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Abstract: To address the problem that task-irrelevant objects such as cars, pedestrians and sky, will in-
terfere with the extracted feature descriptors in cross-view image geo-localization, this paper proposes
a novel method for cross-view image geo-localization, named as AENet. The method includes two
main parts: an attention efficient network fusing channel and spatial attention mechanisms and a triplet
loss function based on a multiple hard samples weighting strategy. In the first part, the EfficientNetV2
network is used to extract features from the images and preliminarily filter irrelevant features from the
channel dimension, then the Triplet Attention layer is applied to further filter irrelevant features from
the spatial dimension. In the second part, a multiple hard samples weighting strategy is proposed to en-
hance the learning of hard samples. Experimental results show that our proposed method significantly
outperforms the state-of-the-art method on two existing benchmark datasets.
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1. Introduction

Image-based geo-localization refers to finding out the geographic coordinates of a given query im-
age [1] and has broad application prospects in many fields such as autonomous driving [2], augmented
reality [3] and mobile robotics [4].

The traditional image-based geo-localization method is to match the query image of the ground
view with the geo-tagged ground view image from the reference database. This method is also dubbed
as ground-to-ground image geo-localization [5–8]. However, since most of the available reference im-
ages are captured in densely populated areas, e.g., famous tourist attractions, business zones, etc., few
or no reference images are captured in sparsely inhabited and remote areas. Therefore, the ground-to-
ground image geo-localization method often fails in sparsely populated and remote areas. In recent
years, with the rapid development of the space industry, high-resolution satellite images with GPS
(Global Positioning System) tags have been easily obtained. Cross-view image geo-localization means
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matching the query ground image with the reference satellite images to determine its geographic lo-
cation. With the advantages of easy accessiblity and wide coverage of the reference satellite images,
cross-view image geo-localization can be extended to large areas or even globally. Therefore, cross-
view image geo-localization has attracted wide attention from researchers and has become a primary
research direction in current image geo-localization.

The early cross-view image geo-localization methods mainly match the hand-crafted features of the
ground images and satellite images, then use the position tags of the satellite image matched best as
the estimated position of the ground image [9–12]. For example, in 2010, Noda et al. [9] extracted the
SIFT [13] and SURF [14] feature descriptors from the images captured by the in-vehicle camera and
GPS satellite images, and matched them to localize the vehicle. In 2011, Lin et al. [12] extracted four
feature descriptors such as HoG [15], self-similarity [16], gist [17], and color histograms from ground
and satellite images for localization. However, due to the significant geometric differences between
satellite images and ground images of the same geographic location, traditional hand-crafted features
lack viewpoint invariance. They cannot bridge the spatial layout differences between the ground image
and the satellite image, i.e., the relative position of the same objects in different views may be different.
This makes it so that the methods based on traditional hand-crafted features geo-localize the ground
image with very low accuracy.

Inspired by the success of deep learning in many computer vision tasks, Workman and Jacobs [18]
first applied deep learning methods to cross-view image geo-localization in 2015. Since then,
cross-view image geo-localization based on deep learning has become the mainstream method in this
direction, and researchers have proposed a series of deep models for cross-view image geo-localization
with excellent performance. According to whether the image viewpoint is transformed before feature
extraction, these models can be roughly classified into two categories: end-to-end-based methods and
viewpoint transformation-based methods.

The end-to-end-based cross-view image geo-localization method directly feeds the ground and
satellite images to the deep network to extract discriminative image features for cross-view local-
ization. For example, in 2015, Workman and Jacobs [18] directly used the pre-trained AlexNet [19]
to extract deep features of ground and satellite images for cross-view image matching. After that,
researchers proposed several end-to-end deep networks such as CVM-Net [20], GeoCapsNet [21],
Siam-FCANet [22], and CVFT [23], which used VGG [24] or ResNet [25] as the backbone to ex-
tract the deep features of images. Such methods mainly rely on the image appearance content to learn
discriminative image features, ignoring the impact of spatial layout differences between ground and
satellite images. This might make the ground image be geo-localized to the wrong position, where the
satellite image contains many semantic objects similar to them in the ground image.

