, where λn ∈ F . In [24], they prove that each Jordan isomorphism between irreducible CDC
algebras is the sum of an isomorphism and an anti-isomorphism.

Lemma 1.2[24]. Let AlgL be a non-trivially irreducible CDC algebra on a complex Hilbert space
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H . Then, there exists a non-trivial projection e ∈ L, such that e(AlgL)e⊥ is faithful AlgL bimodule,
i.e., for all A ∈ AlgL, if Ae(AlgL)e⊥ = {0}, then Ae = 0 and if e(AlgL)e⊥A = {0}, then e⊥A = 0.

Let I be the identity operator on H . If L is non-trivial, by Lemma 1.2, there exists a non-trivial
projection e ∈ L, such that e(AlgL)e⊥ is faithful AlgL bimodule. Set e1 = e, e2 = I − e1. Then, e1, e2

are the projections of AlgL. Thus, for every A in irreducible CDC algebra AlgL, A can be decomposed
as: A = e1Ae1 + e1Ae2 + e2Ae2. SetAi j = ei(AlgL)e j. Then AlgL can be decomposed as

AlgL = e1(AlgL)e1 ⊕ e1(AlgL)e2 ⊕ e2(AlgL)e2 = A11 ⊕A12 ⊕A22. (1.1)

In the present note, we pursue nonlinear generalized semi-Jordan triple derivable mappings on
completely distributive commutative subspace lattice algebras. Without loss of generality, we assume
that any algebra is 2-torsion free.

2. Nonlinear generalized semi-Jordan triple derivable mappings on irreducible completely
distributive commutative subspace lattice algebras

In this section, we begin with the irreducible case.
Theorem 2.1. Let AlgL be an irreducible CDC algebra on a complex Hilbert space H and δ :

AlgL → AlgL be a mapping without the additivity assumption and satisfy

δ(ABC + BAC) = δ(A)BC + Aδ(B)C + ABδ(C) + δ(B)AC + Bδ(A)C + BAδ(C) (2.1)

for all A, B,C ∈ A with ABC ∈ Ω = {A ∈ AlgL : A2 = 0}. Then, δ is an additive derivation.
Assume that AlgL is an irreducible CDC algebra, e1 ∈ AlgL is an associated non-trivial projection,

e2 = I − e1, Ai j = ei(AlgL)e j(i, j = 1, 2), and δ is a mapping which satisfies (2.1). It is easy to obtain
that δ(0) = 0(taking A = B = C = 0 in (2.1)). Moreover, we have the following result.

Lemma 2.1. For every Ai j ∈ Ai j, we have δ(A11) ∈ A11+A12, δ(A12) ∈ A12 and δ(A22) ∈ A12+A22.
Moreover, e1δ(A11)e2 = A11δ(e1) = −A11δ(e2) and e1δ(A22)e2 = δ(e2)A22 = −δ(e1)A22.

Proof. Put A = B = e1,C = e2 in (2.1), and note that e1e1e2 = 0 ∈ Ω. Thus,

0 = δ(e1e1e2 + e1e1e2) = 2δ(e1)e1e2 + 2e1δ(e1)e2 + 2e1e1δ(e2)
= 2e1(δ(e1) + δ(e2))e2 + 2e1δ(e2)e1.

By the definition of e1, e2, we have e1δ(e2)e1 = 0 and e1δ(e1)e2 + e1δ(e2)e2 = 0. Similarly, taking
A = e1, B = C = e2 in (2.1) we can obtain e2δ(e1)e2 = 0.

For every A12 ∈ A12, putting A = e2, B = A12,C = e2 in (2.1) and combining e2A12e2 = 0 ∈ Ω we
have

δ(A12) = δ(e2A12e2 + A12e2e2)
= δ(e2)A12 + e2δ(A12)e2 + δ(A12)e2 + A12δ(e2)e2 + A12δ(e2). (2.2)

Multiplying left by e1 and right by e2 in (2.2) and combining e1δ(e2)e1 = 0, we have 2A12e2δ(e2)e2 =

