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1. Introduction

There exist numerous infinite series representations for π and related mathematical constants in the
literature (cf. [1–8]). About one century ago, Ramanujan [9] discovered 17 important series involving
π. One of them can be reproduced as follows (cf. [10], Example 10):

∞∑
n=0

(1
4

)n (1
2 )3

n

(n!)3

{
1 + 6n

}
=

4
π
.

There is an elegant counterpart series due to Guillera [11] (cf. [5], Example 31)
∞∑

n=0

(1
4

)n (n!)3

( 3
2 )3

n

{
2 + 3n

}
=
π2

4
.

These two identities and further similar ones have been proved uniformly by means of the hyper-
geometric series approach (cf. [5, 6, 10, 12, 13]). The same approach suggests that we can go further
to examine analogous series involving harmonic numbers, that become quite active topics recently
(cf. [4, 7, 8, 14–16]). In this paper, several challenging series involving central binomial coefficients
and harmonic numbers will be evaluated in closed form. They will be divided into four classes with
eight sample series being highlighted in advance as follows:

Eq (14)
∞∑
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Eq (15)
∞∑

n=0

(1
2 )3

n

4n(n!)3

{
2 − (1 + 6n)Hn

}
=

8 ln 2
π

,

Eq (31)
∞∑

n=0

(
2n
n

)
1 − (2n + 1)2O⟨2⟩

n

16n(2n + 1)5 =
253π5

77760
,

Eq (32)
∞∑

n=0

(
2n
n

)
2 + 3(2n + 1)4(O⟨2⟩

n )2

16n(2n + 1)5 =
1091π5

155520
,

Eq (62)
∞∑

n=1

16 − 12nHn + 27n2H2
n

n6
(

2n
n

) =
631π6 + 340200ζ(3)2

68040
,

Eq (65)
∞∑

n=1

4 − 45n3H⟨3⟩
n + 123n5H⟨5⟩

n

n7
(

2n
n

) =
62π2ζ(5) − 75ζ(7)

12
,

Eq (75)
∞∑

n=1

(n!)3

( 3
2 )3

n

{ (1 + 2n)(3 + 8n)
4n × n4 −

2(1 + 6n + 6n2)H⟨2⟩
n

4n × n2

}
=
π4

24
− 2π2 + 16,

Eq (78)
∞∑

n=1

(n!)3

( 3
2 )3

n

{ 1 + 6n + 10n2

4n × n4(1 + 2n)
+

2(1 + 2n)(1 + 3n)O⟨2⟩
n

4n × n3

}
=
π4

8
− π2.

Furthermore, the hypergeometric series approach introduced in this paper enables the authors to con-
firm together the following remarkable identities conjectured by Sun [17–19]:

Eq (25):
∞∑

n=0

(
2n
n

)
O⟨3⟩

n+1

16n(2n + 1)
=

5π
18
ζ(3).

Eq (49):
∞∑

n=1

n3H⟨3⟩
n

n5
(

2n
n

) = π2ζ(3) + 3ζ(5)
27

.

Eq (30):
∞∑

n=0

(
2n
n

)
2 + 3(2n + 1)4O⟨4⟩

n

16n(2n + 1)5 =
121π5

17280
.

Eq (68):
∞∑

n=0

(n!)3

4n( 3
2 )3

n

{
(2 + 3n)

(
O⟨2⟩

n+1 −H⟨2⟩
n
)}
=
π4

48
.

Eq (69):
∞∑

n=0

(n!)3

4n( 3
2 )3

n

{
(2 + 3n)

(
O⟨3⟩

n+1 +H⟨3⟩
n
)}
=
π2

4
ζ(3).

Eq (34):
∞∑

n=0

(
2n
n

)
33(2n + 1)3O⟨3⟩

n + 41
16n(2n + 1)6 =

245π3

216
ζ(3) −

49π
144

ζ(5).

Eq (35):
∞∑

n=0

(
2n
n

)
33(2n + 1)5O⟨5⟩

n + 37
16n(2n + 1)6 =

35π3

288
ζ(3) +

1003π
96

ζ(5).

In order to facilitate the subsequent presentation, we briefly review basic facts about harmonic
numbers and the Γ-function as well as the “coefficient extraction”.
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1.1. Harmonic numbers

For x ∈ R and n ∈ N0, these numbers are defined by

H⟨λ⟩

n (x) =
n−1∑
k=0

1
(x + k)λ

, H̄⟨λ⟩

n (x) =
n−1∑
k=0

(−1)k

(x + k)λ
;

O⟨λ⟩

n (x) =
n−1∑
k=0

1
(x + 2k)λ

, Ō⟨λ⟩

n (x) =
n−1∑
k=0

(−1)k

(x + 2k)λ
.

When λ = 1 and/or x = 1, they will be suppressed from these notations. We record also the following
simple, but useful relations:

H⟨λ⟩

2n = O⟨λ⟩

n + 2−λH⟨λ⟩

n , H⟨λ⟩

n ( 1
2 ) = 2λO⟨λ⟩

n ;
H̄⟨λ⟩

2n = O⟨λ⟩

n − 2−λH⟨λ⟩

n , H̄⟨λ⟩

n ( 1
2 ) = 2λŌ⟨λ⟩

n .

1.2. The gamma function

It is defined by the Euler integral

Γ(x) =
∫ ∞

0
τx−1e−τdτ for ℜ(x) > 0.

The logarithmic differentiation of the Γ-function results in the digamma function (cf. Rainville [20],§9)

ψ(z) =
d
dz

lnΓ(z) =
Γ′(z)
Γ(z)

= −γ +

∞∑
n=0

z − 1
(n + 1)(n + z)

with the Euler–Mascheroni constant being given by

γ = lim
n→∞

(
Hn − ln n

)
.

There are power series expansions of the Γ-function [14]

Γ(1 − x) = exp
{∑

k≥1

σk

k
xk

}
,

Γ(1
2 − x) =

√
π exp

{∑
k≥1

τk

k
xk

}
;

where σk and τk are defined respectively by

σ1 = γ and σm = ζ(m) for m ≥ 2;
τ1 = γ + 2 ln 2 and τm = (2m − 1)ζ(m) for m ≥ 2;

with the usual Riemann zeta function ζ(x) being given by

ζ(x) =
∞∑

n=1

1
nx for ℜ(x) > 1.
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1.3. Coefficient extraction

For n ∈ N0 and an indeterminate x, the shifted factorials are usually defined by

(x)0 = 1 and (x)n = x(x + 1) · · · (x + n − 1) for n ∈ N.

Let [xm]ϕ(x) stand for the coefficient of xm in the formal power series ϕ(x). We shall frequently use the
following relations:

[x]
(1 + x)n

n!
= Hn, [x2]

(1 + x)n

n!
=

H2
n −H⟨2⟩

n

2
,

[x]
n!

(1 − x)n
= Hn, [x2]

n!
(1 − x)n

=
H2

n +H⟨2⟩
n

2
,

[y]
( 1

2 + y)n

( 1
2 )n

= 2On, [y2]
( 1

2 + y)n

( 1
2 )n

= 2(O2
n −O⟨2⟩

n ),

[y]
(1

2 )n

( 1
2 − y)n

= 2On, [y2]
( 1

2 )n

( 1
2 − y)n

= 2(O2
n +O⟨2⟩

n ).

