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Abstract: In this paper, we studied the estimation of a stress-strength reliability model (𝑅 𝑃 𝑋
𝑌  ) based on inverted exponentiated Rayleigh distribution under the unified progressive hybrid 
censoring scheme (unified PHCS). The maximum likelihood estimates of the unknown parameters 
were obtained using the stochastic expectation-maximization algorithm (stochastic EMA). The 
asymptotic confidence intervals were also created. Under squared error and Linex and generalized 
entropy loss functions, the Gibbs sampler together with Metropolis-Hastings algorithm was provided 
to compute the Bayes estimates and the credible intervals. Extensive simulations were performed to 
see the effectiveness of the proposed estimation methods. Also, parallel to the development of 
reliability studies, it is necessary to study its application in different sciences such as engineering. 
Therefore, droplet splashing data under two nozzle pressures were proposed to exemplify the 
theoretical outcomes. 
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1. Introduction  

In reliability study under an ideal state, a set of the complete sample can be observed, and 
experimenters make statistical inferences using the entire data. However, in real life, due to substantial 
improvement of science and technology, we cannot get the adequate number of failure times of some 
units which are put on the life testing experiment. Therefore, censoring schemes are put forward for 
practical significance. The forms of censoring schemes are varied. Type-I and Type-II schemes are the 
two fundamental censoring schemes. Type-I censoring refers to the removal of units that have not 
failed after a preset time T. The Type-II censoring is to discard the remaining units when the number 
of failed units reaches a preset number m. Furthermore, if Type-I and Type-II are combined together 
(see [1]), it is hybrid censoring scheme. The main limitation of the hybrid censoring scheme and its 
generalizations is that a small effective sample size may be acquired. Therefore, Balakrishnan et al. [2] 
proposed Type-I and Type-II unified hybrid (unified Hy) censoring schemes. However, none of these 
censoring schemes (CSs) allows the removal of the units while in a life-test experiment. The 
progressive censoring (PrC) scheme allows the removal of units and observing a certain number of 
failures during the experiment, which makes life testing efficient; see [3]. Later, a generalization of the 
PrC known as the progressive hybrid was proposed in [4]. Needless to say, there has been a great deal 
of research done on estimation problems of different distributions under the above censoring schemes. 
Panahi [5] studied the ML and Bayesian statistical inference problems of unified Hy censored model 
for the Burr Type III distribution. Lee and Seo [6] considered the estimates for the Gompertz 
parameters under PrC sample. Similar tests were considered in [7] for Weibull distribution when right 
CS is available. Starling et al. [8] for improving Weibull distribution using generalized Type-I CS. 
Also, for accelerated life-time reliability model (ALTM), Wang et al. [9] considered estimation 
methods under PrC. In [10] and [11] presented statistical inferences of the ALTM under adaptive type-
I progressively hybrid and unified Hy censoring schemes respectively. Further, Lone et al. [12] 
considered a reliability model based on a unified hybrid censoring scheme. The other developments 
on censoring schemes can be seen in [13,14]. Moreover, the developments and needs in engineering, 
manufacturing and technology inspire more improved censoring schemes (CS). Recently, Gorny and 
Cramer [15] introduced a novel CS called the unified PHCS, which is used in reliability studies as 
follows: An experiment starts with n identical items. The effective number of failures 𝑘 and 𝑚; 𝑘
𝑚   are predetermined, and the Prg 𝑅 𝑅 , 𝑅 , . . . , 𝑅   with ∑ 𝑅 𝑛 𝑚  is also fixed in 
advance. Let 𝑇  and 𝑇  𝑇 𝑇  be the two time points. This experiment will be stopped at 𝑇∗

𝑚𝑎𝑥 𝑚𝑖𝑛 𝑋 : : , 𝑇 , 𝑚𝑖𝑛 𝑋 : : , 𝑇 . So, the joint likelihood function of the three forms of failure 
times is defined as 

𝐿 𝜃|𝑑𝑎𝑡𝑎 ∝ ∏ 𝑓 𝑥 : : 1 𝐹 𝑥 : : 1 𝐹 𝑇 ∗             (1) 

where 𝑄, 𝑇   is 𝑚, 𝑥 : :  , 𝑑 , 𝑇   , 𝑘, 𝑥 : :   and 𝑑 , 𝑇   for cases I, II, III and IV, 
respectively. Figure 1 shows the structure of the unified PHCS. 

