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Abstract: Sequences with optimal autocorrelation properties play an important role in wireless
communication, radar and cryptography. Interleaving is a very important method in constructing the
optimal autocorrelation sequence. Tang and Gong gave three different constructions of interleaved
sequences (generalized GMW sequences, twin prime sequences and Legendre sequences). Su et
al. constructed a series of sequences with optimal autocorrelation magnitude via interleaving Ding-
Helleseth-Lam sequences. In this paper we further study the correlation properties of interleaved
Legendre sequences and Ding-Helleseth-Lam sequences.
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1. Introduction and results

1.1. Optimal autocorrelation sequence

Given a binary sequence v = (v(0), v(1), · · · , v(N − 1)) ∈ {0, 1}N of period N, ZN is the integer ring
of modulo N, the set Cv = {t ∈ ZN : v(t) = 1} is called the support of v. Let τ ∈ {1, · · · ,N − 1}, the
autocorrelation function Rv(τ) of v is defined by

Rv(τ) =
N−1∑
i=0

(−1)v(i)+v(i+τ),

where i + τ is operating on modulo N. Easy to verity

Rv(τ) = N − 4 |(Cv + τ) ∩Cv| .

Thus Rv(τ) ≡ N (mod 4). In particular, Rv(τ) ≡ 0 (mod 4) for N ≡ 0 (mod 4).
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If Rv(τ) ∈ {0,−4} or Rv(τ) ∈ {0,+4} where τ ∈ {1, · · · ,N − 1}, then v is referred to as a sequence
with optimal autocorrelation value. If Rv(τ) ∈ {0,±4} where τ ∈ {1, · · · ,N − 1}, then v is referred to as a
sequence with optimal autocorrelation magnitude. Sequences with optimal autocorrelation properties
play an important role in wireless communication, radar and cryptography [1], so they have always been
the focus of scholars’ research (refer to [2–11]).

1.2. Interleaved method

Gong [12] introduced powerful interleaved method to design sequences. The key idea of this method
is to obtain long sequences with good correlation from shorter ones. Let

vk = (vk(0), vk(1), · · · , vk(N − 1))

be a sequence of period N, where 0 ≤ k ≤ M − 1. Define the N × M matrix U = (Ui j) as follows

U =


v0(0) v1(0) · · · vM−1(0)
v0(1) v1(1) · · · vM−1(1)
...

...
...

v0(N − 1) v1(N − 1) · · · vM−1(N − 1)

 .
An interleaved sequence u = (u(t)) of period MN is defined by

uiM+ j = Ui j = v j(i), 0 ≤ i < N, 0 ≤ j < M.

For convenience we write
u = I(v0, v1, · · · , vM−1).

Interleaving is a very important method in constructing optimal autocorrelation sequences. The autocor-
relation of the sequence u is determined by the autocorrelation and cross-correlation of the sequences
v0, v1, · · · , vM−1.

1.3. Interleaved Legendre sequences

Tang and Gong [10] gave three different constructions of interleaved sequences with the following
structure:

u = I
(
a0 + b(0), Ld+η(a1) + b(1), L2d(a2) + b(2), L3d+η(a3) + b(3)

)
, (1.1)

where η is an integer with 0 ≤ η < N, d is an integer with 4d ≡ 1 (mod N), b = (b(0), b(1), b(2), b(3)) is
a binary perfect sequence, ai, i = 0, 1, 2, 3, are sequences of period N taken from three different pairs of
sequences (generalized GMW sequences, twin prime sequences and Legendre sequences).

Let N = p be an odd prime. The Legendre sequence l = (l(0), l(1), · · · , l(p − 1)) of period p is
defined by

l(i) =


0 or 1, if i = 0,
1, if i is quadratic residue modulo p,
0, if i is quadratic non-residue modulo p.

In particular, l is called the first type Legendre sequence if l(0) = 1 otherwise the second type Legendre
sequence. Let l and l′ be the first type and the second type of Legendre sequence of period p, respectively.