By means of the generating function method, it is not difficult to show that (cf. Chen–Chu [21] and
Chu [4, 5]) in general there hold the relations:

[xm]
(λ − x)n

(λ)n
= Ωm(−hhk) and [xm]

(λ)n

(λ − x)n
= Ωm(hhk).

Here “hhk” stands for the harmonic number hhk := H⟨k⟩
n (λ) of order k, and the Bell polynomials (cf. [22],

§3.3) are expressed explicitly as

Ωm(±hhk) =
∑
σ(m)

m∏
k=1

{
±H⟨k⟩

n (λ)
}ℓk

ℓk! kℓk
,

where the sum runs over σ(m), the set of m-partitions represented by m-tuples of (ℓ1, ℓ2, · · · , ℓm) ∈ Nm
0

subject to the condition
m∑

k=1
kℓk = m.

The aim of this paper is to find exact evaluations, in closed form, for infinite series of convergence
rate “ 1

4” that contain both central binomial coefficients and harmonic numbers. This will mainly be
fulfilled by extracting coefficients from hypergeometric seires, which has been shown, by the second
author and his collaborators, powerful in dealing with both Ramanujan–like series [5,6,10,12,13] and
harmonic number identities [4, 7, 8, 14–16]. Numerous elegant summation formulae are established,
including several conjectured ones made by Sun [17–19].

As preliminaries, we shall illustrate how to derive infinite series identities by the hypergeomet-
ric series approach in the next section, where four summation theorems of hypergeometric series are
recorded for subsequent applications. Then the remaining four sections will be devoted to infinite se-
ries identities involving harmonic numbers classified accoring to the positions of the central binomial
coefficients.

In order to assure accuracy of computations, numerical tests for all the equations have been made
by appropriately devised Mathematica commands.
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2. Hypergeometric series approach

Following Bailey [23], the hypergeometric series reads as

pFq

[
a1, a2, · · · , ap

b1, b2, · · · , bq

∣∣∣∣z] = ∞∑
k=0

zk

k!
(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k
.

For the sake of brevity, the Γ-function quotient will be abbreviated to

Γ

[
α, β, · · · , γ

A, B, · · · , C

]
=
Γ(α)Γ(β) · · · Γ(γ)
Γ(A)Γ(B) · · · Γ(C)

.

There exist numerous summation theorems for hypergeometric series (see Bailey [23] and
Brychkov [24]) in the mathematical literature. The following formula can be found in Karlsson [25]
(which is, in fact, a reduced case of Lemma 1):

W(a, b; x) = 3F2

 2ax, 2bx, 1 − 2bx

1 + ax − bx, 1
2 + ax + bx

∣∣∣∣14


= Γ

1 + ax
3 ,

1
2 +

ax
3 , 1 + ax − bx, 1

2 + ax + bx

1 + ax, 1
2 + ax, 1 + ax

3 − bx, 1
2 +

ax
3 + bx

 .
As a warm up, we are going to take this formula as an example to illustrate how to derive infinite

series identities involving harmonic numbers. The two expressions ofW(a, b; x) in terms of hyperge-
ometric 3F2-series and in the quotient of Γ-function are analytic in x in the neighborhood of x = 0.
Therefore they can be expanded into Maclaurin series

W(a, b; x) =
∞∑

m=0

xm ×Wm(a, b)⇐⇒Wm(a, b) := [xm]W(a, b; x).

By manipulating these coefficients Wm(a, b), we can establish the following identities. More identities
containing the central binomial coefficients and/or harmonic numbers can be found in [26–33].

• Coefficient W2(a, b): See also Elsner [28] and Zucker [33]

∞∑
n=1

1

n2
(

2n
n

) = π2

18
.

• Coefficient W3(a, b)
∞∑

n=1

1 + nH̄2n

n3
(

2n
n

) =
2
3
ζ(3).

• Coefficient W4(1,−1): see (Sun [19], Equation over Theorem 1.1)

∞∑
n=1

n2H⟨2⟩
n − 1

n4
(

2n
n

) =
π4

1944
.
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• Furthermore, by comparing the coefficients of [a3b]W4(a, b) and [ab3]W4(a, b), we obtain two
equations

[ab3]W4(a, b) =
∞∑

n=1

16 + 8n2H̄2
2n + 16nH̄2n − 14n2H⟨2⟩

n + 8n2O⟨2⟩
n

n4
(

2n
n

) ,

[a3b]W4(a, b) =
∞∑

n=1

16 + 8n2H̄2
2n + 16nH̄2n − 6n2H⟨2⟩

n + 8n2O⟨2⟩
n

n4
(

2n
n

) .

Resolving this system of equations for the sum about n2H⟨2⟩
n (subtracting the first equation from

the second), we have the expression

∞∑
n=1

H⟨2⟩
n

n2
(

2n
n

) = [ab3]W4(a, b) − [a3b]W4(a, b)
8

.

Alternatively, the above two coefficients on the right hand side can also be computed from the
Γ-function quotient

[ab3]W4(a, b) =
182π4

1215
and [a3b]W4(a, b) =

14π4

135
.

Hence, we find the following closed formula

∞∑
n=1

H⟨2⟩
n

n2
(

2n
n

) = 91π4

4860
−

7π4

540
=

7π4

1215
.

As a bonus, we recover, by combining the two series for H⟨2⟩
n , the well–known identity of

Comtet (cf. [22], page 89) below
∞∑

n=1

1

n4
(

2n
n

) = 17π4

3240
.

This example demonstrates that the hypergeometric series approach is indeed powerful. For a given
hypergeometric series formula, the above procedure can be summarized as follows:

• Reformulate the equality by identifying a variable “x” and eventual parameters {a, b, c} so that
both sides of the resulting equality are analytic in x at x = 0.

• Find infinite series identities by extracting and then equating the coefficients Wm(a, b, c) for small
integer values of m across the equation.

• Find infinite series identities by computing the coefficients Wm(a, b, c) for particular values of
parameters {a, b, c}.

• Find infinite series identities by determining the coefficients of specific monomials “aib jck” in
Wm(a, b, c).

• Furthermore, find infinite series identities by constructing and then resolving a linear system
formed by linear equations characterized by coefficients of monomials “aib jck” in Wm(a, b, c).
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By carrying out this procedure, we shall prove, in the rest of the paper, numerous interesting infinite
series identities, including several conjectured ones mainly made by Sun [17–19] by examining the
following four lemmas of hypergeometric series with the same convergence rate “1

4”.
The first formula below was among a list of conjectured identities made by Gosper (1977), which

was first confirmed by Gessel and Stanton (cf. [34], Eq 1.7)as a limiting case of a terminating 7F6-
series.

Lemma 1 (Gessel and Stanton [34]: see also Chu [36]).

Γ

[
1 + d, 1

2 + d, 1 + a − b, 1
2 + a + b

1 + a, 1
2 + a, 1 − b + d, 1

2 + b + d

]
= 5F4

 2a, 1 + 2a
3 , 2b, 1 − 2b, a − d

2a
3 , 1 + a − b, 1

2 + a + b, 1 + 2d

∣∣∣∣14
 .

The next formula was also conjectured by Gosper (1977), that was shown by Chu (cf. [36], Eq 5.1e)
as a limiting result from another terminating 7F6-series.

