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Abstract: The road network system is the core foundation of a city. Extracting road information from 
remote sensing images has become an important research direction in the current traffic information 
industry. The efficient residual factorized convolutional neural network (ERFNet) is a residual 
convolutional neural network with good application value in the field of biological information, but it 
has a weak effect on urban road network extraction. To solve this problem, we developed a road 
network extraction method for remote sensing images by using an improved ERFNet network. First, 
the design of the network structure is based on an ERFNet; we added the DoubleConv module and 
increased the number of dilated convolution operations to build the road network extraction model. 
Second, in the training process, the strategy of dynamically setting the learning rate is adopted and 
combined with batch normalization and dropout methods to avoid overfitting and enhance the 
generalization ability of the model. Finally, the morphological filtering method is used to eliminate the 
image noise, and the ultimate extraction result of the road network is obtained. The experimental 
results show that the method proposed in this paper has an average F1 score of 93.37% for five test 
images, which is superior to the ERFNet (91.31%) and U-net (87.34%). The average value of IoU 
is 77.35%, which is also better than ERFNet (71.08%) and U-net (65.64%).  

Keywords: remote sensing image; neural network; residual structure; morphological filtering; 
road extraction 
 

1. Introduction  

With the accelerated urbanization, cities are expanding and their traffic is getting busier and busier. 
The construction and maintenance of road networks have become a crucial task in the field of urban 
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planning and transportation [1]. Road extraction has been an important research direction in the field 
of computer vision, which is important for urban planning, traffic management, environmental 
monitoring and other fields [2,3]. In urban planning, road extraction can provide an important reference 
basis for urban traffic planning, road construction and greening planning; in traffic management, road 
extraction can improve the efficiency of traffic supervision and management and provide help for the 
prevention and treatment of traffic accidents; in environmental monitoring, road extraction can help 
monitor the environment around the road and provide strong support for urban environmental 
management. In addition, road extraction methods are also widely used in emerging technologies such 
as positioning and navigation, autonomous driving, etc. In positioning and navigation, road extraction 
methods can improve the accuracy and reliability of navigation systems by identifying and extracting 
road features to achieve precise positioning and path planning of vehicles. In autonomous driving, road 
extraction methods can achieve route planning and control of autonomous vehicles by recognizing and 
extracting road features, as well as improve the safety and reliability of autonomous driving systems. 

However, the task of road extraction is not an easy one. Roads in remotely sensed images or 
images captured by cameras are usually hidden by the complex surrounding background [4], and the 
shape and direction of roads vary widely, thus putting high demands on the accuracy and robustness 
of the algorithm. In this context, researchers have proposed various algorithms and methods to solve 
the road extraction problem [5]. 

Traditional road extraction methods focus on information such as geometric and texture features 
of the road and mostly use pixel-level segmentation methods, which are usually based on basic image 
processing techniques such as morphology, threshold segmentation and edge detection. For example, 
the authors of [6] applied geometric a priori augmented road extraction methods to introduce geometric 
information into the model in order to generate an effective road extraction network. The authors of [7] 
proposed a light topological spatial network road extraction method based on knowledge distillation 
to extract road networks using topological features of roads. The authors of [7] proposed a semi-
automatic road extraction method based on multiple descriptors to solve the problems of incomplete 
geometric information of road images and poor uniformity of internal road textures while ensuring the 
accuracy of road extraction. The authors of [8,9] proposed a semantic segmentation network to extract 
complex road information using the properties of neural networks. Although these algorithms can 
obtain better results in some cases, for road extraction in complex backgrounds, these methods have 
major limitations, specifically in terms of sensitivity to environmental factors such as lighting, shadows 
and noise, as well as difficulty in dealing with road crossings and road breaks. 