The problem of estimating the stress-strength reliability model has received significant interest in 
reliability theory. This reliability system is introduced in [16] and is defined as the probability of the 
strength component (X) overcoming the stress (Y) imposed on it, namely, 𝑅 𝑃 𝑋 𝑌 . Therefore, 
if the stress exceeds the strength, system component will fail, and the probability of not failing of the 
system component is proposed as a measure of system reliability. The reliability model has wide 
applications in different areas of scientific study, such as engineering, medicine, physics, quality 
control and clinical trials. In engineering studies, R gives the probability that the strength of a system 
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component exceeds the stress on the system from external factors. In medical studies, if X represents 
control, and Y represents treatment outcomes, then 𝑅 𝑃 𝑋 𝑌   can be interpreted as the 
effectiveness of treatment. In addition to usages in engineering and clinical studies, the probability R 
comes up in various fields of study, such as bioequivalence assessment [17], heritability of a genetic 
trait [18], etc.  

 

Figure 1. The structure of the Unified PHCS. 

Many researchers have considered the problem of estimating R with complete and censored 
samples. Bhattacharyya and Johnson [19] estimated the multicomponent S-S reliability model. Rao et 
al. [20] considered independent inverse Rayleigh random variables as stress and strength and estimated 
the 𝑅 𝑃 𝑋 𝑌 . Ghitany et al. [21] investigated the S-S reliability model using power Lindley 
distributions. Akgul and Senoglu [22] assumed that stress and strength are random variables following 
Weibull distributions and estimated R using ranked set sampling. Bai et al. [23] investigated a 
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reliability model using progressively interval censored samples from finite mixture distributions. 
Demiray and Kizilaslan [24] estimated an S-S model of a consecutive k-out-of-n system with 
proportional hazard rate family. Asadi and Panahi [25] discussed reliability estimation and presented 
the application of this model in coating processes. Zhang et al. [26] investigated the multicomponent 
reliability model using Marshall-Olkin Weibull distribution. De La Cruz [27] and Wang et al. [28] 
considered the reliability estimation under unit-half-normal and generalized exponential distributions, 
respectively, and Zhuang et al. [29] studied the reliability based on Bayesian deep learning. 

This paper discusses the problem of reliability parameters estimation using the inverted 
exponentiated Rayleigh (IERayleigh) distribution under Unified PHCS. The probability density 
function PDF f .  and CDF F . , of the IERayleigh distribution are given by 

𝑓 𝑥; 𝛼, 𝛽 2𝛼𝛽𝑥 𝑒𝑥𝑝 𝛽/𝑥 1 𝑒𝑥𝑝 𝛽/𝑥 ;    𝑥 0, 𝛼 0, 𝛽 0,    (2) 

and 

𝐹 𝑥; 𝛼, 𝛽 1 1 𝑒𝑥𝑝 𝛽/𝑥 ;    𝑥 0, 𝛼 0, 𝛽 0.             (3) 

The IERayleigh distribution is a widely used life distribution in reliability and life test research, 
especially in analyzing the data of life-testing experiments in physics, medicine, biological sciences 
and engineering sciences. The hazard functions ( 𝐻 𝑥 2𝛼𝛽𝑥 𝑒𝑥𝑝 𝛽/𝑥 / 1 𝑒𝑥𝑝
𝛽/𝑥 ) have non-monotonic forms (see Figure 2), which are quite suitable for data sets with a non-
monotonic failure rate in actual production. For example, this model can be used in evaluating data of 
survival after successful surgery. In this case, the initial risk increases immediately postoperatively for 
possible reasons, and then the risk decreases steadily as the patient recovers. Due to the non-monotonic 
form of the hazard rate, this distribution behaves similarly to some well-known models: namely, the 
log-normal distribution, the inverse Weibull distribution and the generalized inverse exponential 
distribution.  