Lemma 2 (Gosper (1977): see also Chu [36]).

Γ

 1
2 ,

1
2 + b + d, 1 + a − b, 1 + a − d

1
2 + b, 1

2 + d, 1 + a, 1 + a − b − d

 = 5F4

a, 1 + 2a
3 , 2b, 2d, 1 + 2a − 2b − 2d

2a
3 , 1 + a − b, 1 + a − d, 1

2 + b + d

∣∣∣∣14
 .

The third summation formula is due to the second author, who discovered it by making use of the
inverse series relations found by Gould and Hsu [35].

Lemma 3 (Chu [6], Theorem 2.2). For three complex parameters {a, b, d} subject to a + d, 1 + b − d <
Z\N, define the the factorial quotient Un by

Un(a, b, d) =
(d)n(1 − d)n(a − b + d)n(1 + b − a − d)n

(a + d)n(1 + b − d)n(2n + 1)!
and the polynomial Pn by

Pn(a, b, d) = (1 + 2n)(b − d + n) + (d + n)(a − b + d + n).

Then there holds the transformation formula

Φ(a, b, d) := Γ
[
a + d, 1 + b − d

a, b

]
=

∞∑
n=0

Un(a, b, d)Pn(a, b, d).

Finally, we need a transformation formula which can be proved by means of the modified Abel
lemma on summation by parts.

Lemma 4 (Chu [12],Theorem 2.7). For four complex parameters {a, b, c, d} subject toℜ(c+d−a−b) >
1 and c, d < Z\N, define the the factorial quotient Vn by

Vn(a, b, c, d) =
(c − a)n(c − b)n(d − a)n(d − b)n

(c)n(d)n(c + d − a − b)2n+1

and the quadratic polynomial Qn by

Qn(a, b, c, d) = (c − 1 + n)(c + d − a − b + 2n) + (d − a + n)(d − b + n).

Then there holds the transformation formula

Ψ(a, b, c, d) := (c + d − a − b − 1)
∞∑

k=0

(a)k(b)k

(c)k(d)k
=

∞∑
n=0

Vn(a, b, c, d)Qn(a, b, c, d).
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3. Series containing
(

2n
n

)3
in numerators

By making use of Lemmas 1, 3, and 4, we shall evaluate several infinite series containing the cubic
central binomial coefficient

(
2n
n

)3
in numerators.

3.1. Series from Lemma 1

Under the parameter replacements

a→
1
4
+ ax, b→

1
4
+ bx, d → −

1
4
+ dx

the equality in Lemma 1 can be restated as in the proposition below.

Proposition 5.

A(a, b, d; x) = 41+ax−dxΓ

[ 1
2 + 2dx, 1 + ax + bx, 1 + ax − bx
1
2 + 2ax, 1

2 + bx + dx, 1
2 − bx + dx

]
=

∞∑
n=0

(1 + 4ax + 6n)
(1

2 + 2ax)n(1
2 + 2bx)n(1

2 − 2bx)n( 1
2 + ax − dx)n

4nn!(1 + ax + bx)n(1 + ax − bx)n( 1
2 + 2dx)n

.

Both sides of the above equality are analytic functions of x in the neighborhood of x = 0 and can
be expanded into power series in x as follows:

A(a, b, d; x) =
∞∑

m=0

xmAm(a, b, d).

By computing the initial coefficients across the equation in Proposition 5, and then equating the re-
sulting expressions, we can derive a number of infinite series identities. The first coefficient A0(a, b, d)
recovers Ramanujan’s identity as anticipated in the introduction. Further elegant ones are recorded
below as examples.

• Coefficient A2(0, 0, 1)
4 ln2 2 + π2

3π
=

∞∑
n=0

(1
2 )3

n(1 + 6n)
4n(n!)3

{
3O2

n +O⟨2⟩
n

}
. (1)

• Coefficient A2(0, 1, 0): Conjectured by Guo–Lian [37] and proved in (cf. [38], Theorem 1.2)

4π
3
=

∞∑
n=0

(1
2 )3

n(1 + 6n)
4n(n!)3

{
16O⟨2⟩

n −H⟨2⟩
n

}
. (2)

We shall succeed in refining the above two identities in (10), (11) and (16).

• Coefficient [b2d]A3(a, b, d)

4
9π

{
21ζ(3) + π2 ln 2

}
=

∞∑
n=0

(1
2 )3

n(1 + 6n)
4n(n!)3

{
On(16O⟨2⟩

n −H⟨2⟩
n )

}
. (3)
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• Coefficients A3(0, 0, 1) ⇌ [d3]A3(a, b, d)

42ζ(3) + 4 ln3 2 + 3π2 ln 2
9π

=

∞∑
n=0

( 1
2 )3

n(1 + 6n)
4n(n!)3

{
2O⟨3⟩

n + 3O3
n + 3OnO⟨2⟩

n

}
. (4)

• Coefficients A4(0, 1, 0) ⇌ [b4]A4(a, b, d)

8π3

45
=

∞∑
n=0

( 1
2 )3

n(1 + 6n)
4n(n!)3

{
256O⟨4⟩

n −H⟨4⟩
n −

(
H⟨2⟩

n − 16O⟨2⟩
n
)2
}
. (5)

• Coefficient [b2d2]A4(a, b, d)

4
9π

{
π4 + π2 ln2 2 + 42 ln 2ζ(3)

}
=

∞∑
n=0

( 1
2 )3

n(1 + 6n)
4n(n!)3

{
(3O2

n +O⟨2⟩
n )(16O⟨2⟩

n −H⟨2⟩
n )

}
. (6)

• Coefficients A4(0, 0, 1) ⇌ [d4]A4(a, b, d)

672ζ(3) ln 2 + 17π4 + 16 ln4 2 + 24π2 ln2 2
36π

=

∞∑
n=0

( 1
2 )3

n(1 + 6n)
4n(n!)3

{
10O⟨4⟩

n − 18O4
n + 3

(
O⟨2⟩

n + 3O2
n
)2
+ 24OnO⟨3⟩

n

}
.

(7)

• Coefficient [b4d]A5(a, b, d)

8
{
105π2ζ(3) − 1395ζ(5) − π4 ln 2

}
135π

=

∞∑
n=0

(1
2 )3

n(1 + 6n)
4n(n!)3

{
H⟨4⟩

n On − 256OnO⟨4⟩
n +On(H⟨2⟩

n − 16O⟨2⟩
n )2

}
.

(8)

• Coefficient [b2d3]A5(a, b, d)

1116ζ(5) + 105π2ζ(3) + 252ζ(3) ln2 2 + 4π2 ln3 2 + 12π4 ln 2
27π

=

∞∑
n=0

( 1
2 )3

n(1 + 6n)
4n(n!)3

{
(16O⟨2⟩

n −H⟨2⟩
n )(2O⟨3⟩

n + 3O3
n + 3OnO⟨2⟩

n )
}
.

(9)

3.2. Series from Lemma 3

Under the parameter replacements

a→
1
2
+ ax, b→

1
2
+ bx, d →

1
2
+ dx

the equality in Lemma 3 can be restated as in the proposition below.
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Proposition 6.

