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1. Introduction

As usual, we let p be an odd prime, χ denotes a Dirichlet character modulo p. For any integers
k > h ≥ 1 and integers m and n, the generalized two-term exponential sum S (m, n, k, h, χ; p) is defined
as follows:

S (m, n, k, h, χ; p) =
p−1∑
a=1

χ(a)e
(
mak + nah

p

)
,

where e(y) = e2πiy and i is the imaginary unit.
In analytic number theory, these sums play important roles, many classical number theory problems

are closely related to it, such as the prime distribution and Waring’s problems etc. And because of
that, many number theorists and scholars had studied the various properties of S (m, n, k, h, χ; p), and
obtained a series of meaningful research results. For example, R. Duan and W. P. Zhang [1] proved that
for any prime p with 3 ∤ (p − 1), and any Dirichlet character λ mod p, one has the identities

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

λ(a)e
(
ma3 + na

p

)∣∣∣∣∣∣∣
4

=


3p3 − 8p2 if λ =

(
∗

p

)
,

2p3 − 7p2 if λ , χ0, λ ,
(
∗

p

)
,

2p3 − 3p2 − 3p − 1 if λ = χ0,
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where
(
∗

p

)
is the Legendre symbol and χ0 is the principal character modulo p.

L. Chen and X. Wang [2] used the elementary method to prove the identities

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma4 + a

p

)∣∣∣∣∣∣∣
4

=



2p2(p − 2), if p ≡ 7 mod 12,
2p3, if p ≡ 11 mod 12,
2p(p2 − 10p − 2α2), if p ≡ 1 mod 24,
2p(p2 − 4p − 2α2), if p ≡ 5 mod 24,
2p(p2 − 6p − 2α2), if p ≡ 13 mod 24,
2p(p2 − 8p − 2α2), if p ≡ 17 mod 24,

where the character sum α = α(p) =

p−1
2∑

a=1

(
a3 + a

p

)
is an integer satisfying the identity (see [3, Theorem

4–11]):

p = α2 + β2 =


p−1

2∑
a=1

(
a3 + a

p

)
2

+


p−1

2∑
a=1

(
a3 + ra

p

)
2

,

and r denotes any quadratic non-residue modulo p.
Recently, W. P. Zhang and Y. Y. Meng [4] studied the sixth power mean of S (m, n, 3, 1, χ0; p), and

proved that for any odd prime p and integer n with (n, p) = 1, one has the identities

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=0

e
(
ma3 + na

p

)∣∣∣∣∣∣∣
6

=

 5p3 (p − 1) if p ≡ 5 mod 6;
p2

(
5p2 − 23p − d2

)
if p ≡ 1 mod 6,

where 4p = d2 + 27 · b2, and d is uniquely determined by d ≡ 1 mod 3 and b > 0.
In addition, X. Y. Liu and W. P. Zhang [5] studied the calculating problem of the sixth power mean

of the generalized two-term exponential sums

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

, (1.1)

and proved that for any odd prime p with 3 ∤ (p − 1), one has the identity

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= p(p − 1)
(
6p3 − 28p2 + 39p + 5

)
.

Some papers related to the exponential sums and the generalized exponential sums can also be found
in [6–10], to save space, we will not list them all here.

Of course, the results in [5] are very neat and beautiful, the only drawback is that they do not talk
about the case 3 | (p − 1). Then for prime p with p ≡ 1 mod 3, what is going to happen? This seems to
be an open problem. In this paper, we will use the elementary and analytic methods, and the number of
the solutions of some congruence equations to study this problem, and prove the following conclusion:
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Theorem. For any prime p with p ≡ 1 mod 3, we have the asymptotic formula

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= 6p5 + O
(
p4

)
.

Combining our theorem and the result in [5] we can deduce the following:
Corollary. For any odd prime p, we have the asymptotic formula

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= 6p5 + O
(
p4

)
.

Some notes: For prime p with p ≡ 1 mod 3, we can only get an asymptotic formula for (1.1), but
can not get an exact calculating formula. The reason is that we can not get an exact value in Lemma 6.

Whether there exists an exact calculating formula for (1.1) with p ≡ 1 mod 3 is an open problem. It
remains to be further studied.