0. Similarly we can obtain 2e1δ(e2)e1A12 = 0. By Lemma 1.2, we have e1δ(e1)e1 = e2δ(e2)e2 = 0 and
δ(e1) = −δ(e2) ∈ A12.
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For any A11 ∈ A11, putting A = A11, B = C = e2 in (2.1) by A11e2e2 = 0 ∈ Ω and δ(e2) ∈ A12 we
have

0 = δ(A11e2e2 + e2A11e2) = δ(A11)e2 + A11δ(e2)e2 + e2δ(A11)e2. (2.3)

This implies that e2δ(A11)e2 = 0, and then δ(A11) ∈ A11 +A12. Furthermore, multiplying left by e1 and
right by e2 in (2.3) and following from δ(e1) = −δ(e2) ∈ A12, we can obtain

e1δ(A11)e2 = −A11δ(e2) = A11δ(e1).

For any A22 ∈ A22, putting A = B = e1,C = A22 in (2.1) it follows from e1e1A22 = 0 ∈ Ω that

0 = δ(e1e1A22 + e1e1A22) = 2e1(δ(e1)A22 + δ(A22))e2 + 2e1δ(A22)e1.

This implies that e1δ(A22)e2 = −δ(e1)A22 = δ(e2)A22, e1δ(A22)e1 = 0, and δ(A22) ∈ A12 +A22.
For any A12 ∈ A12, noting that A12e1e2 = 0 ∈ Ω, putting A = A12, B = e1,C = e2 in (2.1) and

combining δ(e1) ∈ A12 we have

δ(A12) = δ(A12e1e2 + e1A12e2) = e1δ(A12)e2 ∈ A12.

The proof is completed. □
Lemma 2.2. For any Ai j, Bi j ∈ Ai j, we have δ(Ai jBkl) = δ(Ai j)Bkl + Ai jδ(Bkl), for all i, j, k, l = 1, 2

and i ≤ j ≤ k ≤ l.
Proof. Consider the case when i = j = 1, k = l = 2. Since A11A22e2 = 0 ∈ Ω, putting A = A11, B =

A22,C = e2 in (2.1) it then follows from Lemma 2.1 that

0 = δ(A11A22) = δ(A11A22e2 + A22A11e2) = δ(A11)A22 + A11δ(A22).

Consider the case when i = j = k = 1, l = 2. Since A12A11e2 = 0 ∈ Ω, putting A = A12, B =
A11,C = e2 in (2.1) by δ(e2) ∈ A12 and Lemma 2.1 we can obtain that

δ(A11A12) = δ(A12A11e2 + A11A12e2) = δ(A11)A12 + A11δ(A12). (2.4)

Consider the case when i = 1, j = k = l = 2. Since A12A11e2 = 0 ∈ Ω, taking A = A22, B = A12,C =
e2 in (2.1) by δ(e2) ∈ A12 and Lemma 2.1 we can obtain that

δ(A12A22) = δ(A22A12e2 + A12A22e2) = δ(A12)A22 + A12δ(A22). (2.5)

Consider the case when i = j = k = l = 1. By (2.4) we know that

δ(A11B11A12) = δ((A11B11)A12) = δ(A11B11)A12 + A11B11δ(A12), (2.6)

and
δ(A11B11A12) = δ(A11(B11A12)) = δ(A11)B11A12 + A11δ(B11)A12 + A11B11δ(B12). (2.7)

Comparing (2.6) and (2.7), we get

(δ(A11B11) − δ(A11)B11 − A11δ(B11))A12 = 0.
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It follows from Lemma 2.1 that

e1δ(A11B11)e1 = e1δ(A11)B11 + A11δ(B11)e1 = δ(A11)B11 + A11δ(B11)e1.

Furthermore, by Lemma 2.1 we have

e1δ(A11B11)e2 = A11B11δ(e1) = A11δ(B11)e2.

Noting that e2δ(A11B11)e2 = 0 and δ(A11) ∈ A11 +A12, we get

δ(A11B11) = (e1 + e2)δ(A11B11)(e1 + e2)
= e1δ(A11B11)e1 + e1δ(A11B11)e2

= δ(A11)B11 + A11δ(B11)e1 + A11δ(B11)e2

= δ(A11)B11 + A11δ(B11).

Similarly, by (2.5) one can check that when i = j = k = l = 2,

δ(A22B22) = δ(A22)B22 + A22δ(B22).