The viewpoint transformation-based cross-view image geo-localization method first transforms
ground or satellite images to another viewpoint, then inputs the transformed image and another un-
transformed image into a deep network for matching. For example, in 2019, Regmi and Borji [26] fed
the ground image into cGANs [27] to synthesize its corresponding satellite image and used this syn-
thesized satellite image as auxiliary information to minimize the difference between the query ground
image and the satellite image. Shi et al. [28] applied a polar transform to satellite images to gen-
erate pseudo-ground panoramic images, thereby bridging the spatial layout discrepancies. Later, the
polar transform algorithm was adopted by many cross-view image geo-localization methods [29–31],
while [32] fused the GAN network synthesis method [26] and the polar transform algorithm [28] on
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satellite images to synthesize the corresponding ground panoramic image closer to the real ones. Such
methods achieve spatial layout alignment between ground image and satellite image features through
viewpoint transformation, reduce the geometric differences caused by the drastic changes of two view-
points, and have significantly increased retrieval accuracy compared to other methods.

In summary, cross-view image geo-localization methods based on viewpoint transformation have
become the main development direction in current cross-view image geo-localization research. How-
ever, such existing methods do not consider the interference of irrelevant contents in ground or satellite
images on features. For example, the ground images may contain transient moving objects and back-
grounds such as cars, pedestrians and sky, and the satellite images may contain redundant content
beyond the coverage of ground images due to their wide range of coverage. These task-irrelevant con-
tents will interfere with the extracted features and reduce their discriminative power, thus seriously
affecting the accuracy of cross-view image geo-localization in the real environment.

To address the above problems, this paper proposes a novel cross-view image geo-localization
method, named AENet. Firstly, the EfficientNetV2 [33] network containing the channel attention
mechanism as the backbone is used to extract useful local features. Then the task-irrelevant features
are further filtered out from spatial dimensions by a Triplet Attention [34] layer. Moreover, this paper
proposes a multiple hard samples weighting (MHNW) strategy, which enhances the learning of the
network on multiple hard negative samples in each training batch. The contributions of this paper are
as follows:

• For the cross-view image geo-localization task, we introduce the EfficientNetV2 network to the
cross-view image matching task, and propose a novel cross-view image geo-localization method
AENet, which could focus more on useful features by filtering irrelevant features from the channel
and spatial dimension.
• A multiple hard samples weighting (MHNW) strategy is proposed to optimize the training of the

network, which emphasizes the influence of multiple hard samples when calculating the loss in
the current batch, thus enhancing the learning ability of the network for cross-view image pairs.
• Extensive experiments on two benchmark datasets show that the proposed AENet performs sig-

nificantly better than state-of-the-art algorithms for cross-view image geo-localization.

The rest of this paper is organized as follows. In Section 2, related works are discussed. Section 3
describes the detailed structure of AENet and the basic principle of MHNW strategy. Section 4 supplies
the experimental results of AENet and the existing cross-view image geo-localization methods. Section
5 summarizes the paper and discusses the direction of further research.

2. Related works

In the existing cross-view image geo-localization methods based on deep learning, the geo-
localization networks can be classified as four common structures mainly composed of transforma-
tion module, feature extraction CNN module, feature processing module and loss function module (as
shown in Figure 1). By realizing each module in different ways under different composition structures,
researchers have proposed a series of high-performing cross-view image geo-localization methods as
shown in Table 1. The specific roles of each module and the existing realization are described in detail
below.
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(a)
(b)

(c) (d)

Figure 1. Common network structures in cross-view image geo-localization.

Table 1. Overview and properties of cross-view geo-localization methods.

Method Publication
View
Transform
Module

Feature
Extraction
Module

Feature Processing Module Loss Function

Vo and Hays [35] ECCV2017 - AlexNet Orientation Regression DBL Loss
Workman and Jacobs [18] ICCV2015 - AlexNet - Euclidean Loss
Liu and Li [36] CVPR2019 - VGG - WSMRL
CVM-Net [20] CVPR2018 - VGG NetVLAD WSMRL
CVFT [23] AAAI2020 - VGG Optimal Feature Transport WSMRL
GeoCapsNet [21] ICME2019 - ResNet Capsule Network Soft-TriHard Loss
Siam-FCANet [22] ICCV2019 - ResNet FCBAM HERTL
Rodrigues and Tan [37] WACV2021 - ResNet Multi-scale Attention Contranstive Loss
SAFA [28] NeurIPS2019 PT VGG Spatial-aware Feature Aggregation WSMRL
DSM [29] CVPR2020 PT VGG Dynamic Similarity Matching WSMRL
LPN [31] TCSVT2021 PT VGG Sequential/Column Partition WSMRL
Polar-L2LTR [30] NeurIPS2021 PT ResNet Transformer WSMRL
Regmi and Shah [26] CV2019 GANs GANs Feature Fusion WSMRL
Toker et al. [32] CVPR2021 PT+GANs ResNet+GANs Spatial Attention WSMRL