Since then, IERayleigh has been widely used in many fields. For example, Kayal et al. [30] 
showed that the IERayleigh distribution can be considered in modeling the endurance of deep groove 
ball bearings data. Gao and Gui [31] applied this distribution to carbon fibers data. Panahi and 
Moradi [32] found that the IERayleigh distribution provided a good model for engineering problems, 
such as the maximum spreading diameter of nano-droplet impact on hydrophobic surface. Fan and 
Gui [33] showed that this distribution can be applied in the African aluminum industry.  

Let the model consist of strength variable with 𝐼𝐸𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝛼, 𝛽   and independent stress 
variable with 𝐼𝐸𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝛾, 𝛽 . Then, the S-S reliability model can be written as 

𝑅 𝑃 𝑋 𝑌 𝑃 𝑋 𝑌|𝑌 𝑦
∞

𝑓 𝑥; 𝛼, 𝛽 𝑑𝑥 

                                                                     1 𝐹 𝑥; 𝛾, 𝛽
∞

𝑓 𝑥; 𝛼, 𝛽 𝑑𝑥          (4) 

where, 𝑓 .  and 𝐹 .  are defined in Eqs (2) and (3), respectively. This model is widely utilized in 
reliability engineering to determine the probability of the system working properly. 

Also, the use of different types of data in reliability encourages researchers to study the 
application of reliability models in different sciences. In this study, we try to expand the applications 
of the reliability model in the engineering field. Hence, this study aims to look into the reliability model 
through different estimation methods based on Unified PHCS and consider its application in the 
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splashing data.  

 

Figure 2. The hazard function plot for IERayleigh. 

To the best of our knowledge, no one has applied the IERayleigh distribution to S-S reliability 
model under unified PHCS. That is why we consider the estimation of the reliability model, in the case 
of each component having an IERayleigh distribution with common shape parameter β, and both are 
exposed to unified PHCS. Another importance is the implementation of the obtained methods to the 
splashing diameter data under two pressures. So, this study has novelty with regard to the considered 
S-S reliability model under unified PHCS as well as real data application of the obtained estimates. 

The S-S reliability model parameters are acquired using MLEs. The stochastic EMA is applied to 
attain the MLE of the S-S model. Using the normal approximation, approximate confidence intervals 
for the reliability model’s parameters are obtained. Under the squared error and Linex and generalized 
entropy loss functions, the Bayesian estimates are calculated by Gibbs sampler together with the MeHa 
algorithm. This algorithm is considered to compute the associated credible intervals. The droplet 
splashing data under two nozzle pressures are compared by using the considered S-S reliability model.  

The rest of this paper is organized as follows. The stochastic EMA and ApCIs estimates for the 
reliability model are derived in Section 2. In Section 3, the Bayesian estimates by the Gibbs sampler 
together with the MeHa algorithm under three loss functions are proposed. In Section 4, we offer a 
simulation study, under which the above estimation methods are comparatively analyzed. In Section 5, 
an illustration of how the proposed model and methods may be utilized in engineering problems is 
presented. A summary and some conclusions are given in Section 6. 

1.1. Nomenclature and Acronyms 

Approximate Confidence Intervals ApCIs 
Accelerated Life-Time Reliability Model ALTM 
Bayesian Estimates BEs 
Censoring Scheme CS 
Credible Intervals CrIs 
Coverage Probabilities CP 
Generalized Entropy GeE 
Highest Posterior Density HPD 
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2. Maximum likelihood estimation 

In this section, MLEs of the unknown parameters of reliability model are evaluated based on the 
unified PHC sample. Let 𝑋

⎴
𝑋 : : , . . . , 𝑋 : :  and 𝑌

⎴
𝑌 : : , . . . , 𝑌 : :  be unified 

PHCS samples from 𝐼𝐸𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝛼, 𝛽   and 𝐼𝐸𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝛾, 𝛽  , respectively. Then, the likelihood 
function of the observed sample is attained as 

𝐿 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 ∝ ∏
: :

𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝜉
: :

1

𝑒𝑥𝑝 𝜉
∗

∏
: :

𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝜉
: :

1

𝑒𝑥𝑝 𝜉
∗

                    (5) 

Important Sampling ImS 
Inverted Exponentiated Rayleigh IERayleigh 
Metropolis-Hastings MeHa 
Mean Square Error MSE 
Megapascal MPa 
Maximum Likelihood ML 
Monte Carlo Markov Chain MCMC 
Progressive Censoring PrC 
Stochastic Expectation-Maximization Algorithm Stochastic EMA 
Squared Error SqE 
Stress-Strength S-S 
Unified Hybrid unified Hy 
Unified Progressive Hybrid Censoring Scheme Unified PHCS 
The time to ith failure in Unified PHCS, i 1, . . . , m . for n1 
random observations fromX. 