C(a, b, d; x) = Γ
[
1 + ax + dx, 1 + bx − dx

1
2 + ax, 1

2 + bx

]
=

∞∑
n=0

(1
2 + dx)n( 1

2 − dx)n( 1
2 + ax − bx + dx)n(1

2 − ax + bx − dx)n

(1 + ax + dx)n(1 + bx − dx)n(2n + 1)!

×
{
(1 + 2n)(n + bx − dx) + ( 1

2 + n + dx)( 1
2 + n + ax − bx + dx)

}
.

Expanding both sides of the above equation into power series in x

C(a, b, d; x) =
∞∑

m=0

xmCm(a, b, d)

and then comparing further the coefficients of monomials aib jdk (subject to i+ j+ k = 2) in C2(a, b, d),
we construct a system of linear equations. By resolving this system, we can derive the three identities
below. This procedure will be denominated as “Resolving linear system” formed by C2(a, b, d).

• Resolving Linear system C2(a, b, d)

π

2
=

∞∑
n=0

( 1
2 )3

n

4n(n!)3

1 + 2(1 + 2n)(1 + 6n)O⟨2⟩
n

2n + 1
. (10)

• Resolving Linear system C2(a, b, d)

8π
3
=

∞∑
n=0

(1
2 )3

n

4n(n!)3

8 + (1 + 2n)(1 + 6n)H⟨2⟩
n

2n + 1
. (11)

• Resolving Linear system C2(a, b, d)

2π2 − 16 ln2 2
π

=

∞∑
n=0

( 1
2 )3

n

4n(n!)3

{ 4
2n + 1

+ 4Hn − (1 + 6n)H2
n

}
. (12)

• Resolving Linear system C4(a, b, d)

π3

96
=

∞∑
n=0

(1
2 )3

n

4n(n!)3

{ 2O⟨2⟩
n

2n + 1
− (1 + 6n)

[
O⟨4⟩

n − 2(O⟨2⟩
n )2]}. (13)

3.3. Series from Lemma 4

Under the parameter replacements

a→
1
2
+ ax, b→

1
2
+ bx, c→ 1, d → 1 + dx

the sum with respect to k in Lemma 4 can be evaluated by the Gauss summation theorem (cf. Bai-
ley [23],§1.3). This leads us to the summation formula as in the proposition below.
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Proposition 7.

D(a, b, d; x) = Γ
[

1 + dx, 1 − ax − bx + dx
1
2 − ax + dx, 1

2 − bx + dx

]
=

∞∑
n=0

(1
2 − ax)n( 1

2 − bx)n(1
2 − ax + dx)n( 1

2 − bx + dx)n

n!(1 + dx)n(1 − ax − bx + dx)2n+1

×
{
( 1

2 + n − ax + dx)( 1
2 + n − bx + dx) + n(1 + 2n − ax − bx + dx)

}
.

Expanding both sides of the above equation into power series in x

D(a, b, d; x) =
∞∑

m=0

xmDm(a, b, d)

we can show by the initial coefficients the following infinite series identities, where the first two iden-
tities are equivalent to those conjectured by Sun (cf. [19], Eqs 3.52 & 3.53) in view of Sun [19],
Remark 3.14.

• Coefficient D1(1, 2, 1)
4 ln 2

3π
=

∞∑
n=0

( 1
2 )3

n

4n(n!)3

{
(1 + 6n)On

}
. (14)

• Coefficient D1(1, 0, 1)
8 ln 2
π
=

∞∑
n=0

( 1
2 )3

n

4n(n!)3

{
2 − (1 + 6n)Hn

}
. (15)

• Resolving Linear system D2(a, b, d)

16 ln2 2 + π2

6π
=

∞∑
n=0

( 1
2 )3

n

4n(n!)3

{
6(1 + 6n)O2

n −
1

1 + 2n

}
. (16)

• Resolving Linear system D2(a, b, d)

8 ln2 2
π
=

∞∑
n=0

(1
2 )3

n

4n(n!)3

{ 2
1 + 2n

+ 6On − 3(1 + 6n)OnHn

}
. (17)

• Resolving Linear system D3(a, b, d)

7ζ(3)
π
− π ln 2 =

∞∑
n=0

( 1
2 )3

n

4n(n!)3

{ Hn

2n + 1
− 4O⟨2⟩

n + 2(1 + 6n)HnO⟨2⟩
n

}
. (18)

• Resolving combined linear system C3(a, b, d) & D3(a, b, d)

96ζ(3) − 16π2 ln 2
3π

=

∞∑
n=0

( 1
2 )3

n

4n(n!)3

{ 8Hn

2n + 1
− 2H⟨2⟩

n + (1 + 6n)
(
H⟨3⟩

n +HnH⟨2⟩
n
)}
. (19)
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• Resolving combined linear system C4(a, b, d) & D4(a, b, d)

52π3

45
=

∞∑
n=0

(1
2 )3

n

4n(n!)3

{ 16H⟨2⟩
n

2n + 1
+ (1 + 6n)

[
H⟨4⟩

n + (H⟨2⟩
n )2 + 128O⟨4⟩

n
]}
. (20)

• Resolving combined linear system C4(a, b, d) & D4(a, b, d)

π3

6
=

∞∑
n=0

( 1
2 )3

n

4n(n!)3

{H⟨2⟩
n + 16O⟨2⟩

n

2n + 1
+ 2(1 + 6n)

(
8O⟨4⟩

n +H⟨2⟩
n O⟨2⟩

n
)}
. (21)

• Resolving combined linear system C5(a, b, d) & D5(a, b, d)

42π2ζ(3) − 372ζ(5) − π4 ln 2
48π

=

∞∑
n=0

( 1
2 )3

n

4n(n!)3

{2HnO⟨2⟩
n

2n + 1
+

[
2 − (1 + 6n)Hn

][
O⟨4⟩

n − 2(O⟨2⟩
n )2]}. (22)

The last four identities are derived by resolving the combined linear system formed by equations
from both C5(a, b, d) and D5(a, b, d).

4. Series containing
(

2n
n

)
in numerators

By means of Lemmas 1 and 4, we shall evaluate, in this section, infinite series involving the central
binomial coefficient

(
2n
n

)
in numerators, including four challenging ones conjectured by Sun [18].

4.1. Series from Lemma 1

Under the parameter settings

a→
3
4
+ ax, b→

1
4
+ bx, d →

1
4
+ dx

we can reformulate the equality in Lemma 1 as in the proposition below.

Proposition 8.

A(a, b, d; x) = 41+ax−dxΓ

[ 1
2 + ax + bx, 1

2 + ax − bx, 1
2 + 2dx

1
2 + 2ax, 1 + bx + dx, 1 − bx + dx

]
=

∞∑
n=0

( 1
2 + 2ax)n+1( 1

2 + 2bx)n( 1
2 − 2bx)n( 1

2 + ax − dx)n

4nn!(1
2 + ax + bx)n+1(1

2 + ax − bx)n+1( 1
2 + 2dx)n+1

{
3 + 4ax + 6n

}
.