PT : polar transform, DBL : distance-based logistic, WSMRL : weighted soft-margin ranking loss, HERTL : hard exemplar
reweighting triplet loss

Viewpoint transformation module: This module mainly transforms the ground view image to the
corresponding satellite view image, or vice versa, to reduce the huge difference caused by the drastic
difference between the two viewpoints. As can be seen in Table 1, most existing methods directly
input the ground and satellite images into a CNN (convolutional neural network), and their network
structures are shown in Figure 1(a),(c). Since 2019, researchers began to transform the input ground
or satellite images to the image in another viewpoint, and there are two main methods of viewpoint
transformation. One is to transform the ground view image to the satellite view image by cGANs
network [26], as shown in Figure 1(b). The other is to apply a polar transformation on the satellite
view image to obtain the pseudo-ground panorama image [28], as shown in Figure 1(d).
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Feature extraction CNN module: The role of this module is to extract the local features of the
query ground image and the reference satellite images separately through the deep network. In the
existing works, the following four CNN networks are commonly used to extract the local features:
the first one is the AlexNet used by methods [18] and [35], the second one is the VGG or its fine-
tuned version used by methods [20, 23, 28, 29, 31, 36], the third one is the ResNet used by methods
[21, 22, 30, 37], the fourth one is the GAN used by methods [26, 32].

Feature processing module: This module is used to process the local features extracted by the
feature extraction module to obtain more discriminative image descriptors. As shown in Table 1,
most of the methods process the extracted local features, except the methods in [18, 36]. The adopted
feature processing methods can be roughly divided into two categories: feature processing based on
attention mechanisms and feature processing based on spatial layout learning. The attention-based
feature processing method mainly learns the salient image features through the attention mechanism
[22, 28, 30, 32, 37]. The feature processing module based on spatial layout learning aims at reducing
the spatial layout difference between ground image’s local features and satellite image’s local features
by learning the orientation or spatial position relationships [21, 23, 29, 31, 35].

Loss function module: This module aims to measure the similarity between the features extracted
from the query ground image and the reference satellite image. The goal is that, the closer the geo-
graphic location of the two images, the higher the similarity. In 2017, Vo and Hays [35] proposed a
function called Distance-based Logistic loss (DBL loss). In 2018, Hu et al. [20] proposed a loss func-
tion called weighted soft-margin ranking loss (WSMR) based on DBL loss to speed up the training
of the network. Moreover, Hu et al. [20] used a hard sample mining strategy proposed by Hermans
et al. [38] to find the hard sample pairs of satellite image and ground image which do not match but
look alike, then repeatedly learned the hard sample pairs to improve the generalization ability of the
network. As can be seen from Table 1, the loss function proposed by Hu et al. [20] has been used by
many methods since then [21, 23, 26, 28–32, 36]. Additionally, Cai et al. [22] proposed a hard exem-
plar reweighting triplet loss function to mine valuable hard samples for the network to learn and thus
improve the performance of the network.

In summary, in existing deep learning-based cross-view image geo-localization methods, the de-
signed network structures can be summarized as a framework similar to the Siamese network, as shown
in Figure 2. The framework consists of four parts: viewpoint transformation module, feature extraction
CNN module, feature processing module, and loss function module.

View Transform

Module

CNN

CNN

Feature Extraction 

Module

Feature Processing 

Module

Processing

Processing

Final DescriptorLocal Descriptor Loss

Figure 2. Overall framework of the cross-view image geo-localization method.
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3. AENet framework

In image geo-localization tasks, objects such as cars, pedestrians and sky in images not only do not
provide useful information, but may also interfere with the extracted image descriptor. The shallow
networks can only learn features such as contour, color and texture, but can not obtain the high-level se-
mantic features which can be used to discriminate the above objects. Although the deep networks such
as ResNet and VGG commonly used in existing methods can learn richer high-level semantic features,
it is still difficult to focus on the high-level semantic features important for image geo-localization.
Therefore, in order to improve the localization accuracy, how to pay more attention to the objects re-
lated to geo-localization in the learning process for networks and eliminate the interference of useless
features as much as possible, is an important problem to be solved in this section.