𝑋 : :  

The time to ith failure in Unified PHCS, i 1, . . . , m . for n2 
random observations fromY. 

𝑌 : :  

The number of failure units before T . 𝑑  

The number of failure units before T . 𝑑  

The number of failure units before T . 𝑑  

The number of failure units before T . 𝑑  

The time thresholds forX. 𝑇 and 𝑇  (𝑇 𝑇 ) 

The time thresholds forY. 𝑇 and 𝑇  (𝑇 𝑇 ) 

The Unified PHCS sample forX. 𝑋
⎴

𝑋 : : , . . . , 𝑋 : :    

The Unified PHCS sample forY. 𝑌
⎴

𝑌 : : , . . . , 𝑌 : :   
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where 𝜉
: :

𝛽/𝑥 : : ,𝜉
: :

𝛽/𝑦 : :  , 𝜉 𝛽/𝑇 ,  𝜉 𝛽/𝑇 , and  

𝑄 , 𝑇

⎩
⎪
⎨

⎪
⎧ 𝑚 , 𝑥 : : ,      CaseI      

𝑑 , 𝑇 ,                 Case II    
𝑘 , 𝑥 : : ,        Case III   
𝑑 , 𝑇 ,                Case IV   

, 𝑄 , 𝑇

⎩
⎪
⎨

⎪
⎧

𝑚 , 𝑦 : : ,      CaseI      
𝑑 , 𝑇 ,                Case II    

𝑘 , 𝑦 : : ,        Case III   
𝑑 , 𝑇 ,                Case IV   

. 

Therefore, 𝑙𝑛 𝐿 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎  can be written as 

𝑙𝑛 𝐿 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 ∝ 𝑄 𝑙𝑛 𝛼 𝑄 𝑙𝑛 𝛾 𝑚 𝑚 𝑙𝑛 𝛽 𝛽 ∑ 𝑥 : :

∑ 𝑦 : : 𝛼 1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝛼 ∑ 𝑅 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝛼𝑅∗ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉 𝛾 1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝛾 ∑ 𝑅 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

 𝛾𝑅∗ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉 .                        (6) 

The MLEs can be obtained by taking derivatives of 𝛼, 𝛽 and 𝛾 and making them equal to 0. 
Using the invariance property of the MLE helps us to obtain MLE of R, denoted by 𝑅, replacing the 
parameters in Eq (4) with their estimates to be found by using 𝛼  and 𝛾. That is, 𝑅  can be written as 

𝑅 .                                 (7) 

Theorem 2.1. Suppose the failure times come from IERayleigh distribution. The MLEs of 𝛼 and 
𝛾, given 𝛽, exist and have the following expressions. 

𝛼
∑

: :
∑

: :
∗

,  

and 

𝛾
∑

: :
∑

: :
∗

.  

Proof. See Appendix. 
It is observed that the MLEs of parameters cannot be solved explicitly. Therefore, we propose to 

use stochastic EMA, which is an appropriate method for the censored data sets. 

2.1. Stochastic EMA 

The Newton-Raphson algorithm is a frequently used method to derive the MLE of model 
parameters. In this method, the second derivatives of the log-likelihood function are needed, which 
may be complicated in some situations. Therefore, the EM algorithm is employed for comparison 
purposes. The EM algorithm has two steps: the expectation (E) step and the maximization (M) step. 
The E-step involves computation of the pseudo log-likelihood function. The M-step involves 
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maximization of the pseudo log-likelihood function. The sample collected from unified PHCS may be 
viewed as incomplete data, and thus we proceed to explore the EM algorithm to obtain the MLEs of 
model parameters. Let 𝑋