2. Several lemmas

In this section, we decompose the proof of the theorem into six simple lemmas. Of course, the proofs
of these lemmas need some knowledge of elementary or analytic number theory, all these can be found
in [3, 11, 12], we will not repeat them here. First we have the following:

Lemma 1. Let p be an odd prime with p ≡ 1 mod 3, then we have the identity

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

1 = p3 − 3p2 + 5p − 5.

Proof. For any integer a, from the properties of the character sums∑
χ mod p

χ(a) =
{

p − 1 if a ≡ 1 mod p;
0 otherwise,

and the properties of the classical Gauss sums modulo p

p−1∑
a=1

χ(a)e
(
ma
p

)
= χ(m)

p−1∑
a=1

χ(a)e
(

a
p

)
= χ(m)τ(χ),

we have ∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma
p

)
3  p−1∑

a=1

χ(a)e
(
−ma

p

)
3

= p(p − 1)
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

p−1∑
f=1

a+b+c≡d+e+ f mod p
abc≡de f mod p

1 = p(p − 1)
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

p−1∑
f=1

a f+b f+c f≡d f+e f+ f mod p
abc f 3≡de f 3 mod p

1
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= p(p − 1)2
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

1. (2.1)

On the other hand, we also have

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

χ(a)e
(
ma
p

)
3  p−1∑

a=1

χ(a)e
(
−ma

p

)
3

= (p − 1)6 +
∑
χ mod p

p−1∑
m=1

τ3(χ)τ(χ)
3

= (p − 1)6 + (p − 1) + (p − 1)
∑
χ,χ0

τ3(χ)τ(χ)
3

= (p − 1)6 + (p − 1)
[
1 + (p − 2)p3

]
= p(p − 1)2

(
p3 − 3p2 + 5p − 5

)
, (2.2)

where τ(χ) =
p−1∑
a=1

χ(a)e
(

a
p

)
denotes the classical Gauss sums, χ0 denotes the principal character modulo

p, χ(a) and τ(χ) denote the complex conjugate of χ(a) and τ(χ).
Combining (2.1) and (2.2) we have the identity

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

1 = p3 − 3p2 + 5p − 5.

This proves Lemma 1.
Lemma 2. Let p be an odd prime with p ≡ 1 mod 3. Then for any third-order character λ modulo p,

we have the identity

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a)λ(d) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a)λ(d)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a) = p2 − 2p − 1.

Proof. First from the properties of the reduced residue system modulo p we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a−1+d(b−1)+e(c−1)≡0 mod p
abc≡1 mod p

λ(a). (2.3)
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For any integer b with (b, p) = 1, let b denotes the multiplicative inverse of b modulo p. If
a = b = c = 1, then the congruence equations a− 1+ d(b− 1)+ e(c− 1) ≡ 0 mod p and abc ≡ 1 mod p
have (p − 1)2 solutions and λ(1) = 1.

If a = 1, b , 1 and c = b, then the congruence equations a − 1 + d(b − 1) + e(c − 1) ≡ 0 mod p and
abc ≡ 1 mod p have (p − 1)(p − 2) solutions.

Similarly, if b = 1, a , 1 and c = a, then we have

p−1∑
a=2

p−1∑
d=1

p−1∑
e=1

a−1+e(a−1)≡0 mod p

λ(a) = (p − 1)
p−1∑
a=2

λ(a) = −(p − 1). (2.4)

If c = 1, a , 1 and b = a, then we also have

p−1∑
a=2

p−1∑
d=1

p−1∑
e=1

a−1+d(a−1)≡0 mod p

λ(a) = (p − 1)
p−1∑
a=2

λ(a) = −(p − 1). (2.5)

If a , 1, b , 1, c , 1 and abc ≡ 1 mod p, then we have

p−1∑
a=2

p−1∑
b=2

p−1∑
c=2

p−1∑
d=1

p−1∑
e=1

a−1+d(b−1)+e(c−1)≡0 mod p
abc≡1 mod p

λ(a) =
p−1∑
a=2

p−1∑
b=2

p−1∑
c=2

p−1∑
d=1

p−1∑
e=1

1+d+e≡0 mod p
abc≡1 mod p

λ(a)

= (p − 2)

(p − 1)
p−1∑
a=1

λ(a) − (p − 2) − 2
p−1∑
a=2

λ(a) − 1


= (p − 2)(3 − p). (2.6)

Combining (2.3)–(2.6) we have the identity

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a) = p2 − 2p − 1. (2.7)

From the properties of the reduced residue system modulo p and (2.7) we also have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a)λ(d) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

ad+bd+cd≡d+ed+1 mod p
abcd3≡d2e mod p

λ(ad)λ(d)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡1+e+d mod p

abc≡de mod p

λ(a) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a) = p2 − 2p − 1. (2.8)

Now Lemma 2 follows from (2.7) and (2.8).
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Lemma 3. Let p be an odd prime with p ≡ 1 mod 3. Then for any third-order character λ modulo p,
we have the identity

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(d) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(d)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a)λ(b) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(b)λ(a) = −(p − 1).