The proof is completed. □
Lemma 2.3. δ is an additive mapping on irreducible CDC algebra AlgL.
Proof. We divide the proof into three claims.
Claim 1. For all Ai j ∈ Ai j, δ(A11 + A12) = δ(A11) + δ(A12) and δ(A12 + A22) = δ(A12) + δ(A22).
For every Ai j, Bi j ∈ Ai j, noting that δ(ei) ∈ A12(i = 1, 2), e1δ(A11)e2 = −A11δ(e2) ∈ A12 and

e2(A11 + A12)e2 = 0 ∈ Ω. Then, putting A = e2, B = A11 + A12,C = e2 in (2.1) we can obtain

δ(A12) = δ(e2(A11 + A12)e2 + (A11 + A12)e2e2)
= e2δ(A11 + A12)e2 + δ(A11 + A12)e2 + A11δ(e2)e2

= e2δ(A11 + A12)e2 + δ(A11 + A12)e2 − e1δ(A11)e2.

It follows from δ(A12) = e1δ(A12)e2 that e2δ(A11 + A12)e2 = 0 and

e1δ(A11 + A12)e2 = e1(δ(A11) + δ(A12))e2. (2.8)

Furthermore, since B12(A11 + A12)e2 = 0 ∈ Ω, putting A = B12, B = A11 + A12,C = e2 in (2.1) then
from Lemma 2.1 we get

δ(A11B12) = δ(B12(A11 + A12)e2 + (A11 + A12)B12e2) = δ(A11 + A12)B12 + A11δ(B12).

By Lemma 2.2, based on (δ(A11 + A12) − δ(A11))B12 = 0 and Lemma 1.2, we have

e1δ(A11 + A12)e1 = e1δ(A11)e1. (2.9)

Hence, by (2.8),(2.9) and Lemma 2.1 we get

δ(A11 + A12) = δ(A11) + δ(A12). (2.10)
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Putting A = A12 + A22, B = e1,C = e2 in (2.1), one can check that

δ(A12 + A22) = δ(A12) + δ(A22). (2.11)

Claim 2. For all i, j = 1, 2 and i ≤ j, δ(Ai j + Bi j) = δ(Ai j) + δ(Bi j).
Since (B12 + e2)(e1 + A12)e2 = 0 ∈ Ω, taking A = (e1 + A12), B = (e2 + B12),C = e2 in (2.1), by

(2.10), (2.11), Lemma 2.1 and δ(e1) = −δ(e2) ∈ A12 we have

δ(A12 + B12) = δ((B12 + e2)(e1 + A12)e2 + (e1 + A12)(B12 + e2)e2)
= δ(e1 + A12)(B12 + e2)e2 + (e1 + A12)δ(B12 + e2)e2 + (e1 + A12)(B12 + e2)δ(e2)
= δ(e1) + δ(A12) + δ(B12) + δ(e2) = δ(A12) + δ(B12). (2.12)

From (2.4), we know that

δ((A11 + B11)A12) = δ(A11 + B11)A12 + (A11 + B11)δ(A12).

From (2.12) and (2.4), we have

δ((A11 + B11)A12) = δ(A11A12 + B11A12) = δ(A11A12) + δ(B11A12)
= δ(A11)A12 + A11δ(A12) + δ(B11)A12 + B11δ(A12).

Combining above two equations, we can get (δ(A11+B11)−δ(A11)−δ(B11))A12 = 0, for all A12 ∈ A12.
From Lemma 1.2, we have

e1δ(A11 + B11)e1 = e1δ(A11)e1 + e1δ(B11)e1.

It follows from Lemma 2.1 that

e1δ(A11 + B11)e2 = (A11 + B11)δ(e1) = A11δ(e1) + B11δ(e1) = e1δ(A11)e2 + e1δ(B11)e2.