⎴
𝑋 : : , . . . , 𝑋 : :   and 𝑌

⎴
𝑌 : : , . . . , 𝑌 : :   denote the 

observed data, and the censored data are symbolized by 𝑍 𝑍 , . . . , 𝑍   and 𝑉 𝑉 , . . . , 𝑉  , 
where 𝑍 𝑍 , . . . , 𝑍 ; 𝑟 1,2, . . . 𝑄  and 𝑉 𝑉 , . . . , 𝑉 ; 𝑟 1,2, . . . 𝑄   are 1
𝑅 vectors. Thus, 𝑊 𝑋, 𝑍, 𝑍′  and 𝑊 𝑌, 𝑉, 𝑉 ′  denote the complete data sets for strength and 

stress variables, respectively. Here, 𝑍′ 𝑍′ , . . . , 𝑍 ∗
′  and 𝑉 ′ 𝑉 ′ , . . . , 𝑉 ∗

′  indicate the censored 

samples. The log-likelihood function based on complete data (𝑙 𝑊|𝑑𝑎𝑡𝑎 ) can be attained as 

𝑙 𝑊|𝑑𝑎𝑡𝑎 𝑛 𝑙𝑛 𝛼 𝑛 𝑙𝑛 𝛾 𝑛 𝑛 𝑙𝑛 𝛽 𝛽 ∑ 𝑥 : : ∑ 𝑦 : :

𝛽 ∑ ∑ 𝑙𝑛 𝑧 ∑ ∑ 𝑙𝑛 𝑣 𝛽 ∑ 𝑙𝑛 𝑧
∗

∑ 𝑙𝑛 𝑣
∗

𝛼

1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝛼 1 ∑ ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑧 𝛼

1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑧
∗

𝛾 1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝛾

1 ∑ ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑣 𝛾 1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑣
∗

  

Based on E-step of the EM algorithm, we replace the missing information data with the 
conditional expectations of corresponding random variables. Then, the 𝑙 𝑊|𝑑𝑎𝑡𝑎  can be 
shown as follows: 

𝑙 𝑊|𝑑𝑎𝑡𝑎 𝑛 𝑙𝑛 𝛼 𝑛 𝑙𝑛 𝛾 𝑛 𝑛 𝑙𝑛 𝛽 𝛽 ∑ 𝑥 : : ∑ 𝑦 : :

𝛽 ∑ ∑ 𝐸 𝑙𝑛 𝑍 𝑍 𝑥 𝛽 ∑ ∑ 𝐸 𝑙𝑛 𝑉 𝑉 𝑦 𝛽 ∑ 𝐸 𝑙𝑛 𝑍
∗

𝑍 𝑇

∑ 𝐸 𝑙𝑛 𝑉 𝑉 𝑇
∗

𝛼 1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝛼 1 ∑ ∑ 𝐸 𝑙𝑛 1 𝑒𝑥𝑝

𝛽/𝑍 𝑍 𝑥  𝛼 1 ∑ 𝐸 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑍 𝑍 𝑇
∗

𝛾 1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝

𝜉
: :

𝛾 1 ∑ ∑ 𝐸 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑉 𝑉 𝑦 𝛾 1 ∑ 𝐸 𝑙𝑛 1 𝑒𝑥𝑝
∗

𝛽/𝑉 𝑉 𝑇 .                       (8) 

It is observed that the calculations of the conditional expectations of Eq (8) are more complicated 
and take a long time. So, by borrowing the idea of Diebolt and Celeux [34], we apply the stochastic 
EM algorithm (stochastic EMA), in which the E-step has been replaced by the stochastic step. This 
algorithm is a more suitable approximate idea and less computationally expensive than the EM 
algorithm. To calculate the stochastic EMA, we consider 

𝐹 ∗ 𝑍 𝑍 𝑥
𝐹 𝑍 , 𝛼, 𝛽 𝐹 𝑋 , 𝛼, 𝛽

1 𝐹 𝑋 , 𝛼, 𝛽
, 𝐺 ∗ 𝑉 𝑉 𝑦

𝐹 𝑉 , 𝛾, 𝛽 𝐹 𝑌 , 𝛾, 𝛽
1 𝐹 𝑌 , 𝛾, 𝛽
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𝐹 ∗ 𝑍∗|𝑍∗ 𝑇
𝐹 𝑍∗, 𝛼, 𝛽 𝐹 𝑇 , 𝛼, 𝛽