Proof. First from the properties of the reduced residue system we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(d) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

d(a−1)+e(b−1)+c−1≡0 mod p
abc≡1 mod p

λ(d). (2.9)

If a = b = c = 1, then from (2.9) we have

p−1∑
d=1

p−1∑
e=1

λ(d) = 0. (2.10)

If a = 1, b , 1 and c = b, then from (2.9) we have

p−1∑
b=2

p−1∑
c=2

p−1∑
d=1

p−1∑
e=1

e(b−1)+c−1≡0 mod p
bc≡1 mod p

λ(d) =
p−1∑
b=2

p−1∑
c=2

p−1∑
e=1

e(b−1)+c−1≡0 mod p
bc≡1 mod p

p−1∑
d=1

λ(d) = 0. (2.11)

Similarly, if b = 1, a , 1 and c = a, then from (2.9) we have

p−1∑
a=2

p−1∑
d=1

p−1∑
e=1

d(a−1)+a−1≡0 mod p

λ(d) = (p − 1)
p−1∑
a=2

λ(d) = −(p − 1). (2.12)

If c = 1, a , 1 and b = a, then we also have

p−1∑
a=2

p−1∑
d=1

p−1∑
e=1

d(a−1)+e(a−1)≡0 mod p

λ(d) =
p−1∑
a=2

p−1∑
e=1

λ (a) λ(e) = 0. (2.13)

If a , 1, b , 1, c , 1 and abc ≡ 1 mod p, then note that λ (a) = λ(a), from (2.9) we have the identity

p−1∑
a=2

p−1∑
b=2

p−1∑
c=2

p−1∑
d=1

p−1∑
e=1

d(a−1)+e(b−1)+(c−1)≡0 mod p
abc≡1 mod p

λ(d) =
p−1∑
a=2

p−1∑
b=2

p−1∑
c=2

p−1∑
d=1

p−1∑
e=1

d+e+c−1≡0 mod p
abc≡1 mod p

λ(a − 1)λ(d)
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=

p−1∑
a=2

p−1∑
b=2

p−1∑
c=2

p−1∑
e=1

abc≡1 mod p

λ(a − 1)λ(1 − c − e) = −
p−1∑
a=1

p−1∑
b=2

p−1∑
c=1

abc≡1 mod p

λ(a − 1)λ(c − 1)

= −

p−1∑
a=1

p−1∑
c=1

λ(a − 1)λ(c − 1) +
p−1∑
a=1

λ(a − 1)λ (a − 1)

= −1 −
p−1∑
a=2

λ (a) = 0. (2.14)

Combining (2.9)–(2.14) we have the identity

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(d) = −(p − 1). (2.15)

From the properties of the reduced residue system modulo p and (2.15) we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(a)λ(b) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

ab+b+cb≡db+eb+1 mod p
ab3c≡dbeb mod p

λ(ab)λ(b)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+1+c≡d+e+b mod p

ac≡deb mod p

λ(a) =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+1+c≡d+e+b mod p
ac≡deb mod p

λ(a) = −(p − 1). (2.16)

Now Lemma 3 follows from (2.15) and (2.16).
Lemma 4. Let p be an odd prime with p ≡ 1 mod 3. Then for any third-order character λ modulo p,

we have the identities∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(ab)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(c)λ(de)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ p2;

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(abc)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ p2 and

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(dec)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ p2.
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In fact, if abc ≡ de mod p and λi(a)λ j(b)λk(c)λh(d)λs(e) , 1, 0 ≤ i, j, k, h, s ≤ 2, then we can also
prove the estimate ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λi(a)λ j(b)λk(c)λh(d)λs(e)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ p2.