Tang and Gong [10] showed that the constructions of interleaved Legendre sequence have optimal
autocorrelation magnitude. Li and Tang [6] studied the linear complexity of binary sequences given in [10].
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1.4. Interleaved Ding-Helleseth-Lam sequences

Let p = 4 f + 1 be an odd prime, where f is a positive integer, α is a generator of Fp. Define sets

Di =
{
αi+4 j : 0 ≤ j ≤ f − 1

}
, i = 0, 1, 2, 3.

Then Di, i = 0, 1, 2, 3 are called the cyclotomic classes of order 4 with respect to Fp. It is very easy to
verity that Di, i = 0, 1, 2, 3 constitute a partition of F∗p.

Ding et al. [13] constructed some binary sequences based on the cyclotomic classes of order 4 of Fp,
and proved that these sequences are three-level autocorrelation.

Proposition 1.1. Let p = 4 f + 1 = x2 + 4y2 be an odd prime, where f , x, y are integers. Let s1, s2, s3, s4

be binary sequences of period p with supports D0 ∪ D1, D0 ∪ D3, D1 ∪ D2 and D2 ∪ D3, respectively.
Then Rsi(τ) ∈ {1,−3} for all 1 ≤ τ < p if and only if f is odd and y = ±1.

Let a0, a1, a2, a3 be four binary sequences of period p, b = (b(0), b(1), b(2), b(3)) be a binary sequence
of length 4. Construct a binary sequence u = u(t) of length 4p as follows:

u = I
(
a0 + b(0), Ld(a1) + b(1), L2d(a2) + b(2), L3d(a3) + b(3)

)
, (1.2)

where d is a integer with 4d ≡ 1 (mod p), L is a cyclic left shift operator, when c = (c(0), c(1),
· · · , c(N − 1)), L(c) = (c(1), c(2), · · · , c(N − 1), c(0)).

Su et al. [8] constructed a series sequences with optimal autocorrelation magnitude of period 4p via
interleaving Ding-Helleseth-Lam sequences.

Proposition 1.2. Let p = 4 f + 1 = x2 + 4y2 be an odd prime, where x is an integer, y = ±1, f is odd.
Let b(0) = b(2), b(1) = b(3), and (a0, a1, a2, a3) be chosen from

(s3, s2, s1, s1), (s2, s3, s1, s1), (s1, s4, s2, s2), (s4, s1, s2, s2),
(s1, s4, s3, s3), (s4, s1, s3, s3), (s3, s2, s4, s4), (s2, s3, s4, s4). (1.3)

Then the binary sequence u by (1.2) has Ru(τ) ∈ {0,±4} for all 1 ≤ τ < 4p.

Later Fan [14] showed that the above sequences have large linear complexity. Sun et al. [15] proved
that the sequences have good 2-adic complexity.

1.5. Results of this paper

This paper will further study the fourth-order correlation properties of interleaved Legendre sequences
and Ding-Helleseth-Lam sequences. Our results are as follows.

Theorem 1.1. Let p > 2 be a prime, b = (b(0), b(1), b(2), b(3)) be a binary perfect sequence, η be an
integer with 0 < η < p and let the binary sequence u be generated by (1.1). For n ∈ {0, 1, · · · , 4p − 1}
we have

(−1)un+un+p+un+2p+un+3p

=


(−1)a0(p−η)+a1(0)+a2(p−η)+a3(0)+1, n ≡ −4η (mod p),
(−1)a0(0)+a1(η)+a2(0)+a3(η)+1, n ≡ 0 (mod p) and n . −4η (mod p),
−1, n . 0 (mod p) and n . −4η (mod p).
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Theorem 1.2. Let p = 4 f + 1 be an odd prime, b(0) = b(2), b(1) = b(3) and let (a0, a1, a2, a3) be chosen
from (1.3). Let the binary sequence u be defined as in (1.2). For n ∈ {0, 1, · · · , 4p − 1} we have

(−1)un+un+p+un+2p+un+3p =

{
+1, n ≡ 0 (mod p),
−1, n . 0 (mod p).