Region-based road extraction algorithms, on the other hand, adopt a more advanced strategy. 
These algorithms usually extract the regions of interest of the road from the image, and then merge 
and filter these regions to finally obtain the boundary information of the road. Compared with pixel-
level algorithms, region-based algorithms can better handle problems such as road shapes and complex 
backgrounds. For example, the authors of [10] proposed a road extraction network based on 
bidirectional spatial information inference, which captures spatial context dependence and extends the 
perceptual domain using neighborhood feature fusion; it also combines recurrent neural network 
structured information processing units to capture channel dependence. The authors of [11] proposed 
a graph-attention network for road extraction from remote sensing images, which uses environmental 
and spatial information of graph-attention module to extract roads; they also designed a channel fusion 
module to achieve the fusion of low-level and high-level features, which can ensure that the extracted 
road network presents rich detailed information. However, such algorithms also have some drawbacks; 
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for example, they are sensitive to road width and image quality, cannot handle complex road structures 
and have high computational complexity. 

Thanks to recent advances in deep learning techniques, the tedious manual road segmentation can 
be automated. However, most of these models are computationally intensive and thus not suitable for 
resource-limited road extraction tasks. To alleviate this bottleneck, the authors of [12] proposed two 
lightweight models based on depth-separable convolution and ConvMixer initial blocks, both of which 
exploit the computational efficiency of depth-separable convolution and initial block multiscale 
processing and combine them into the codec architecture of a U-Net. The authors of [13] proposed a 
graffiti-based weakly supervised remote sensing road extraction network, which can extract roads from 
remote sensing images based on graffiti annotations. The authors of [14,15] proposed a semi-weakly 
supervised remote sensing image road extraction method based on adversarial learning to make full 
use of weak annotations, and it was trained using a small set of pixel-by-pixel annotated data and a 
large amount of weakly annotated data. The authors of [16,17] proposed a multi-task, multi-origin 
fusion network to extract road networks using a collection of remotely sensed images and trajectory 
data based on the fact that roads and intersections are two key elements for road network generation. 
Although neural network-based road extraction algorithms have made significant progress, they still 
have some drawbacks and limitations, specifically, their large data requirements, long training time 
and high requirements for computational resources. 

In the field of semantic segmentation, the authors of [18] proposed the efficient residual factorized 
convolutional neural network (ERFNet) for the first time in 2018; this network model includes a 
redesigned residual layer to make the model achieve a good balance between reliability and speed, and 
it has been widely used in many fields, especially in autonomous driving. The authors of [19] designed 
a conditional generative adversarial network (GAN) to learn the distribution of roads present in official 
maps in an unsupervised environment, which is able to overcome the shortcomings caused by 
extracting roads through semantic segmentation; but, as with most deep learning models, the quality 
of the generated machine predictions is highly dependent on the quality of the conditional training data 
and the model is sensitive to the number of holes in the data species. The authors of [20] proposed a 
new architecture for real-time semantic segmentation tasks called DuFNet. This model is able to fuse 
spatial and contextual features more efficiently and contributes to the previous global representation; 
it has promising applications in the field of autonomous driving. The authors of [21] proposed a new 
U-net model that incorporates depthwise separable convolution and an attention mechanism. The 
improved model constituted a significant improvement in segmentation accuracy, especially for 
important segmentation targets in autonomous driving systems. While these models in the semantic 
segmentation domain are able to balance the accuracy and speed of extraction, they are designed 
mainly for roads in the autonomous driving class, which have a very different spatial resolution than 
the one used in our task. 

In order to solve the problems of the above road extraction methods, we propose a residual 
neural network model combined with morphological filtering for road extraction from remote sensing 
images [22]. Our approach draws on the advantages of various models proposed in the field of semantic 
segmentation and makes targeted improvements for our task. First, we acquired and annotated 1270 
images with high quality and used data enhancement techniques to create a dataset of moderate size 
and excellent quality. Then, we constructed an encode–decode-based residual network architecture for 
road extraction, in which the middle residual module can identify high-dimensional road features, and 
DoubleConv can compensate for the disadvantage of missing information extraction caused by the 
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residual structure., which can effectively solve the problems such as excessive burr phenomenon, 
incomplete road extraction and incorrect recognition of targets similar to road linear features such as 
rivers and railroads as roads. By setting the Exponential Linear Unit (ELU) activation function and 
Adam optimizer, the convergence speed of the model is accelerated and computational resources are 
saved. Finally, the morphological filtering method is used to smooth the image for the noise 
phenomenon existing in the extracted road images. The experimental results prove that the method 
used in this study can effectively and accurately identify various types of roads, with excellent 
performance on evaluation indexes such as the F1 score and Intersection over Union (IoU) score. 