Proof. From the properties of the orthogonality of the characters we have

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

λ(a)χ(a)e
(
ma
p

)
2  p−1∑

a=1

χ(a)e
(
ma
p

)
×

 p−1∑
b=1

χ(b)e
(
−mb

p

)
2

e
(
−m
p

)

= p(p − 1)
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(ab). (2.17)

On the other hand, from the properties of the classical Gauss sums we also have

∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

λ(a)χ(a)e
(
ma
p

)
2  p−1∑

a=1

χ(a)e
(
ma
p

)
×

 p−1∑
b=1

χ(b)e
(
−mb

p

)
2

e
(
−m
p

)

=
∑
χ mod p

τ2 (λχ) τ(χ)τ (χ)
2

p−1∑
m=1

λ(m)χ(m)e
(
−m
p

)
=

∑
χ mod p

|τ(λχ)|2 |τ(χ)|2 τ (λχ) τ(χ)

or ∣∣∣∣∣∣∣∣
∑
χ mod p

p−1∑
m=0

 p−1∑
a=1

λ(a)χ(a)e
(
ma
p

)
2  p−1∑

a=1

χ(a)e
(
ma
p

)
∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣
 p−1∑

b=1

χ(b)e
(
−mb

p

)
2

e
(
−m
p

)∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
χ mod p

|τ(λχ)|2 |τ(χ)|2 τ (λχ) τ(χ)

∣∣∣∣∣∣∣∣ ≤ p3(p − 1). (2.18)
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Combining (2.17) and (2.18) we may immediately deduce the estimate∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

λ(ab)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ p2.

Similarly, we can also deduce the other estimations in Lemma 4.
Lemma 5. Let p be an odd prime with p ≡ 1 mod 3. Then we have the identity

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a3+b3+c3≡d3+e3+1 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1 = 7p2 − 29p + 44.

Proof. From the properties of the congruence equation modulo p we have
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a3+b3+c3≡d3+e3+1 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1 =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

(a+b+c)3−a3−b3−c3≡(d+e+1)3−d3−e3−1 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

(a+b+c)(a2+b2+c2−d2−e2−1)≡0 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1 =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡0 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1

+

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a2+b2+c2≡d2+e2+1 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1 −
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a2+b2+c2≡d2+e2+1 mod p
a+b+c≡d+e+1≡0 mod p

abc≡de mod p

1. (2.19)

Now we calculate the three sums in (2.19) separately. First we have
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡0 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1 =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

da+eb+c≡0 mod p
d+e+1≡0 mod p

abc≡1 mod p

1 =
p−1∑
a=1

p−1∑
b=1

p−1∑
d=1

p−1∑
e=1

da+eb+ab≡0 mod p
d+e+1≡0 mod p

1

=

p−1∑
a=1

p−1∑
b=1

p−1∑
d=1

da−(d+1)b+ab≡0 mod p

1 −
p−1∑
a=1

p−1∑
b=1

−a+ab≡0 mod p

1

=

p−1∑
a=1

p−1∑
b=1

p−1∑
d=1

d(a−b)≡b−ab mod p

1 − (p − 1)
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= 3(p − 1) + 3(p − 2) + (p − 3)(p − 4) − (p − 1) = p2 − 2p + 4. (2.20)

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a2+b2+c2≡d2+e2+1 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1 =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

ab+ac+bc≡de+d+e mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1 =
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

ab+(a+b)c≡abde+ad+eb mod p
a+b+c≡ad+be+1 mod p

c≡de mod p

1

=

p−1∑
a=1

p−1∑
b=1

p−1∑
d=1

p−1∑
e=1

(a−1)(b−1)(de−1)≡0 mod p
a+b+de≡ad+be+1 mod p

1 = 1 +
p−1∑
d=1

p−1∑
e=1

(d−1)(e−1)≡0 mod p
(de−1, p)=1

1 + 2
p−1∑
b=2

p−1∑
d=1

(d−1)(b−d)≡0 mod p

1

+2
p−1∑
b=2

p−1∑
d=1

p−1∑
e=1

(e−1)(b−d)≡0 mod p
(de−1, p)=1

1 +
p−1∑
a=2

p−1∑
b=2

p−1∑
d=1

p−1∑
e=1

a+b≡ad+be mod p
de≡1 mod p

1

= 1 + 2(p − 2) + 4(p − 2) + 2(p − 2)(2p − 5) +
p−1∑
a=2

p−1∑
b=2

p−1∑
e=1

(a+b)e≡a+be2 mod p

1

= 1 + 4(p − 2)(p − 1) +
p−1∑
a=2

p−1∑
b=2

p−1∑
e=1

(e−1)(eb−a)≡0 mod p

1

= 1 + 4(p − 2)(p − 1) + 2(p − 2)2 − (p − 2) = 6p2 − 21p + 19. (2.21)