By comparing the Maclaurin series coefficients across the equation

A(a, b, d; x) =
∞∑

m=0

xmAm(a, b, d)

we establish several interesting infinite series identities as follows. Among them, (25), (30), (34) and
(35) were first conjectured by Sun [41] and subsequently confirmed by Albinger [39].
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• Coefficient A0(a, b, d): see (Sun [19], Equation below (1.2))

π

3
=

∞∑
n=0

(
2n
n

)
16n(2n + 1)

. (23)

• Coefficient A2(3,
√
−3, 1): Zucker [33]

7π3

216
=

∞∑
n=0

(
2n
n

)
16n(2n + 1)3 . (24)

• Coefficient A3(3, 2, 1)

5π
18
ζ(3) =

∞∑
n=0

(
2n
n

)
O⟨3⟩

n+1

16n(2n + 1)
. (25)

• Resolving linear system A2(a, b, d)

π ln2 2 −
π3

24
=

∞∑
n=0

(
2n
n

)
4(2n + 1)On + 3(2n + 1)2O2

n

16n(2n + 1)3 . (26)

• Resolving linear system A3(a, b, d)

5πζ(3) + 7π3 ln 2
24

=

∞∑
n=0

(
2n
n

)
7 + 9(2n + 1)On

16n(2n + 1)4 . (27)

• Resolving linear system A3(a, b, d)

11πζ(3) + π3 ln 2
24

=

∞∑
n=0

(
2n
n

)
1 + 18(2n + 1)2O⟨2⟩

n + 27(2n + 1)3OnO⟨2⟩
n

16n(2n + 1)4 . (28)

• Resolving linear system A3(a, b, d)

3π3 ln 2 − 24π ln3 2 + 7πζ(3)
72

=

∞∑
n=0

(
2n
n

)
1 − 2(2n + 1)2O2

n − (2n + 1)3O3
n

16n(2n + 1)4 . (29)

• Coefficient A4(3,
√
−3, 1)

121π5

17280
=

∞∑
n=0

(
2n
n

)
2 + 3(2n + 1)4O⟨4⟩

n

16n(2n + 1)5 . (30)

• Resolving linear system A4(a, b, d)

253π5

77760
=

∞∑
n=0

(
2n
n

)
1 − (2n + 1)2O⟨2⟩

n

16n(2n + 1)5 . (31)

Electronic Research Archive Volume 31, Issue 8, 4611–4636.



4624

• Resolving linear system A4(a, b, d)

1091π5

155520
=

∞∑
n=0

(
2n
n

)
2 + 3(2n + 1)4(O⟨2⟩

n )2

16n(2n + 1)5 . (32)

• Resolving linear system A4(a, b, d)

π

8640

{
10800ζ(3) ln 2 + 421π4 + 7560π2 ln2 2

}
=

∞∑
n=0

(
2n
n

)
31 + 42(2n + 1)On + 27(2n + 1)2O2

n

16n(2n + 1)5 .
(33)

• Resolving linear system A5(a, b, d)

245π3

216
ζ(3) −

49π
144

ζ(5) =
∞∑

n=0

(
2n
n

)
33(2n + 1)3O⟨3⟩

n + 41
16n(2n + 1)6 . (34)

• Resolving linear system A5(a, b, d)

35π3

288
ζ(3) +

1003π
96

ζ(5) =
∞∑

n=0

(
2n
n

)
33(2n + 1)5O⟨5⟩

n + 37
16n(2n + 1)6 . (35)

• Resolving linear system A5(a, b, d)

425π3

2592
ζ(3) −

125π
864

ζ(5) =
∞∑

n=0

(
2n
n

)
4 + 33(2n + 1)2O⟨2⟩

n + 33(2n + 1)5O⟨2⟩
n O⟨3⟩

n

16n(2n + 1)6 . (36)

4.2. Series from Lemma 4

Under the parameter replacements

a→ 1 + ax, b→ 1 + bx, c→
3
2
+ cx, d →

3
2
+ d

the equality in Lemma 4 can be reformulated as

x(c + d − a − b)
∞∑

k=0

(1 + ax)k(1 + bx)k

(3
2 + cx)k(3

2 + dx)k
=

∞∑
n=0

{
( 1

2 + cx + n)(1 − ax − bx + cx + dx + 2n)
+(1

2 − ax + dx + n)( 1
2 − bx + dx + n)

}
×

(1
2 − ax + cx)n(1

2 − bx + cx)n(1
2 − ax + dx)n( 1

2 − bx + dx)n

( 3
2 + cx)n( 3

2 + dx)n(1 − ax − bx + cx + dx)2n+1
.

By applying Thomae’s transformation (cf. Bailey [23], §3.2), we can further manipulate the series on
the left hand side

x(c + d − a − b)
∞∑

k=0

(1 + ax)k(1 + bx)k

(3
2 + cx)k(3

2 + dx)k
= (c + d − a − b)3F2

[
1, 1 + ax, 1 + bx

3
2 + cx, 3

2 + dx

∣∣∣∣1]
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= 3F2

[
cx + dx − ax − bx, 1

2 + cx, 1
2 + dx

1 − ax + cx + dx, 1 − bx + cx + dx

∣∣∣∣1] × Γ [1 − ax − bx + cx + dx, 3
2 + cx, 3

2 + dx
1 − ax + cx + dx, 1 − bx + cx + dx

]
.

Now letting c → a + b − d and then d → b − d, we derive, from the corresponding limiting case, the
following summation formula.

Proposition 9.

D(a, b, d; x) = Γ
[ 1

2 + ax + dx, 1
2 + bx − dx

1 + ax, 1 + bx

]
=

∞∑
n=0

{
(1 + 2n)( 1

2 + ax + dx + n)
+(1

2 − ax + bx − dx + n)( 1
2 − dx + n)

}
×

(1
2 + ax − bx + dx)n( 1

2 − ax + bx − dx)n(1
2 + dx)n( 1

2 − dx)n

(2n + 1)!(1
2 + ax + dx)n+1( 1

2 + bx − dx)n+1
.

By comparing the Maclaurin series coefficients across the equation

D(a, b, d; x) =
∞∑

m=0

xmDm(a, b, d)

we establish several interesting infinite series identities as follows.

• Coefficient D1(a, b, d)

π ln 2 =
∞∑

n=0

(
2n
n

)
2 + 3(2n + 1)On

16n(2n + 1)2 . (37)

• Coefficient D2(1,−1,−1
2 ): (see Sun [19], Eq 1.3)

π3

648
=

∞∑
n=0

(
2n
n

)
O⟨2⟩

n

16n(2n + 1)
. (38)

To reduce lengthy expressions in the next few series, we adopt the notation below

O⟨m⟩n = (2n + 1)mO⟨m⟩
n and Om

n = (2n + 1)mOm
n .

• Resolving combined linear system A5(a, b, d) & D5(a, b, d)

4631π5 ln 2 + 27720π3 ln3 2 − 3560π3ζ(3) + 59400πζ(3) ln2 2 + 32220πζ(5)
8640

=

∞∑
n=0

(
2n
n

)
155 + 341On + 231O2

n + 99O3
n

16n(2n + 1)6 .