2. Materials and methods 

2.1. Experimental process 

 

Figure 1. Road network extraction flowchart. 
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The experimental process of this study is as follows. In the first step, real-time satellite images 
were acquired from Bigemap remote sensing satellite software; then, the labelme image annotation 
tool was used to annotate the road network; after that, the corresponding labels of the images were 
manually interpreted to obtain the labels. In the second step, the dataset was expanded using the image 
flipping method. In the third step, the training dataset was adjusted to a size appropriate to the network 
structure for training, and the model with the best training results was saved and used for road network 
extraction. Finally, the morphological filtering open operation was used to eliminate the noise present 
in the road network extraction results, and the ultimate road network extraction results were obtained. 
The overall flow of the experiment is shown in Figure 1. 

2.2. RFDNet architecture 

The ERFNet is a semantic segmentation network based on residual connection and deep separable 
convolution. It is an improvement on the residual neural network and efficient neural network [23]. 
The design of the RFDNet has been improved on the basis of the ERFNet, as shown in Table 1. First, 
the RFDNet introduces the DoubleConv module, which uses two consecutive convolution operations, 
allowing the model to better extract edge features of images and distinguish regions with similar linear 
features but different textures. Second, we replaced the Rectified Linear Unit (ReLU) activation 
function used by ERFNet with the ELU because the ELU can take a negative value, unlike ReLU, 
which makes the average output value of the activation unit close to 0 so as to reduce the offset and 
make the gradient closer to the natural gradient; this better solves the overfitting problem that occurs 
in neural network training. Finally, in the selection of optimization strategies, the RFDNet adds the 
Adam optimizer, enabling the network to achieve better convergence performance. The RFDNet network 
architecture is shown in Figure 2. The “coder-decoder” approach is adopted. In this architecture, the 
fusion of feature maps of each layer can make the network output clearer. Layers 1–21 of the network 
make up the encoder, and layers 22–28 make up the decoder. The module types and related parameters 
of each layer are shown in Table 2. 

Table 1. Comparison of implementation details of three models. 

 RFDNet ERFNet U-net 
Number of layers 28 23 46 
Main operation types of modules Downsample, 

Upsampling, 
DoubleConv, 
Non-bt-1D

Downsample, 
Upsampling, 
Non-bt-1D 

Downsample, 
Upsampling 
 

Activation function ELU ReLU ReLU 
Optimization strategy BatchNorm, 

Dropout, 
Adam

BatchNorm, 
Dropout 

BatchNorm 



4367 

Electronic Research Archive  Volume 31, Issue 8, 4362–4377. 

 

Figure 2. RFDNet architecture. 

Table 2. Modules and parameters of each layer of the RFDNet. 

 Layer Type out-F out-Res 
ENCODER 1 Downsampler 16 512 × 256 

2 DoubleConv 16 512 × 256 
3 Downsampler 64 256 × 128 
4 DoubleConv 64 256 × 128 
5–9 5 × Non-bt-1D 64 256 × 128 
10 Downsampler 128 128 × 64 
11 DoubleConv 128 128 × 64 
12–21 10 × Non-bt-1D 128 128 × 64 

DECODER 22 Upsampling 64 256 × 128 
23–24 2 × Non-bt-1D 64 256 × 128 
25 Upsampling 16 512 × 256 
26–27 2 × Non-bt-1D 16 512 × 256 
28 Upsampling 2 512 × 512 