To address the above problems, this section proposes a cross-view image geo-localization method
based on attention efficient networks, as shown in Figure 3. Firstly, the polar transformation is used
to transform the satellite images into pseudo-ground panoramic images. Then the pseudo-ground
panoramic image and the actual ground panoramic image are separately input into an attention effi-
cient network which fuses the channel and spatial attention mechanisms, called AENet. It uses Effi-
cientNetV2 to extract the high-level semantic features of the input images, then leverages the Triplet
Attention (TA) module to determine the importance of different semantic features in order to quickly
focus on the semantic features that are important for image geo-localization. Finally, in the loss func-
tion module, we first determine whether the number of hard samples is >1. If it is >1, use loss function
based on a multiple hard samples weighting (MHNW) strategy to measure the similarity between
the high-level semantic features extracted from the actual ground panoramic images and the pseudo-
ground panoramic images. If it is not, use weighted soft-margin ranking loss (WSMR) proposed by
Hu et al. [20].

Figure 3. Overall architecture of AENet.

The core of the proposed method is the attention efficient network fusing channel and spatial at-
tention mechanisms, which is used to extract the high-level semantic features of the actual ground
panoramic image and the pseudo-ground panoramic image features. Although the pseudo-ground
panoramic images of satellite images obtained by a polar transform are similar to the actual terres-
trial panoramic images, there are still obvious visual differences. For example, the pseudo-ground
panoramic image is difficult to clearly display, or even fails to show the facade of objects which are
visible from the ground view but difficult to see from the satellite view. Therefore, we do not share
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the parameters in the two branches extracting the high-level semantic features from the pseudo-ground
panoramic image and the actual ground panoramic image.

The subsequent subsections describe the following three key modules of the proposed method in
detail: high-level semantic feature extraction module, high-level semantic feature optimization module
and loss function module.

3.1. High-level semantic feature extraction

In cross-view image matching tasks, one way to improve the accuracy is to optimize the CNN
used in the feature extraction module. There are three factors that affect the performance of the CNN,
including the depth of the network, the width of the network and the resolution of the input image.
Increasing the values of these three factors can obtain richer and more complex features, but recklessly
increasing them may magnify training difficulty and computational cost. In recent years, the Efficient-
Net networks [33, 39] have achieved great success in image classification. The improved version of
EfficientNet, viz. EfficientNetV2, has become the most accurate model compared to other models with
the same number of parameters. Compared to ResNet and VGG, EfficientNetV2 is generated by using
a neural network structure search technique [40,41] to automatically learn and balance the above three
factors. It mainly consists of Fused-MBConv blocks [42] and MBConv [39, 43] blocks, as shown in
Figure 4.

Figure 4. The structure of EfficientNetV2 network.

In this paper, the EfficientNetV2 is introduced into the field of cross-view image geo-localization.
It is used as the backbone in the feature extraction module to extract rich high-level semantic features.
This is mainly because its MBConv module can use the channel attention module SENet [44] to initially
filter the features from the channel dimension. The structure of the MBConv is shown in Figure 5,
which mainly consists of a 1 × 1 convolution, Depthwise convolution, SENet, 1 × 1 convolution, and
residual connection, where the SENet is shown in the bottom part of Figure 5.
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Figure 5. MBConv and SENet structure.

In the MBConv module, the Depthwise convolution can preserve the information of each channel
as much as possible by adopting a separate convolution kernel for each channel. This can extract
information such as the contour, shape and color of each object in the image as much as possible.
We denote the output feature map of the Depthwise convolution as fH×W×C. SENet performs global
average pooling on fH×W×C to obtain a feature map f1×1×C of size 1 × 1 × C. This could compress the
feature space dimension to capture the energy in each feature channel dimension and thus obtain the
high-level semantic features. Then, f1×1×C is fed to two fully connected layers to model the correlation
between channel features and get the weight of each channel, and then obtain the weight mask by
sigmoid activation. Specifically, task-irrelevant features have smaller weights, even close to 0; task-
relevant features have larger weights, close to 1. Finally, fH×W×C is multiplied by the weight mask
multiplication to generate the final weighted feature map f

′

H×W×C.