1 𝐹 𝑇 , 𝛼, 𝛽
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Therefore, the MLEs of the parameters can be obtained by differentiating the following log-
likelihood function partially with respect to the parameters: 

𝑙 𝑛 𝑙𝑛 𝛼 𝑛 𝑙𝑛 𝛾 𝑛 𝑛 𝑙𝑛 𝛽 𝛽 ∑ 𝑥 : : ∑ 𝑦 : :

𝛽 ∑ ∑ 𝑙𝑛 𝑧 ∑ ∑ 𝑙𝑛 𝑣 𝛽 ∑ 𝑙𝑛 𝑧∗∗
∑ 𝑙𝑛 𝑣∗

∗

𝛼

1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝛼 1 ∑ ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑧 𝛼

1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑧∗∗
𝛾 1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉

: :
𝛾

1 ∑ ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑣 𝛾 1 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝛽/𝑣∗
∗

.  

2.2. Asymptotic confidence intervals 

In this subsection, we derive the approximate asymptotic distribution of MLE to construct 
approximate confidence intervals for 𝑅 . Theoretically speaking, the variance-covariance of 𝜃
𝛼, 𝛽, 𝛾  can be derived from the Fisher matrix 𝐼 𝛼, 𝛽, 𝛾 , whose elements are shown as 

𝐼 𝛼, 𝛽, 𝛾
𝐼 𝐼 𝐼
𝐼 𝐼 𝐼
𝐼 𝐼 𝐼

,      𝐼
𝜕 𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎

𝜕𝜃 𝜕𝜃
;   𝑖, 𝑗 1,2,3 

The detailed derivations are omitted to maintain brevity. It is worth mentioning that the expected 
values in the Fisher information matrix cannot be obtained explicitly since the distribution of the MLEs 
under the unified PHCS cannot be obtained explicitly. Therefore, the observed information matrix 
𝐼 𝛼, 𝛽, 𝛾   is applied in the asymptotic normality of the MLE. Based on regularity conditions, the 
estimator 𝑅 asymptotically is normal with mean 𝑅 and variance  𝜉 .   

𝜉 𝐼 𝐼 2 𝐼 , 

where   and   . Thus, the 100 1 𝜛 % asymptotic confidence interval of 

R can be created by 

𝑅 ∈ 𝑅 𝑧 / 𝜉 ,                             (9) 

where 𝑧  is 𝑧 / 100𝜛  percentile of normal distribution (𝑁 0,1 ). 
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3. Bayesian estimation 

In contrast to frequentist methods, the Bayesian approaches take advantage of available data and 
incorporate prior information of model parameters, thereby attracting much attention in statistical 
inference. So, in this section, the approximate BEs of R model are attained when all the parameters 
𝛼, 𝛾 and 𝛽 have independent gamma distributions with parameters 𝑎 , 𝑏 ; 𝑖 1,2,3, respectively, 
as prior distributions. The gamma distribution is very flexible, and the Jeffreys prior, which is one of 
the commonly used non-informative priors, is a special case of it. Further, in the case of non-
informative priors, very small non-negative values of the hyper-parameters, i.e., 𝑎 𝑏 0.0001, 
are used, which are almost like Jeffreys priors, but they are proper, inversely. 

Using the likelihood function (5) and the joint prior distributions, the joint posterior distribution 
of unknown parameters 𝛼, 𝛾 and 𝛽 is defined as follows: 

𝜋 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 , , | , ,

, , | , ,
∞∞∞ ∝

𝛼 𝛽 𝛾 𝑒 ∏ 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝

𝜉
: :

1 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝛽/𝑇
∗ ∏ 𝑒𝑥𝑝 𝜉

: :
1

𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝛽/𝑇
∗

                   (10) 

Now, the Bayesian estimators are motivated by three loss functions, which are SqE, Linex and 
GeE. The Bayesian estimator for R under the SqE loss function is the posterior mean and determined 
by 

𝑅 𝑅
∞

𝜋 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎
∞∞

𝑑𝛼𝑑𝛽𝑑𝛾.               (11) 