The coding part of the network includes layers 1–21. Downsampler is used in layers 1, 3 and 10, 
and the specific implementation is to optimize the model with a convolutional kernel size of 3 × 3, step 
size of 2, maximum pooling operation and batch normalization (BN). The function of Downsampler 
enables the underlying unit to obtain more semantic information, which helps the network to extract 
texture and structure information, ignore useless features and improve the focus of the model. The 
DoubleConv module is used in layers 2, 4 and 11. DoubleConv uses successive double convolution 
operations to enhance the network for edge information extraction and texture information 
differentiation. Compared with the traditional convolution operation, it fully utilizes the information 
of feature channels and improves the overall performance of the network. In layers 5–9 and 12–21, 
Non-bt-1D operations are used to compensate for the information difference between low-level detail 
information and high-level information. The specific implementation has been designed with five 
parallel branches with dilation rates of 2, 4, 8, 16 and 32. Non-bt-1D is able to expand the feature 
acceptance field without sacrificing the feature spatial resolution, and to densely connect the cavity 
convolution with different dilation rates to obtain a larger range of perceptual fields. Non-bt-1D is also 
able to transfer the feature information from the bottom layer directly to the corresponding top layer 
and perform the feature information connection operation. This actually creates a channel for message 
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transmission between low-level and high-level information, which can greatly reduce the time it takes 
for the model to achieve convergence. 

The decoding part of the network includes layers 22–28. Since the semantic segmentation task 
needs to keep the output results invariant in terms of spatial resolution, it requires the use of decoders 
to recover the size of the feature maps. Layers 22, 25 and 28 use Upsampling, and they are responsible 
for resizing the number of feature map channels to a specific size. In layers 23, 24, 26 and 27, the Non-
bt-1D module continues to be used to improve the decoding performance of the model. Because Non-
bt-1D can reduce the information loss in the road network extraction process and maximize the 
retention of key features in the images, which ensures that the final output of the model can achieve 
higher recognition accuracy and effectively complete the target of extracting roads. 

2.3. Residual structure 

The residual structure of Non-bottleneck-1D designed for the network presented in this paper is 
shown in Figure 3. This structure is different from the two-dimensional convolution of the traditional 
residual neural network’s residual structure. It uses the more advanced one-dimensional dilated 
convolution at present. The advantage of this design is that, by reducing the number of parameters and 
increasing the nonlinear layer, the range of the receptive field can be expanded, and each convolutional 
output can also cover a wide range of semantic information to improve the accuracy of semantic 
recognition. Compared with ordinary convolution operations, dilated convolution has an additional 
expansion rate parameter. This parameter refers to the number of intervals between convolution cores, 
where the hole area is filled with 0 and the expansion rate of ordinary convolution operations is 1. The 
receptive field of cavity convolution is calculated as shown in formula (1): 

 𝐹 = 𝑘 + (𝑘 − 1)(𝑟 − 1) (1) 

In the formula, 𝑘 is the size of the convolutional kernel and 𝑟 is the expansion rate. The dilated 
convolution in the residual structure used in this paper adopts the parallel way, as shown in Figure 4, 
where a, b, c and d respectively represent the receptive fields with sizes of 5, 9, 17 and 33 that can be 
received at the expansion rates of 2, 4, 8 and 16. 

 

Figure 3. Residual structure. 
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Figure 4. Dilated convolution. 

2.4. BN and dropout 

BN is a special structure in a neural network [24]. BN has the following advantages when building 
neural networks. First, after adding a BN layer, the training process of the network will be more stable 
and the training speed will be improved. BN adopts two methods of normalization and linear change, 
which can make the mean and variance of network input data more stable and thus allow the lower 
structure to eliminate the influence of network input changes in the lower structure, promote the 
independent learning of each layer and accelerate the convergence speed of the network. Second, BN 
can optimize parameter adjustment, reduce the dependence of the model on network parameters and 
improve the generalization ability of the model. After the BN layer is used, it effectively alleviates the 
problem that the fine-tuning of parameters will enlarge with the increase of network depth, and it 
makes the update status of parameters more stable. Finally, BN can effectively suppress the problem 
of gradient disappearance. It can transform the distribution of the eigenvalues of each layer of the 
network into a standard normal distribution so that the eigenvalues are maintained in the range where 
the activation function is sensitive to input, thus avoiding the gradient vanishingin the training process 
of the network. 