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a2+b2+c2≡d2+e2+1 mod p
a+b+c≡d+e+1≡0 mod p

abc≡de mod p

1 =
p−1∑
a=1

p−1∑
b=1

p−1∑
d=1

p−1∑
e=1

(a−1)(b−1)(de−1)≡0 mod p
a+b+de≡ad+be+1≡0 mod p

1 =
p−1∑
d=1

p−1∑
e=1

2+de≡d+e+1≡0 mod p

1

+2
p−1∑
b=2

p−1∑
d=1

2+b≡d+bd+1≡0 mod p

1 + 2
p−1∑
b=2

p−1∑
d=1

p−1∑
e=1

1+b+de≡d+be+1≡0 mod p
(de−1, p)=1

1 +
p−1∑
a=2

p−1∑
b=2

p−1∑
d=1

a+b+1≡ad+bd+1≡0 mod p

1

= 2 + 4 + 2 (p − 4 + p − 5) + p − 4 + p − 5 = 6p − 21. (2.22)

Combining (2.19)–(2.22), we have the desired result

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a3+b3+c3≡d3+e3+1 mod p
a+b+c≡d+e+1 mod p

abc≡de mod p

1 = 7p2 − 29p + 44.
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Lemma 6. Let p be an odd prime with p ≡ 1 mod 3. Then we have the asymptotic formula
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a3+b3+c3≡d3+e3+1 mod p
abc≡de mod p

1 = p3 + O
(
p2

)
.

Proof. Let λ be a third-order character modulo p. Note that if abc ≡ de mod p, then λ(abc)λ(de) =
λ(abc)λ(de) = 1, so from the properties of the third-order characters modulo p and Lemmas 1–4 we
have the asymptotic formula

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a3+b3+c3≡d3+e3+1 mod p
abc≡de mod p

1 =
1
3

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a3+b3+c3≡d3+e3+1 mod p
a3b3c3≡d3e3 mod p

1

=
1
3

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

(
1 + λ(a) + λ(a)

) (
1 + λ(b) + λ(b)

)

×
(
1 + λ(c) + λ(c)

) (
1 + λ(d) + λ(d)

) (
1 + λ(e) + λ(e)

)
=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
e=1

a+b+c≡d+e+1 mod p
abc≡de mod p

1 + O
(
p2

)
= p3 + O

(
p2

)
.

This proves Lemma 6.

3. Proofs of the theorems

Now we apply the lemmas in Section 2 to complete the proof of our theorem. Note that the
trigonometrical identities

p−1∑
a=0

e
(
na
p

)
=

{
p if p | n;
0 if p ∤ n.

From the orthogonality of the characters sums, Lemma 5 and 6 we have∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= p(p − 1)
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
h=1

p−1∑
f=1

a3+b3+c3≡d3+h3+ f 3 mod p
abc≡dh f mod p

e
(
a + b + c − d − h − f

p

)

= p(p − 1)
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
h=1

a3+b3+c3≡d3+h3+1 mod p
abc≡dh mod p

p−1∑
f=1

e
(

f (a + b + c − d − h − 1)
p

)
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= p2(p − 1)
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
h=1

a3+b3+c3≡d3+h3+1 mod p
a+b+c≡d+h+1 mod p

abc≡dh mod p

1 − p(p − 1)
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
h=1

a3+b3+c3≡d3+h3+1 mod p
abc≡dh mod p

1

= p2(p − 1)
(
7p2 − 29p + 44

)
− p(p − 1)

(
p3 + O

(
p2

))
= 6p5 + O

(
p4

)
.

This completes the proof of our theorem.

4. Conclusions

The main result of this paper is to give an asymptotic formula for the sixth power mean of one kind
special two-term exponential sums. That is, for any prime p with p ≡ 1 mod 3, we have the asymptotic
formula

∑
χ mod p

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

χ(a)e
(
ma3 + a

p

)∣∣∣∣∣∣∣
6

= 6p5 + O
(
p4

)
.

Whether there exists an exact formula for the above power mean is still an open problem. We will keep
working on it.
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