(39)

• Resolving combined linear system D5(a, b, d) & D5(a, b, d)

2783π5 ln 2 − 5470π3ζ(3) + 11640πζ(5)
2880

=

∞∑
n=0

(
2n
n

)
149 + 297On − 231O⟨2⟩n − 297OnO

⟨2⟩
n

16n(2n + 1)6 .
(40)
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• Resolving combined linear system D5(a, b, d) & D5(a, b, d)

1331π5 ln 2 − 2450π3ζ(3) + 4860πζ(5)
17280

=

∞∑
n=0

(
2n
n

)
10 + 22On + 22O⟨4⟩n + 33OnO

⟨4⟩
n

16n(2n + 1)6 .
(41)

• Resolving combined linear system D5(a, b, d) & D5(a, b, d)

12001π5 ln 2 − 17510π3ζ(3) + 18420πζ(5)
5760

=

∞∑
n=0

(
2n
n

)
284 + 594On + 66O⟨2⟩n + 594(O⟨2⟩n )2 + 891On(O⟨2⟩n )2

16n(2n + 1)6 .
(42)

• Resolving combined linear system D5(a, b, d) & D5(a, b, d)

π

3456

{
16753π4 ln 2 − 12670π2ζ(3) + 332640ζ(3) ln2 2
+130356ζ(5) + 47520π2 ln3 2 − 114048 ln5 2

}
=

∞∑
n=0

(
2n
n

)
1324 + 2530On + 990O2

n − 330O4
n − 99O5

n

16n(2n + 1)6 .

(43)

• Resolving combined linear system D5(a, b, d) & D5(a, b, d)

283π5 ln 2 − 1600π3ζ(3) + 21600πζ(3) ln2 2 + 270πζ(5)
8640

=

∞∑
n=0

(
2n
n

)
4 + 22On + 9O2

n + 12OnO
⟨3⟩
n + 91O2

nO
⟨3⟩
n

16n(2n + 1)6 .

(44)

5. Series containing
(

2n
n

)
in denominators

According to Lemmas 1 and 2, we shall examine, in this section, infinite series containing the
central binomial coefficient

(
2n
n

)
in denominators.

5.1. Series from Lemma 1

By specifying the parameters in Lemma 1

a→ ax, b→ bx, d → dx

we deduce the equality as in the following proposition.

Proposition 10.

A(a, b, d; x) = Γ

1 + ax − bx, 1
2 + ax + bx, 1 + dx, 1

2 + dx

1 + ax, 1
2 + ax, 1

2 + bx + dx, 1 − bx + dx


=

∞∑
n=0

(1
4

)n
 2ax, 2bx, 1 − 2bx, ax − dx

1, 1 + ax − bx, 1
2 + ax + bx, 1 + 2dx


n

2ax + 3n
2ax

.
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By expanding both sides of the above equation into power series in x

A(a, b, d; x) =
∞∑

m=0

xmAm(a, b, d)

we can derive the following remarkable infinite series identities. Among them, Sun [41] first conjec-
tured and Albinger [39] subsequently confirmed the first two (45) and (46), as well as

2
3
ζ(3) =

∞∑
n=1

1 + nH̄2n

n3
(

2n
n

) =

∞∑
n=1

1 + n(H2n −Hn)

n3
(

2n
n

) ,

where this last identity is just a linear combination of (45) and (46).

• Coefficient A3(1,−1, 1)

ζ(3) =
∞∑

n=1

3nHn − 1

n3
(

2n
n

) . (45)

• Coefficient A3(1, 1, 1)

5ζ(3) =
∞∑

n=1

6nOn + 5

n3
(

2n
n

) . (46)

• Resolving linear system A5(a, b, d): (cf. Chu [7], Proposition 3.1)

5π2ζ(3) + 6ζ(5)
18

=

∞∑
n=1

9nHn − 2

n5
(

2n
n

) . (47)

• Resolving linear system A5(a, b, d)

5π2ζ(3) + 402ζ(5)
36

=

∞∑
n=1

9nOn + 17

n5
(

2n
n

) . (48)

• Resolving linear system A5(a, b, d): This was conjectured by Sun [18] and confirmed subse-
quently by Ablinger (cf. [39](108)) and Chu [4, 7].

π2ζ(3) + 3ζ(5)
27

=

∞∑
n=1

n3H⟨3⟩
n

n5
(

2n
n

) . (49)

• Resolving linear system A5(a, b, d)

8π2ζ(3) − 93ζ(5)
9

=

∞∑
n=1

2 + 9n2H2
n − 9n3H3

n

n5
(

2n
n

) . (50)

• Resolving linear system A5(a, b, d)

13π2ζ(3) − 33ζ(5)
9

=

∞∑
n=1

4 − 9n2H⟨2⟩
n + 27n3HnH⟨2⟩

n

n5
(

2n
n

) . (51)
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• Resolving linear system A5(a, b, d)

22π2ζ(3) + 246ζ(5)
9

=

∞∑
n=1

4 + 45n2H⟨2⟩
n + 54n3H⟨2⟩

n On

n5
(

2n
n

) . (52)

• Resolving linear system A6(a, b, d): Conjectured by Sun (cf. [41], Eq 4.6) and proved first by
Albinger [39] and then by Chu (cf. [7], Proposition 3.4)

313π6

612360
=

∞∑
n=1

2 − n2H⟨2⟩
n

n6
(

2n
n

) . (53)

• Resolving linear system A6(a, b, d): Chu (cf. [7], Proposition 3.4)

163π6

136080
=

∞∑
n=1

3n4H⟨4⟩
n − 1

n6
(

2n
n

) . (54)

• Resolving linear system A6(a, b, d): Chu (cf. [7], Proposition 3.4)

65π6

34992
=

∞∑
n=1

7 − 3n4(H⟨2⟩
n )2

n6
(

2n
n

) . (55)

5.2. Series from Lemma 2

By specifying the parameters in Lemma 2

a→ ax, b→
1
2
+ bx, d → dx

we deduce the equality as in the following proposition.

Proposition 11.

B(a, b, d; x) = Γ

 1
2 ,

1
2 + ax − bx, 1 + ax − dx, 1 + bx + dx

1 + ax, 1 + bx, 1
2 + dx, 1

2 + ax − bx − dx


=

∞∑
n=0

(1
4

)n
 ax, 1 + 2bx, 2dx, 2ax − 2bx − 2dx

1, 1 + ax − dx, 1 + bx + dx, 1
2 + ax − bx


n

2ax + 3n
2ax

.

By expanding both sides of the above equation into power series in x

B(a, b, d; x) =
∞∑

m=0

xmBm(a, b, d)

we can derive the following significant infinite series identities. Among them, the initial identity (56)
is equivalent to conjecture 10.53(i) by Sun [17], which was first proved by Chu (cf. [4], example 3.13)
and recently by Xu and Zhao [44].
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• Resolving linear system B4(a, b, d)

13π4

1620
=

∞∑
n=1

3nH2
n − 2Hn

n3
(

2n
n

) . (56)

• Resolving linear system B4(a, b, d)

π4

16
=

∞∑
n=1

5On + 3nO⟨2⟩
n + 3nO2

n

n3
(

2n
n

) . (57)

• Resolving linear system B4(a, b, d)

29π4

540
=

∞∑
n=1

5Hn − 2On + 6nHnOn

n3
(

2n
n

) . (58)

• Resolving linear system B4(a, b, d)

61π4

4860
=

∞∑
n=1

nO⟨2⟩
n + nH̄2

2n + 2H̄2n

n3
(

2n
n

) . (59)

• Resolving linear system B4(a, b, d)

80π4

243
=

∞∑
n=1

4O⟨2⟩
n + (5Hn + 2On)2

n2
(

2n
n

) . (60)

• Resolving linear system B5(a, b, d)