Our results show that the fourth-order correlation for interleaved Legendre sequences and Ding-
Helleseth-Lam sequences u we have (−1)un+un+p+un+2p+un+3p = −1 which the number of n is at least 4p − 5
for all n ∈ {0, 1, · · · , 4p−1}. This means that there are at least four subsequences that do not satisfy lower
mutual interference. Therefore, researchers should pay careful attention to these four subsequences
when consider their application in communication systems.

2. Proof of Theorem 1.1

Write

u = I (v0, v1, v2, v3)

= I
(
a0 + b(0), Ld+η(a1) + b(1), L2d(a2) + b(2), L3d+η(a3) + b(3)

)
.

Then

(−1)v0(n) = (−1)b(0)(−1)a0(n), (2.1)
(−1)v1(n) = (−1)b(1)(−1)a1(n+d+η), (2.2)
(−1)v2(n) = (−1)b(2)(−1)a2(n+2d), (2.3)
(−1)v3(n) = (−1)b(3)(−1)a3(n+3d+η). (2.4)

Case I: p ≡ 1 (mod 4). We have

p = 4 ·
p − 1

4
+ 1, 2p = 4 ·

2(p − 1)
4

+ 2, 3p = 4 ·
3(p − 1)

4
+ 3, d =

3p + 1
4
.

Write n = 4i + j, where 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ 3. Hence,

un + un+p + un+2p + un+3p

= u4i+ j + u4i+ j+4· p−1
4 +1 + u4i+ j+4· 2(p−1)

4 +2 + u4i+ j+4· 3(p−1)
4 +3. (2.5)

First we consider the case of j = 1. By (2.1)–(2.5) we get

un + un+p + un+2p + un+3p

= u4i+1 + u4(i+ p−1
4 )+2 + u4(i+ 2(p−1)

4 )+3 + u4(i+ 3(p−1)
4 )+4

= v1(i) + v2

(
i +

p − 1
4

)
+ v3

(
i +

2(p − 1)
4

)
+ v0

(
i +

3p + 1
4

)
= a1 (i + d + η) + b(1) + a2

(
i +

p − 1
4
+ 2d

)
+ b(2)

+a3

(
i +

2(p − 1)
4

+ 3d + η
)
+ b(3) + a0

(
i +

3p + 1
4

)
+ b(0)
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= b(0) + b(1) + b(2) + b(3) + a0(i + d) + a1(i + d + η)
+a2(i + d) + a3(i + d + η). (2.6)

For all j ∈ {0, 1, 2, 3} we can also have

un + un+p + un+2p + un+3p = b(0) + b(1) + b(2) + b(3)
+a0(i + jd) + a1(i + jd + η) + a2(i + jd) + a3(i + jd + η). (2.7)

Noting that 4d ≡ 1 (mod p) and n = 4i + j, thus we get

i + jd ≡ 0 (mod p)⇐⇒ 4i + j ≡ 0 (mod p)⇐⇒ n ≡ 0 (mod p),
i + jd + η ≡ 0 (mod p)⇐⇒ 4i + j + 4η ≡ 0 (mod p)⇐⇒ n + 4η ≡ 0 (mod p).

Therefore

(−1)un+un+p+un+2p+un+3p = (−1)a0(i+ jd)+a1(i+ jd+η)+a2(i+ jd)+a3(i+ jd+η)

=


(−1)a0(0)+a1(0)+a2(0)+a3(0)+1, n ≡ 0 (mod p) and n + 4η ≡ 0 (mod p),
(−1)a0(p−η)+a1(0)+a2(p−η)+a3(0)+1, n . 0 (mod p) and n + 4η ≡ 0 (mod p),
(−1)a0(0)+a1(η)+a2(0)+a3(η)+1, n ≡ 0 (mod p) and n + 4η . 0 (mod p),
−1, n . 0 (mod p) and n + 4η . 0 (mod p),

=


(−1)a0(p−η)+a1(0)+a2(p−η)+a3(0)+1, n ≡ −4η (mod p),
(−1)a0(0)+a1(η)+a2(0)+a3(η)+1, n ≡ 0 (mod p) and n . −4η (mod p),
−1, n . 0 (mod p) and n . −4η (mod p).