3.2. High-level semantic feature optimization

Although the EfficientNetV2 can better extract the semantic object characteristics in images, the
importance of different semantic objects for image geo-localization varies, and cross-view image geo-
localization also needs to consider the spatial layout relationship between the semantic objects in im-
ages. For example, when judging whether the ground image and the satellite image (as shown in Figure
6) belong to the same geographical location, people usually first judge whether the two images con-
tain geographical landmarks with the same shape and color, such as houses, highways and rivers, and
ignore the objects that are not geographically representative, such as vehicles and pedestrians, then
determine whether the two images belong to the same geographical location according to whether the
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spatial layout relationships between the same content objects in two images are consistent (as shown
in Figure 6(b),(c), the highways in both images are in the middle of the forest and the river).

Figure 6. Cross-view image pairs.

The attention mechanism can make the network focus more on task-relevant content objects by as-
signing different weights to different regions of the feature maps. Therefore, in this paper, we choose
to add the attention mechanism layer after the EfficientNetV2 network. The traditional attention mech-
anism module BAM [45] and CBAM [46] fuse channel and spatial attention mechanisms, but the
channel attention and spatial attention of both are separated. However, in 2021, Triplet Attention (TA)
proposed by Misra et al. [34] establishes the connection between channel attention and spatial atten-
tion through rotation operations and residual transformations to capture the dependency between the
spatial dimension and the channel dimension of the input tensor, and let the network quickly focus on
the task-relevant object.

In view of this, this subsection chooses to utilize the Triplet Attention module to optimize the
high-level semantic features extracted by the EfficientNetV2. The Triplet Attention module is used to
determine the weights of different semantic objects at different positions, so that the finally obtained
descriptors can consider both the importance of different semantic objects and the spatial layout rela-
tionship. The structure of the TA module is shown in Figure 7. For the input local feature map f

′

C×H×W
with a shape of 1280×4×16 extracted by the EfficientNetV2, the TA module first permutes it to obtain
two other feature maps f

′

W×H×C and f
′

H×C×W . Secondly, three feature maps pass through three branches
with the same structure to obtain the attention weighted feature maps f ∗C×H×W , f ∗W×H×C and f ∗H×C×W ,
respectively. For example, in the first branch, the feature map f

′

C×H×W is fed to the max-pooling layer
and the avg-pooling layer, respectively. Then the obtained results are concatenated as f2×H×W with a
shape of 2 × H ×W. Then, f2×H×W is fed to a structure sequence composed of a 7 × 7 convolution, BN
layer and Sigmoid activation to obtain the weight mask. The input f

′

H×W×C is multiplied by the weight
mask to generate the attention weighted feature map f ∗H×W×C. The other two branches are analogous to
the first branch to obtain f ∗W×H×C, f ∗H×C×W . Finally, f ∗W×H×C and f ∗H×C×W are inverted to the feature maps
of original size H ×W ×C and the element-wise addition and average operations are performed on the
three feature maps of the same size to obtain the final image feature descriptors.

Electronic Research Archive Volume 31, Issue 7, 4119–4138.



4128

Figure 7. TA module structure.

3.3. Loss function based on MHNW strategy

As shown in Figure 8(a), if a ground image a is regarded as the anchor image, the corresponding
reference satellite image p (as shown in Figure 8(b)) is called the positive sample of this anchor image
whose Euclidean distance from the anchor image a is da,p, and the satellite images n taken at different
geographic locations are called the negative samples of this anchor image. According to the distance
to the anchor image, the negative samples can be further classified into the following three categories.

(a) Ground Image (b) Satellite Image

(c) Easy Negative (d) Semi-hard Negative (e) Hard Negative

Figure 8. Anchor, positive and negative sample examples.

The sample in the first category is called an easy negative sample, whose Euclidean distance da,n

from the anchor image a is much larger than the Euclidean distance da,p between the anchor a and
the positive sample p. Namely, this negative sample satellite image c should be obviously different
to the anchor ground image a, such as the satellite image in Figure 8(c). Such samples are easily
distinguished by the network.