Therefore, it follows from above two equations and e2δ(A11 + B11)e2 = 0 that

δ(A11 + B11) = δ(A11) + δ(B11). (2.13)

Similarly, one can check that

δ(A22 + B22) = δ(A22) + δ(B22). (2.14)

Claim 3. δ(A11 + A12 + A22) = δ(A11) + δ(A12) + δ(A22).
For any Ai j ∈ Ai j, since (A11 + A12 + A22)e1e2 = 0 ∈ Ω, putting A = A11 + A12 + A22, B = e1,C = e2

in (2.1) it follows from δ(e1) = −δ(e2) ∈ A12 and Lemma 2.1 that

δ(A12) = δ((A11 + A12 + A22)e1e2 + e1(A11 + A12 + A22)e2)
= δ(e1)A22 + e1δ(A11 + A12 + A22)e2 + A11δ(e2) + (A11δ(e1) + A11δ(e2))
= e1δ(A11 + A12 + A22)e2 − e1δ(A11)e2 − e1δ(A22)e2.
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It follows from δ(A12) ∈ A12 that

e1δ(A11 + A12 + A22)e2 = e1(δ(A11) + δ(A12) + δ(A22))e2. (2.15)

For any B12 ∈ A12, since (e1(A11 + A12 + A22)B12)2 = (A11B12)2 = 0 which implies e1(A11 + A12 +

A22)B12 ∈ Ω , putting A = e1, B = A11 + A12 + A22,C = B12 in (2.1) it then follows from Lemma 2.1
and δ(e1) ∈ A12 that

δ(2A11B12) = δ(e1(A11 + A12 + A22)B12 + (A11 + A12 + A22)e1B12)
= 2e1δ(A11 + A12 + A22)B12 + 2A11δ(B12).

It follows from Lemma 2.2 and Claim 1,2 that

δ(2A11B12) = 2δ(A11B12) = 2δ(A11)B12 + 2A11δ(B12).

Comparing above two equations, we obtain that 2e1(δ(A11 + A12 + A22)− δ(A11))e1B12 = 0, and then by
Lemma 1.2, we have

e1δ(A11 + A12 + A22)e1 = e1δ(A11)e1. (2.16)

Similarly, one can check that

e2δ(A11 + A12 + A22)e2 = e2δ(A22)e2. (2.17)

It follows from (2.15)–(2.17) that δ(A11+A12+A22) = δ(A11)+δ(A12)+δ(A22) and then δ is an additive
mapping. The proof is completed. □

In the following, we give the completed proof of Theorem 2.1.
Proof of Theorem 2.1. Let A = A11 + A12 + A22 and B = B11 + B12 + B22 be arbitrary elements of

irreducible CDC algebra AlgL where Ai j, Bi j ∈ Ai j. It follows from Lemmas 2.1–2.3 that

δ(AB) = δ(A11B11 + A11B12 + A12B22 + A22B22)
= δ(A11B11) + δ(A11B12) + δ(A12B22) + δ(A22B22)
= δ(A11)B11 + A11δ(B11) + δ(A11)B12 + A11δ(B12)
+ δ(A12)B22 + A12δ(B22) + δ(A22)B22 + A22δ(B22)
= δ(A11 + A12 + A22)(B11 + B12 + B22) + (A11 + A12 + A22)δ(B11 + B12 + B22)
= δ(A)B + Aδ(B).

Therefore δ is an additive derivation on irreducible CDC algebra AlgL. The proof is completed. □

3. Main results

In this section, we study nonlinear generalized semi-Jordan triple derivable mappings on
completely distributive commutative subspace lattice algebras. The main result reads as follows.

Theorem 3.1. Let AlgL be an associated completely distributive commutative subspace lattice
algebras on a complex Hilbert space H and δ : AlgL → AlgL be a mapping without the additivity
assumption and satisfy

δ(ABC + BAC) = δ(A)BC + Aδ(B)C + ABδ(C) + δ(B)AC + Bδ(A)C + BAδ(C)
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for all A, B,C ∈ A with ABC ∈ Ω = {A ∈ AlgL : A2 = 0}. Then, δ is an additive derivation.
Proof. Let en = ∨{e : e ∈ Cn, n ∈ Λ} be the projections of L as in Lemma 1.1. By Lemma 1.1,

we know that AlgL =
∑

n∈Λ ⊕(AlgL)en is the irreducible decomposition of AlgL. Fix an index n, it
follows that en is also Hilbert space and

(AlgL)en = en(AlgL)en = Alg(enL).