Case II: p ≡ 3 (mod 4). We have

p = 4 ·
p − 3

4
+ 3, 2p = 4 ·

2(p − 1)
4

+ 2, 3p = 4 ·
3p − 1

4
+ 1, d =

p + 1
4
.

Similarly we can get

(−1)un+un+p+un+2p+un+3p

=


(−1)a0(p−η)+a1(0)+a2(p−η)+a3(0)+1, n ≡ −4η (mod p),
(−1)a0(0)+a1(η)+a2(0)+a3(η)+1, n ≡ 0 (mod p) and n . −4η (mod p),
−1, n . 0 (mod p) and n . −4η (mod p).

This proves Theorem 1.1.

3. Proof of Theorem 1.2

Write

u = I (v0, v1, v2, v3)

= I
(
a0 + b(0), Ld(a1) + b(1), L2d(a2) + b(2), L3d(a3) + b(3)

)
.

Then

(−1)v0(n) = (−1)b(0)(−1)a0(n), (3.1)
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(−1)v1(n) = (−1)b(1)(−1)a1(n+d), (3.2)
(−1)v2(n) = (−1)b(2)(−1)a2(n+2d), (3.3)
(−1)v3(n) = (−1)b(3)(−1)a3(n+3d). (3.4)

Let b(0) = b(2) and b(1) = b(3). Noting that p ≡ 1 (mod 4), thus we have

p = 4 ·
p − 1

4
+ 1, 2p = 4 ·

2(p − 1)
4

+ 2, 3p = 4 ·
3(p − 1)

4
+ 3, d =

3p + 1
4
.

Write n = 4i + j, where 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ 3. Hence,

un + un+p + un+2p + un+3p

= u4i+ j + u4i+ j+4· p−1
4 +1 + u4i+ j+4· 2(p−1)

4 +2 + u4i+ j+4· 3(p−1)
4 +3. (3.5)

For the case of j = 1, by (3.1)–(3.5) we get

un + un+p + un+2p + un+3p

= u4i+1 + u4(i+ p−1
4 )+2 + u4(i+ 2(p−1)

4 )+3 + u4(i+ 3(p−1)
4 )+4

= v1(i) + v2

(
i +

p − 1
4

)
+ v3

(
i +

2(p − 1)
4

)
+ v0

(
i +

3p + 1
4

)
= a1 (i + d) + b(1) + a2

(
i +

p − 1
4
+ 2d

)
+ b(2)

+a3

(
i +

2(p − 1)
4

+ 3d
)
+ b(3) + a0

(
i +

3p + 1
4

)
+ b(0)

= b(0) + b(1) + b(2) + b(3) + a0(i + d) + a1(i + d) + a2(i + d) + a3(i + d). (3.6)

For all j ∈ {0, 1, 2, 3} we can also have

un + un+p + un+2p + un+3p

= b(0) + b(1) + b(2) + b(3) + a0(i + jd) + a1(i + jd) + a2(i + jd) + a3(i + jd). (3.7)

Clearly,
i + jd ≡ 0 (mod p)⇐⇒ 4i + j ≡ 0 (mod p)⇐⇒ n ≡ 0 (mod p).

Let (a0, a1, a2, a3) be chosen from

(s3, s2, s1, s1), (s2, s3, s1, s1), (s1, s4, s2, s2), (s4, s1, s2, s2),
(s1, s4, s3, s3), (s4, s1, s3, s3), (s3, s2, s4, s4), (s2, s3, s4, s4).

From (3.7) we get

(−1)un+un+p+un+2p+un+3p = (−1)a0(i+ jd)+a1(i+ jd)+a2(i+ jd)+a3(i+ jd)

=

{
+1, n ≡ 0 (mod p),
−1, n . 0 (mod p).

This completes the proof of Theorem 1.2.
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