Dropout is a method proposed to avoid overfitting of the model. In the process of network training, 
if the model is large and the data size is small, it is easy to cause overfitting. Dropout will randomly 
discard the training units of the network according to a certain probability, which can reduce the 
dependence of each neuron so that the network can learn more robust features. After the introduction 
of Dropout, each node of the neural network can play a role, effectively reducing the number of 
intermediate features and realizing the regularization of the neural network. 

2.5. Loss function 

The loss function used in this work is CrossEntropyLoss, and its calculation method is shown in 
formula (2): 

 𝐶 = − ∑ [𝑦 ln �́� + (1 − 𝑦) ln(1 − �́�)] (2) 

In the formula, 𝑥 represents the sample, 𝑛 represents the total number of samples, 𝑦 represents 
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the actual value and �́� represents the output value. The cross-entropy loss function is mainly used to 
evaluate the close degree between the output value of the neural network and the actual value. 
According to the difference between the “distribution of the learning model” and the “distribution of 
the training data”, when the cross-entropy value is the lowest, the neural network can be considered to 
have learned the model with the best performance. At the same time, when using a sigmoid function 
to optimize the gradient descent problem, the cross-entropy loss function can also control the output 
error to avoid the decrease of the learning rate. 

2.6. Morphological filtering 

After using the network model to extract the road network initially, we applied the open operation 
method of morphological filtering to remove the noise in the image, so as to obtain a clearer road 
network extraction result.  

The open operation is a filter based on a geometric operation whose equation is expressed as 
shown in formulas (3)–(5): If the set 𝐴 and 𝐵 satisfy formula (3), then 𝐴 is said to be dilated by 𝐵; If 
formula (4) is satisfied, then 𝐴 is said to be eroded by 𝐵; If formula (5) is satisfied, then the image 𝐵 
is said to do the open operation on the image 𝐴. The open operation adopts the processing method of 
erosion before dilation, whereby the erosion operation can make the target area in the image smaller 
and eliminate small and meaningless objects [25], while the dilation operation can fill the holes in the 
target and eliminate the existing particle noise. In general, the open operation can eliminate the tiny 
objects in the image and separate them in a thin place, and it can also smooth the boundary of the 
object without significantly changing the area, effectively solving the “burr” problem that often occurs 
in road extraction. The effects of open operation in this paper are shown in Figure 5. 

 𝐴⨁𝐵 = 𝑥: 𝐵 ∩ 𝐴 ∅  (3) 

 𝐴⨀𝐵 = 𝑥: 𝐵 ⊆ 𝐴  (4)  𝐴 ∘ 𝐵 = (𝐴⨀𝐵)⨁𝐵 (5) 

 

Figure 5. Filtering effect. 
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3. Experimental results and analysis 

3.1. Dataset processing 

The remote sensing dataset used in the experiment was selected from BigmapGIS, and it included 
1250 images. The image resolution is 512 × 512, and each image has a corresponding binary label. 
The dataset covers large cities, small counties, urban suburbs and mountainous areas. The selected 
image backgrounds are complex, and they include interference factors such as buildings, rivers, 
bridges, vegetation and shadows. Because the training dataset wass relatively small, the dataset was 
expanded by applying vertical and horizontal image flipping. 

3.2. Experimental configuration 

Training and testing were conducted on a Windows 11 with a Python deep learning platform. The 
processor was AMD Ryzen 5800 H, the graphics card was NVIDIA GeForce RTX 3060 and the 
computer memory size was 16 GB. In the training phase, the epoch number was set to 100, the batch 
size was set to 5 and the optimizer was the Adam optimizer; the learning rate was dynamically set, 
with an initial value of 0.001, followed by decreases with the increase of the epoch number. 