Then, for all A ∈ AlgL and en, Alg(enL) is an irreducible CDC algebra on Hilbert space en. Let δ
be a nonlinear generalized semi-Jordan triple derivable mapping from AlgL into itself. Then, it follows
from Theorem 2.1 that there exists an additive derivation δn from (AlgL)en into itself such that for all
A, B ∈ Alg(enL)

δ(AB) = δn(AB) = δn(A)B + Aδn(B).

In [23], they prove that AlgL is CDC algebra if and only if the linear span of the rank-one operators
in AlgL is ultraweakly dense. Choose a set E ∈ U(L), then, for every x ∈ E, fix an element y ∈ E⊥− ,
and then x ⊗ y ∈ AlgL is a rank-one operator. For every u ⊗ v ∈ Alg(enL) and A ∈ Alg(enL), it follows
from Theorem 2.1 that

δn((u ⊗ v)A(x ⊗ y)) = δn(u ⊗ v)A(x ⊗ y) + (u ⊗ v)δn(A)(x ⊗ y) + (u ⊗ v)Aδn(x ⊗ y). (3.1)

Assuming that {Ak}, A ∈ Alg(enL) and {Ak} strongly converge to A, it follows from (3.1) that

(u ⊗ v)δn(Ak)(x ⊗ y) = δn((u ⊗ v)Ak(x ⊗ y)) − δn(u ⊗ v)Ak(x ⊗ y) − (u ⊗ v)Akδn(x ⊗ y)
→ δn((u ⊗ v)A(x ⊗ y)) − δn(u ⊗ v)A(x ⊗ y) − (u ⊗ v)Aδn(x ⊗ y)
= (u ⊗ v)δn(A)(x ⊗ y).

This means that δn is strongly convergent.
Assume {Ak}, {Bk}, {Ck} ∈ AlgL and {Ak}, {Bk}, {Ck} converge strongly to A, B,C, respectively. Since

AlgL =
∑

n∈Λ ⊕(AlgL)en, and en are pairwise orthogonal projection, for every ei, {Akei}, {Bkei}, {Ckei}

converge strongly to Aei, Bei,Cei, respectively and

AkBkCk = (
∑
i∈Λ

⊕Akei)(
∑
i∈Λ

⊕Bkei)(
∑
i∈Λ

⊕Ckei) =
∑
i∈Λ

⊕AkBkCkei.

Then, for every x in Hilbert spaceH and AkBkCk ∈ Ω, {Ak}, {Bk}, {Ck} converging strongly to A, B,C
implies that ABC ∈ Ω. It follows from the proof of Theorem 2.1 that

δ(AkBkCk + BkAkCk)x = δ(
∑
n∈Λ

⊕(AkBkCk + BkAkCk)en)x

=
∑
n∈Λ

⊕δn(AkenBkenCken + BkenAkenCken)x

=
∑
n∈Λ

⊕(δn(Aken)BkenCken + Akenδn(Bken)Cken + AkenBkenδn(Cken)

+ δn(Bken)AkenCken + Bkenδn(Aken)Cken + BkenAkenδn(Cken))x

→
∑
n∈Λ

⊕(δn(Aen)BenCen + Aenδn(Ben)Cen + AenBenδn(Cen)
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+ δn(Ben)AenCen + Benδn(Aen)Cen + BenAenδn(Cen))x

=
∑
n∈Λ

⊕δn((ABC + BAC)en)x = δ(ABC + BAC)x

It means that δ is strongly convergent on CDC algebra AlgL. Thus, for every A, B ∈ AlgL we
obtain that

δ(AB) =
∑
n∈Λ

⊕δn(AenBen) =
∑
i∈Λ

⊕(δn(Aen)Ben + Aenδn(Ben)) = δ(A)B + Aδ(B).

The proof is completed. □

4. Conclusions

In this paper, we use the structure properties of completely distributive commutative subspace
lattice algebras and decomposition of algebraic to study the derivable mapping on certain CS L
algebra. We proved that every nonlinear generalized semi-Jordan triple derivable mapping on
completely distributive commutative subspace lattice algebras is an additive derivation. Moreover, the
purpose of this modification is to answer the classic problem of preserving derivable mappings of
certain CS L algebra.
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