The sample in the second category is called a semi-hard negative sample, whose Euclidean distance
da,n from the anchor image a is very close to da,p, but still larger than da,p. Namely, this satellite image
sample is similar to the anchor image. For example, the negative sample in Figure 7(d) and the anchor
image a both consist of multiple house buildings. Such negative samples can not be distinguished by
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the network easily.
The sample in the third category is called a hard negative sample, whose Euclidean distance da,n

is smaller than da,p. Namely, this satellite image sample is more similar to the anchor image than the
corresponding reference satellite image. For example, the negative sample in Figure 8(e) is extremely
similar to the ground image a. It is hard to distinguish this positive sample image by the network.

Intuitively, it is expected that the total loss is minimum when the loss between the anchor image and
the positive sample is minimum, and the loss between the anchor image and the hard negative sample
is maximum. Therefore, Hu et al. [20] used the hard sample mining strategy proposed by Hermans
et al. [38] to find the hard negative sample, and proposed the following weighted soft-margin ranking
loss function by synthesising the distances of the positive sample and negative samples to the anchor
image.

LHu = ln
(
1 + e

α
(
da,p−min

n∈B
da,n

))
(3.1)

where da,p is the Euclidean distance between the features of each ground image a and its positive
sample p in the current batch B and α is a weighting parameter used to improve the convergence speed
of the network.

Easy negatives

Semi-hard negatives

Hard negatives

𝑑𝑎,𝑝
𝑎 𝑝

𝑛
𝑑𝑎,𝑛

𝑛1
𝑛2

𝑛3

Figure 9. Illustration of the anchor image with its corresponding three negative samples.

During the training process of the network, we found that, for an anchor image, there may be N
hard negative samples n1, n2, · · · , nN in each batch, as shown in Figure 9. However, the hard sample
mining strategy proposed by Hermans et al. [38] only selects the negative sample which is closest to the
anchor image and ignores other hard negative samples. Thus, in order to make the network learn more
adequately for hard negative samples, we designed a loss function based on multiple hard negative
samples weighting (MHNW) strategy, i.e., when there are several hard negative samples in a batch,
the losses of all these hard negative samples are emphasized. Specifically, for an anchor image a in a
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batch B, first calculate the Euclidean distance between a and all negative samples and take the N hard
negative samples ni (i ∈ N) of the anchor, whose distance from the anchor is da,ni < da,p. Then, the
respective difficulty measure value of each hard negative sample is measured by Di = da,p−da,ni , where
the smaller da,ni , the higher the difficulty. Finally, according to the difficulty of each hard negative
sample ni, compute the weight wi as follows,

wi =
Di

max(Di)
(i ∈ N) (3.2)

Finally, the corresponding loss of each hard negative sample is multiplied by the weights wi. The
obtained results of all samples are summed as the final loss for the batch. Therefore, our loss is defined
as

LMHNW =
1
N

∑
a∈batch

wi ∗ ln
(
1 + eα(da,p−da,ni)

)
, (i ∈ N) (3.3)

4. Experimental results and analysis

4.1. Experimental setup

The performance of the proposed method was tested in the experimental setup as shown in Table 2.
Datasets. The experiments were conducted on two standard benchmark datasets: CVUSA and

CVACT val. The original CVUSA dataset is a large-scale dataset constructed by Workman and Jacobs
[18] which consists of ground and satellite images from all over the U.S.. Zhai et al. [47] selected
35,532 pairs of cross-view images from the original CVUSA dataset for training and 8,884 pairs of
cross-view images for testing. The CVUSA dataset constructed by Zhai et al. has been widely used in
research on cross-view image geo-localization, and thus, in this section, CVUSA denotes the CVUSA
dataset constructed by Zhai et al. CVACT val is a new city-scale cross-view image dataset contructed
by Liu and Li [36], which densely covers the city of Canberra. This dataset provides 35,532 pairs of
cross-view images as the training set and 8884 cross-view image pairs as the validation set. The size
of all input ground and satellite images were resized to 128 × 512.

Network training. The proposed method AENet was implemented in a PyTorch environment and
used a TITAN RTX GPU with 24 GB of memory. The network was initialized with pre-trained param-
eters in ImageNet, then updated by the AdamW optimizer. During the training process, the batch size
was set to 24, the learning rate was set to 0.00001 and the weight decay was chosen to be 0.00005.