3.3. Experimental results 

3.3.1. Visual comparison 

To test the feasibility of our proposed method, the U-net and ERFNet were compared with the 
extraction performance of the RFDNet used in this work (using the same dataset and both denoised). 
The test images included both urban and rural areas, and the image backgrounds covered road targets 
such as urban main roads, highways and rural dirt roads, as well as distracting ground objects such as 
rivers, vegetation, shadows and buildings. In the satellite images, the rivers that appear are marked 
with blue wireframes, and, in the output result map, the areas with poor extraction results are marked 
with red wireframes. 

From Figure 6, it can be found that our proposed method can extract complete and clear road 
areas from remote sensing images covering various complex scenes. In particular, RFDNet can extract 
road targets more completely in regions with dense road networks, such as Regions 1, 5 and 8, 
compared with the other two models, as shown by the accurate identification of edge regions and 
narrow road targets and the less occurrence of broken and isolated road regions in the extraction results. 
In the images with rivers, such as Regions 4, 6 and 7, RFDNet is able to avoid the incorrect extraction 
of rivers, unlike the other two models. The reason for this is that RFDNet increases the number of 
downsampling operations and designs the DoubleConv module to fully combine the texture 
information, edge information and deep semantic information of the shallow feature map so that the 
high-dimensional road feature information can be extracted more accurately. 

For the poorly recognized road regions of RFDNet, such as the parts marked with red boxes in 
Regions 1, 3 and 8, the reason may be due to the different road levels and the different labeling 
standards used in the process of labeling the images, leading to the overfitting of the model training 
data, which thus caused the model to miss the extraction of lower-level roads. 
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Figure 6. Comparison of experimental results. 

3.3.2. Quantitative comparison 

Road extraction is essentially a binary problem. The pixel value of the road area is positive, and 
the pixel value of the background area is negative. In this work, the commonly used evaluation methods 
of semantic segmentation, 𝐹  score and 𝐼𝑜𝑈 were used to quantitatively evaluate the extraction effect 
for roads. The calculation formula is as follows: the accuracy, 𝑃, represents the proportion of the real 
road area in the extracted road area; the recall rate 𝑅 represents the proportion of real roads in extracted 
roads; 𝐹  represents the weighted average of the accuracy and recall rate; 𝐼𝑜𝑈 represents the ratio of 
intersection to union between the extracted road area and the real road area. When the two areas overlap 
completely, the IoU is the largest, at 1. 𝛼  represents the area correctly identified as a road; 𝛼  
represents the area where the background is recognized as a road; 𝛼  refers to the area where the road 
is misjudged as the background. 

 𝑃 =  (6) 

 𝑅 =  (7) 

 𝐹 = × ×  (8) 

 𝐼𝑜𝑈 =  (9) 

As shown in Table 3, RFDNet achieved the best performance among the three models, with an 
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average F1 score and IoU score of 93.37% and 77.35%, respectively, on the eight test results, and it 
achieved the highest score on six test results; although the scores for Regions 2 and 5 tests were not 
as good as ERFNet, the difference was small. In Regions 4, 6 and 7, the F1 and IoU scores of 
RFDNet (92.15%, 92.91%, 94.70 and 73.44%, 78.54%, 78.39, respectively) were much higher 
than those of U-net (88.29%, 88.15%, 91.86% and 66.42%, 59.48%. 62.17%, respectively) and 
ERFNet (89.46%, 88.63%, 88.83% and 68.34%, 61.33%, 62.85%, respectively), which is due to the 
fact that RFDNet is able to distinguish well from the other two models when there are interfering 
targets with linear features such as rivers in these three test images, once again demonstrating the 
superiority of RFDNet. 

Table 3. Performance comparison for different models. 