130π2ζ(3) − 1896ζ(5)
9

=

∞∑
n=1

58 + 9nHn(2 − 3nHn)(5 + 6nOn)

n5
(

2n
n

) . (61)

• Resolving combined linear system A6(a, b, d) & B6(a, b, d)

631π6 + 340200ζ(3)2

68040
=

∞∑
n=1

16 − 12nHn + 27n2H2
n

n6
(

2n
n

) . (62)

• Resolving combined linear system A6(a, b, d) & B6(a, b, d)

673π6 + 136080ζ(3)2

136080
=

∞∑
n=1

5 − 3n3H⟨3⟩
n + 9n4HnH⟨3⟩

n

n6
(

2n
n

) . (63)

• Resolving combined linear system A6(a, b, d) & B6(a, b, d)

1277π6 + 340200ζ(3)2

68040
=

∞∑
n=1

14 + 15n3H⟨3⟩
n + 18n4OnH⟨3⟩

n

n6
(

2n
n

) . (64)
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• Resolving combined linear system A7(a, b, d) & B7(a, b, d)

62π2ζ(5) − 75ζ(7)
12

=

∞∑
n=1

4 − 45n3H⟨3⟩
n + 123n5H⟨5⟩

n

n7
(

2n
n

) . (65)

• Resolving combined linear system A7(a, b, d) & B7(a, b, d)

533π4ζ(3) + 465π2ζ(5) + 153495ζ(7)
7290

=

∞∑
n=1

291n3H⟨3⟩
n − 205n5H⟨2⟩

n H⟨3⟩
n − 4

n7
(

2n
n

) . (66)

6. Series containing
(

2n
n

)3
in denominators

Finally, by applying Lemmas 2 and 3, we are going to evaluate, in closed form, a few infinite series
involving the cubic central binomial coefficient

(
2n
n

)3
in denominators, including a couple of conjectured

ones made recently by Sun [19].

6.1. Series from Lemma 2

By making the replacements in Lemma 2

a→ 1 + ax, b→
1
2
+ bx, d →

1
2
+ dx

we obtain the equality as in the proposition below.

Proposition 12.

B(a, b, d; x) = 2Γ

 1
2 ,

1
2 + bx + dx, 1

2 + ax − bx, 1
2 + ax − dx

1 + ax, 1 + bx, 1 + dx, 1 + ax − bx − dx


=

∞∑
n=0

(1 + ax)n(1 + 2bx)n(1 + 2dx)n(1 + 2ax − 2bx − 2dx)n

n!(1
2 + ax − bx)n+1( 1

2 + ax − dx)n+1(1
2 + bx + dx)n+1

2 + 2ax + 3n
4n .

In view of the power series expansion in x

B(a, b, d; x) =
∞∑

m=0

xmBm(a, b, d)

we recover from the first coefficient B0(a, b, d) Guilera’s series for π2 stated in the introduction. Further
identities are highlighted as follows.

• Coefficient B1(1, 0, 0)

π2 ln 2 =
∞∑

n=0

(n!)3

4n(3
2 )3

n

{
(2 + 3n)

(
4On+1 − 3Hn

)
− 2

}
. (67)
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• Coefficients B2(0, 1, 1) ⇌ [ab]B2(a, b, d): Conjectured by Sun (cf. [19], Eq 3.13) and confirmed
in [40, 43]

π4

48
=

∞∑
n=0

(n!)3

4n( 3
2 )3

n

{
(2 + 3n)

(
O⟨2⟩

n+1 −H⟨2⟩
n
)}
. (68)

• Coefficients B3(0, 1, 1) ⇌ [bd2]B3(a, b, d): Conjectured by Sun (cf. [19], Eq 3.18 )

π2

4
ζ(3) =

∞∑
n=0

(n!)3

4n( 3
2 )3

n

{
(2 + 3n)

(
O⟨3⟩

n+1 +H⟨3⟩
n
)}
. (69)

• Coefficients B4(0, 1, 1) ⇌ [b2d2]B4(a, b, d)

π6

240
=

∞∑
n=0

(n!)3(2 + 3n)
4n( 3

2 )3
n

{
O⟨4⟩

n+1 −H⟨4⟩
n +

(
O⟨2⟩

n+1 −H⟨2⟩
n
)2
}
. (70)

• Coefficient B5(0, 1, 1)

π4

48
ζ(3) +

π2

4
ζ(5) =

∞∑
n=0

(n!)3(2 + 3n)
4n( 3

2 )3
n

{
O⟨5⟩

n+1 +H⟨5⟩
n +

(
O⟨2⟩

n+1 −H⟨2⟩
n
)(

O⟨3⟩
n+1 +H⟨3⟩

n
)}
. (71)

6.2. Series from Lemma 3

By making the replacements in Lemma 3

a→
3
2
+ ax, b→

1
2
+ bx, d → dx

we obtain the equality as in the proposition below.

Proposition 13.

C(a, b, d; x) = Γ

 1
2 + ax + dx, 1

2 + bx − dx
3
2 + ax, 1

2 + bx


=

∞∑
n=0

(dx)n(1 − dx)n(1 + ax − bx + dx)n(bx − ax − dx)n

( 1
2 + ax + dx)n+1(1

2 + bx − dx)n+1(2n + 1)!

×
{
(1 + 2n)( 1

2 + n + bx − dx) + (n + dx)(1 + n + ax − bx + dx)
}
.

In view of the power series expansion in x

C(a, b, d; x) =
∞∑

m=0

xmCm(a, b, d)

we can prove the following curious infinite series identities.

• Coefficient C2(a, b, d)

6 −
π2

2
=

∞∑
n=1

(n!)3

(3
2 )3

n

1 + 6n + 6n2

4n × n2 . (72)
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• Coefficient C3(1,−1,−1): Sun (cf. [42], Eq 1.77)

π2

2
− 4 =

∞∑
n=1

(n!)3

(3
2 )3

n

(1 + 2n)(1 + 3n)
4n × n3 . (73)

• Resolving linear system C4(a, b, d)

π2 + 7ζ(3) − 16 =
∞∑

n=1

(n!)3

(3
2 )3

n

(1 + 4n) + 2(1 + 2n)(1 + 3n)On

4n × n3 . (74)

• Coefficient C4(1,−1,−1)

π4 − 48π2 + 384
24

=

∞∑
n=1

(n!)3

( 3
2 )3

n

{ (1 + 2n)(3 + 8n)
4n × n4 −

2(1 + 6n + 6n2)H⟨2⟩
n

4n × n2

}
. (75)

• Coefficient C5(1,−1,−1)

π4 − 48π2 + 384
−24

=

∞∑
n=1

(n!)3

(3
2 )3

n

{ (1 + 2n)(2 + 5n)
4n × n5 −

2(1 + 2n)(1 + 3n)H⟨2⟩
n

4n × n3

}
. (76)

• Coefficient C4(−1, 1, 1 +
√
−1)

π4 − 8π2 − 32
−8

=

∞∑
n=1

(n!)3

( 3
2 )3

n

{2(1 + 6n + 6n2)O⟨2⟩
n

4n × n2 −
1 + 8n + 22n2 + 20n3 + 4n4

4n × n4(1 + 2n)2

}
. (77)

• Coefficient C5(−1, 1, 1 +
√
−1)

π4 − 8π2

8
=

∞∑
n=1

(n!)3

( 3
2 )3

n

{ 1 + 6n + 10n2

4n × n4(1 + 2n)
+

2(1 + 2n)(1 + 3n)O⟨2⟩
n

4n × n3

}
. (78)

• Coefficient C6(1,−1,−1)

π6 − 120π4 + 5760π2 − 46080
−720

=

∞∑
n=1

(n!)3(1 + 2n)
(3

2 )3
n

×

{
5 + 12n
4n × n6 −

2(3 + 8n)H⟨2⟩
n

4n × n4 +
(1 + 6n + 6n2)[2(H⟨2⟩

n )2 −H⟨4⟩
n ]

4n × n2(1 + 2n)

}
.