Evaluation metric. The top K recall accuracy proposed by Vo and Hays [35] was used as an
evaluation metric. When K is a integer, the top K is the set of the K satellite images whose descriptors
are closest to that of a query ground image. When K is a percentage, the top K is the set of the
K × T (T is the total number of satellite images in the reference satellite image set) satellite images
whose descriptors are closest to that of a query ground image. The top K recall accuracy denotes the
ratio of query images whose corresponding satellite image in top K, and is denoted R@K. In this
section, R@1, R@5, R@10, and R@1% were used to evaluate the performance of cross-view image
geo-localization.
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Table 2. Experimental setting.

Operation Setup
Input Image Size 128 × 512
Dataset CVUSA [47] and CVACT val [36]
Training Strategies Batch size = 24, AdamW Optimizer, learning rate = 0.00001, weight decay = 0.00005
Experimental Platform 24GB TITAN RTX GPU, PyTorch 1.7.1.
Evaluation Protocol Recall accuracy at top K (K ∈ 1, 5, 10, 1%)

4.2. Comparison to the existing methods

The proposed method was compared with several state-of-the-art methods on two standard datasets,
CVUSA and CVACT val, and the experimental results are shown in Tables 3 and 4, respectively. It
can be seen from Tables 3 and 4 that our method has higher recall accuracy than other methods, and
the recall accuracy of our method is significantly improved on the key evaluation metric R@1. On the
CVUSA dataset, our method achieves a recall accuracy of 95.97%, which is 1.92% higher than the
second-best method. On the CVACT val dataset, our method achieves a recall accuracy of 91.78%,
which is 6.89% higher than the second-best method. From the experimental results, it is evident that
our method suppresses the interference of irrelevant features on the extracted feature descriptors, thus
improving the recall accuracy.

Table 3. Comparisons with state-of-the-art methods on the CVUSA [47] dataset.

Model CVUSA
R@1 R@5 R@10 R@1%

Workman and Jacobs [18] - - - 34.30
Zhai et al. [47] - - - 43.20
Vo and Hays [35] - - - 63.70
CVM-Net [20] 22.53 50.01 63.19 93.52
Regmi and Shah [26] 48.75 - 81.27 95.98
GeoCapsNet [21] - - - 98.07
Siam-FCANet34 [22] - - - 98.30
Liu and Li [36] 40.79 66.82 76.36 96.08
CVFT [23] 61.43 84.69 90.49 99.02
SAFA [28] 89.84 96.93 98.14 99.64
DSM [29] 91.96 97.50 98.54 99.67
Toker et al. [32] 92.56 97.55 98.33 99.57
Polar-L2LTR [30] 94.05 98.27 98.99 99.67
Ours 95.97 98.80 99.11 99.84

Table 4. Comparisons with state-of-the-art methods on the CVACT val [36] dataset.

Model CVACT val
R@1 R@5 R@10 R@1%

CVM-Net [20] 20.15 45.00 56.87 87.57
Liu and Li [36] 46.96 68.28 75.48 92.01
CVFT [23] 61.05 81.33 86.52 95.93
SAFA [28] 81.03 92.80 94.84 98.17
DSM [29] 82.49 92.44 93.99 97.32
Toker et al. [32] 83.28 93.57 95.42 98.22
Polar-L2LTR [30] 84.89 94.59 95.96 98.37
Ours 91.78 96.28 97.29 99.29

Electronic Research Archive Volume 31, Issue 7, 4119–4138.



4132

4.3. Ablation experiments

TA module. To evaluate the effectiveness of the TA module, we removed the TA module from the
AENet to obtain a Baseline containing only the EfficientNetV2 network, and trained the Baseline. We
also added BAM and CBAM after Baseline and trained these two networks respectively, denoted as
Baseline+BAM and Baseline+CBAM. The comparison results on CVUSA and CVACT val datasets
are shown in Table 5. From the experimental results, it can be seen that AENet combined with the TA
module achieves the highest recall accuracy on both datasets, reaching R@1 of 95.97% and 91.78%
on CVUSA and CVACT val respectively. This is because the TA module can filter features on spatial
location, allowing the network to focus more on the region of the image that are relevant to the cross-
view image geo-localization task, thus improving the recall accuracy.