Model parameter U-Net ERFNet RFDNet 
F1/% IoU/% F1/% IoU/% F1/% IoU/% 

Region 1 78.64 57.32 90.08 65.15 93.17 76.94 
Region 2 91.44 72.68 95.86 79.04 95.66 78.07 
Region 3 81.05 60.24 92.28 76.18 93.14 77.71 
Region 4 88.29 66.42 89.46 68.34 92.15 73.44 
Region 5 91.27 71.14 92.91 78.01 92.56 77.87 
Region 6 88.15 59.48 88.63 61.33 92.91 78.54 
Region 7 88.04 62.17 88.83 62.85 94.70 78.39 
Region 8 91.86 75.69 92.45 77.74 92.66 77.82 
Mean 87.34 65.64 91.31 71.08 93.37 77.35 

4. Application on public datasets 

To indicate our method’s application scope and efficiency for different image types, we selected 
three public datasets (CHN-CUG, GF-2 and Massachusetts) for testing. The CHN6-CUG 
(https://grzy.cug.edu.cn/zhuqiqi) dataset is a remote sensing image dataset released by China 
University of Geosciences (Wuhan, China), and it contains six bands, namely, blue, green, red, near-
infrared, short-wave infrared and short-medium-wave infrared. The GF-2 
(http://www.aircas.cas.cn/index_73758.html) dataset is provided by China National University of 
Defense Technology and China Key Laboratory of Remote Sensing Satellite Radiation Measurement 
and Control Technology, and it contains eight optical bands and one Synthetic Aperture Radar (SAR) 
band. The Massachusetts (https://www.cs.toronto.edu/~vmnih/data/) dataset is a high-resolution 
remote sensing image dataset collected by the city of Cambridge, Massachusetts, USA in cooperation 
with Massachusetts Institute of Technology (MIT), and it contains three bands, i.e., red, green and blue. 
For other specific information about these three datasets, please refer to Table 4. In satellite images, as 
shown in Figure 7, the rivers that appear are marked with blue wireframes, while, in masked images, 
the parts that are clearly missing in road extraction are marked with red wireframes. Through visual 
analysis of the road extraction results from nine satellite images, it can be seen that our method can 
clearly and completely extract road targets, and it can also effectively avoid false extraction for 
interference targets such as rivers. The application on different datasets shows that RFDNet exhibits 
good generalization ability for various region types. 
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Figure 7. Public dataset test results. 

Table 4. Dataset information. 

Dataset Band wavelength (µm) Spatial resolution (m) Launched country Date 
CHN6-CUG 0.45–2.35 1 China 2010 
GF-2 0.45–0.90 0.8 China 2014 
Massachusetts 0.52–0.90 1 America 1994 

5. Conclusions 

We constructed RFDNet to extract road information from remote sensing images based on a deep 
learning framework through a series of operations such as image acquisition, labeling, data 
enhancement, network structure design and optimization, model training and testing and 
morphological filtering to reduce noise and evaluate the extraction effect. In the selection of model 
type, considering the traditional full convolutional neural network (e.g., U-net) with more layers, 
which tends to cause slow model convergence, high computational cost consumption and poor ability 
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to recognize multi-scale information, we decided to use the more concise and efficient residual network. 
However, the residual neural network (e.g., ERFNet) relies too much on the residual structure and is 
prone to losing edge detail information and misclassifying linear features (e.g., identifying rivers as 
roads), which causes problems such as missing extraction and false extraction. For this reason, we 
have proposed RFDNet based on ERFNet. By designing the DoubleConv module and optimizing the 
network structure and learning strategy, RFDNet allows the model to learn more abstract deep semantic 
information so that the model can effectively fit roads with various complex backgrounds. In particular, 
the DoubleConv module increases the perceptual field of the model feature points without losing edge 
information, which improves the accuracy of road extraction; and, for similar linear features, 
DoubleConv identifies texture differences by applying successive double convolution operations, 
which can distinguish interference targets such as rivers. The output image of the network model 
usually has more noise points, and we use morphological filtering to perform the denoising operation 
to make the extracted roads clearer and smoother.  

The final experimental results show that our method can achieve road extraction for different 
environmental backgrounds, and the accuracy of extraction is higher than that for U-net and ERFNet, 
as shown by it having the highest F1 and IoU scores in the evaluation results. Future research will 
focus on the design of an algorithm to extract road areas with severe occlusions; in addition, whether 
RFDNet can be applied in the field of medical image segmentation will also be our research direction. 
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