(79)

• Coefficient C7(1,−1,−1)

π6 − 120π4 + 5760π2 − 46080
720

=

∞∑
n=1

(n!)3(1 + 2n)
( 3

2 )3
n

×

{
3 + 7n
4n × n7 −

2(2 + 5n)H⟨2⟩
n

4n × n5 +
(1 + 3n)[2(H⟨2⟩

n )2 −H⟨4⟩
n ]

4n × n3

}
.

(80)
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There is a curious phenomenon among the just displayed series.

2 = Equation(72) + Equation(73),
0 = Equation(75) + Equation(76),
4 = Equation(77) + Equation(78),
0 = Equation(79) + Equation(80).

However, these equalities are not immediate from the related series involved.

7. Conclusions

By employing the hypergeometric series approach, we have exhibited numerous striking infinite
series identities, including several difficult ones conjectured by Sun [17–19]. However, our list is far
from exhaustive. For instance, under the parameter setting

a→
1
4
+ ax, b→

1
4
+ bx, d →

1
4
+ dx,

Lemma 2 would lead to several unusual series represented by
√

2Γ2(1
4 )

π5/2 =

∞∑
n=0

( 1
2 )3

n(1
4 )n

4n(n!)4

{
1 + 6n

}
.

The interested reader is enthusiastically encouraged to make further explorations.
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4. W. Chu, Hypergeometric approach to Apéry–like series, Integral Transforms Spec. Funct., 28
(2017), 505–518. https://doi.org/10.1080/10652469.2017.1315416

5. W. Chu, Infinite series identities from the very–well–poised Ω-sum, Ramanujan J., 55 (2021),
239–270. https://doi.org/10.1007/s11139-020-00259-w

6. W. Chu, Ramanujan–Like formulae for π±1 via Gould–Hsu Inverse Series Relations, Ramanujan
J., 56 (2021), 1007–1027. https://doi.org/10.1007/s11139-020-00337-z

7. W. Chu, Further Apéry–like series for Riemann zeta function, Math. Notes, 109 (2021), 136–146.
https://doi.org/10.1134/S0001434621010168

8. W. Chu, J. M. Campbell, Harmonic sums from the Kummer theorem, J. Math. Anal. Appl., 501
(2021), Article 125179; pp. 37. https://doi.org/10.1016/j.jmaa.2021.125179

9. S. Ramanujan, Modular equations and approximations to π, Q. J. Math. (Oxford), 45 (1914), 350–
372.

10. W. Chu, q-series reciprocities and further π-formulae, Kodai Math. J., 41 (2018), 512–530.
https://doi.org/10.2996/kmj/1540951251

11. J. Guillera, Hypergeometric identities for 10 extended Ramanujan–type series, Ramanujan J., 15
(2008), 219–234. https://doi.org/10.1007/s11139-007-9074-0

12. W. Chu, Dougall’s bilateral 2H2-series and Ramanujan–like π-formulae, Math. Comp., 80 (2011),
2223–2251. https://doi.org/10.1090/S0025-5718-2011-02474-9

13. W. Chu, W. L. Zhang, Accelerating Dougall’s 5F4-sum and infinite series involving π, Math.
Comp., 83 (2014), 475–512. https://doi.org/10.1090/S0025-5718-2013-02701-9

14. W. Chu, Hypergeometric series and the Riemann Zeta function, Acta Arith., 82 (1997), 103–118.
https://doi.org/10.4064/aa-82-2-103-118

15. X. Y. Wang, W. Chu, Further Ramanujan–like series containing harmonic numbers and squared
binomial coefficients, Ramanujan J., 52 (2020), 641–668. https://doi.org/10.1007/s11139-019-
00140-5

16. X. Y. Wang, W. Chu, Series with harmonic–like numbers and squared binomial coefficients, Rocky
Mountain J. Math., 52 (2022), 1849–1866.

17. Z.-W. Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute
of Technology, 2021.

18. Z.-W. Sun, List of conjectural series for powers of π and other constants in “Ramanujan’s Identi-
ties’. Press of Harbin Institute of Technology, 2021, Chapter 5: 205–261.

19. Z.-W. Sun, Series with summands involving harmonic numbers, arXiv preprint, (2023),
arXiv:2210.07238. https://doi.org/10.48550/arXiv.2210.07238

20. E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.

21. X. Chen, W. Chu, Dixon’s 3F2(1)-series and identities involving harmonic numbers and Riemann
zeta function, Discrete Math., 310 (2010), 83–91. https://doi.org/10.1016/j.disc.2009.07.029

Electronic Research Archive Volume 31, Issue 8, 4611–4636.

http://dx.doi.org/https://doi.org/10.2140/pjm.2000.192.219
http://dx.doi.org/https://doi.org/10.1080/10652469.2017.1315416
http://dx.doi.org/https://doi.org/10.1007/s11139-020-00259-w
http://dx.doi.org/https://doi.org/10.1007/s11139-020-00337-z
http://dx.doi.org/https://doi.org/10.1134/S0001434621010168
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2021.125179
http://dx.doi.org/https://doi.org/10.2996/kmj/1540951251
http://dx.doi.org/https://doi.org/10.1007/s11139-007-9074-0
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-2011-02474-9
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-2013-02701-9
http://dx.doi.org/https://doi.org/10.4064/aa-82-2-103-118
http://dx.doi.org/https://doi.org/10.1007/s11139-019-00140-5
http://dx.doi.org/https://doi.org/10.1007/s11139-019-00140-5
http://dx.doi.org/https://doi.org/10.48550/arXiv.2210.07238
http://dx.doi.org/https://doi.org/10.1016/j.disc.2009.07.029


4635

22. L. Comtet, Advanced Combinatorics, Dordrecht–Holland, The Netherlands, 1974.
https://doi.org/10.1007/978-94-010-2196-8

23. W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.

24. Y. A. Brychkov, Handbook of Special Functions, CRC Press Taylor & Francis Group, Boca Raton
- London - New York, 2008.

25. Per W. Karlsson, Clausen’s hypergeometric function with variable −1/8 or 8, Math. Sci. Res. Hot-
Line, 4 (2000), 25–33.

26. K. N. Boyadzhiev, Series with central binomial coefficients Catalan numbers, and harmonic num-
bers, J. Integer. Seq., 15 (2012), 3.

27. W. Chu, D. Zheng, Infinite series with harmonic numbers and central binomial coefficients, Int. J.
Number Theory, 5 (2009), 429–448. https://doi.org/10.1142/S1793042109002171

28. C. Elsner, On sums with binomial coefficients, Fibonacci Quart., 43 (2005), 31–45.
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