Table 5. Ablation experiment of TA module

Model CVUSA CVACT val
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

Baseline 94.06 98.21 98.85 99.80 91.14 96.06 97.02 99.11
Baseline+BAM 89.80 96.58 97.90 99.52 82.21 91.90 94.12 98.01
Baseline+CBAM 90.89 96.93 98.05 99.53 83.13 92.19 94.24 98.21
AENet 95.97 98.80 99.11 99.84 91.78 96.28 97.29 99.29

Loss function based on MHNW strategy. To test the effectiveness of the MHNW strategy pro-
posed in this paper, we conducted ablation experiments on CVUSA and CVACT val datasets according
to whether the MHNW strategy was used or not. The experimental results are shown in Table 6, where
“without MHNW” means that we use the weighted soft-margin ranking loss function based on the
hard sample mining strategy proposed by Hermans et al. [38]. “with MHNW” means that we use the
weighted soft-margin ranking loss function based on the MHNW Strategy. It can be seen from the
results that after using the MHNW strategy, all of four evaluation metrics R@1, R@5, R@10, R@1%
on CVUSA and CVACT val dataset were improved. This shows that the MHNW strategy can enhance
the learning ability of the network by emphasizing multiple hard samples in the training process, and
obtain more discriminative image features.

Table 6. Ablation experiment of MHNW strategy.

Model CVUSA CVACT val
R@1 R@5 R@10 R@1% R@1 R@5 R@10 R@1%

without MHNW 95.56 98.66 99.06 99.83 91.69 96.09 97.26 99.18
with MHNW 95.97 98.80 99.11 99.84 91.78 96.28 97.29 99.29

Complexity and computation cost. In order to compare the complexity and computation cost of
the networks, we provide the number of parameters, GFLOPs (Giga Floating Point Operations per
Second) of SAFA [28], DSM [29] and Polar-L2LTR [30] in Table 7. It can be seen from the results
that the proposed method has lower GFLOPs than the other three networks. In terms of the number
of parameters, the proposed method has many fewer than the Polar-L2LTR method, which has the
second-best performance on recall accuracy, but still needs to be improved compared to SAFA and
DSM methods.
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Table 7. Comparison with previous works in terms of parameters and GFLOPs.

Model Param (M) GFLOPs
SAFA [28] 29.50 15.64
DSM [29] 17.90 7.25
Polar-L2LTR [30] 195.90 44
Ours 40.34 7.14

Visualization analysis. To more intuitively observe the effects of the proposed AENet, we visual-
ized some heat maps of the extracted features. In order to test the superiority of the TA module, we
replaced the TA module in AENet with the classical channel and spatial attention mechanism module
CBAM [46], and then made a comparison. Figure 10 shows the heat maps of features extracted from
ground image by Baseline, Baseline+CBAM and AENet. The darker red the color is, the more atten-
tion the network pays to this part. Figure 10 demonstrates that the AENet can successfully ignore the
transient cars and sky in the image, and pay more attention to the region relevant to cross view image
geo-localization task.

(a) Ground Image (b) Baseline

(c) Baseline+CBAM (d) AENet

Figure 10. Heat map of ground image features.

Figure 11 shows the heat maps of features extracted from a satellite image after a polar transform
by Baseline, Baseline+CBAM and AENet. It can be clearly seen that the AENet can filter out the
redundant content covered by satellite images and focus on the content of common region between
satellite image and ground image.

Moreover, by comparing Figure 10(c) and 10(d), we can see that when processing ground images,
the combination of the EfficientNetV2 and the CBAM can not effectively filter out the moving vehicles.
By comparing Figure 11(c) and 11(d), we can see that, although the combination of the EfficientNetV2
and the CBAM can filter out the redundant content in satellite image, it pays less attention to the region
where useful features are located (green area in Figure 11(c) and red area in Figure 11(d)) than AENet.
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(a) Ground Image (b) Baseline

(c) Baseline+CBAM (d) AENet

Figure 11. Heat map of satellite image features.

5. Conclusions

In this paper, we propose a novel AENet for cross-view image geo-localization, aiming to address
the interference of irrelevant features in the feature extraction process. The proposed AENet can reduce
the interference of irrelevant features by making the network focus more on the useful features through
attention enhancement. In addition, this paper also proposes a MHNW strategy, which can effectively
improve the retrieval accuracy. We tested our method on two existing benchmark datasets, and the ex-
perimental results show that our method significantly improves the cross-view image geo-localization
accuracy. Moreover, one major limitation of the AENet is that it is not applicable to the scenario when
cross-view image pairs’ orientation are not consistent. Therefore, we intend to increase the scenario
applicability of AENet in future work.
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