Based on the Linex loss function, the Bayesian estimator for R is given by 

𝑅 𝑙𝑛 𝑒
∞

𝜋 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎
∞∞

𝑑𝛼𝑑𝛽𝑑𝛾 .          (12) 

Under the GeE loss function, the Bayesian estimator for R is expressed as follows: 

𝑅 𝑅
∞

𝜋 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎
∞∞

𝑑𝛼𝑑𝛽𝑑𝛾 .                 (13) 

The integrals (11)–(13) are very hard to solved analytically, so we will utilize the MCMC method. 
Important sampling (ImS) and Metropolis-Hastings (MeHa) are two approaches of the MCMC. It is 
easy to calculate the BEs based on the ImS method, which is important in practice. However, if the 
form of the PDF becomes complicated, the conditional posterior distribution of the parameters cannot 
be easily attained, so the MeHa algorithm is a more appropriate choice for calculating the BEs. This 
algorithm is an efficient method to calculate the BEs. It can be easily conducted and help to reduce the 
operational complexity of high dimensional distributions. So, the BEs and the corresponding CrIs of 
R based on unified PHCS are computed by using the Gibbs sampler together with MeHa in [35,36] the 
algorithm. To apply this method, the marginal posterior PDFs of 𝛼, 𝛾 and 𝛽can be re-expressed as 
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𝜋 𝛼|𝛽, 𝛾, 𝑑𝑎𝑡𝑎 𝛼 𝑒 ∏ 1 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝛽/𝑇
∗
   (14) 

and 

𝜋 𝛾|𝛼, 𝛽, 𝑑𝑎𝑡𝑎 𝛾 𝑒 ∏ 1 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝛽/𝑇
∗

.   (15) 

and also, 

𝜋 𝛽|𝛼, 𝛾, 𝑑𝑎𝑡𝑎 𝛽 𝑒 ∏ 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝜉
: :

1

𝑒𝑥𝑝 𝜉
: :

 1 𝑒𝑥𝑝 𝛽/𝑇
∗ ∏ 𝑒𝑥𝑝 𝜉

: :
1 𝑒𝑥𝑝

𝜉
: :

1 𝑒𝑥𝑝 𝜉
: :

1 𝑒𝑥𝑝 𝛽/𝑇
∗

.        (16) 

Therefore, the conditional posterior probability for α and γ are, respectively, expressed as follows: 

𝜋 𝛼|𝛽, 𝛾, 𝑑𝑎𝑡𝑎 ∼ 𝐺𝑎𝑚𝑚𝑎 𝑄 𝑎 , 𝑏 ∑ 𝑅 1 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝑅∗ 𝑙𝑛 1

𝑒𝑥𝑝 𝛽/𝑇                             (17) 

and 

𝜋 𝛾|𝛼, 𝛽, 𝑑𝑎𝑡𝑎 ∼𝐺𝑎𝑚𝑚𝑎 𝑄 𝑎 , 𝑏 ∑ 𝑅 1 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝑅∗ 𝑙𝑛 1

𝑒𝑥𝑝 𝛽/𝑇                          (18) 

 

Figure 3. The trace plot for R. 

It is clearly seen that Eq (16) does not show standard forms, and therefore it is not possible to 
sample directly by standard process. In that case, if the posterior density function is roughly symmetric, 
a normal distribution can be used to approximate it. So, we will use the Gibbs sampler together with 
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MeHa technique to calculate the BE of R. The conditional posterior distributions 𝛼, 𝛾 and 𝛽 are 
generated using Algorithm 1. We borrow the idea of Ren and Gui [37] and use the trace plots for an 
MCMC chain to assess the convergence of the iteration process. If the MCMC chain is mixing 
adequately, the trace plot will fluctuate randomly around the true value as the lag value increases. The 
trace plot for n = 30, m = 15, 𝑇 0.7,  𝑇 1.5 is displayed in Figure 3. From Figure 3, it can be 
seen that the estimation results are reasonable. 

Algorithm 1: Gibbs sampler together with MeHa method 

Step 1: Set 𝑖 1 and start by using the initial values of (𝛼 , 𝛽 , 𝛾 ). 
Step 2: Generate 𝛼 from 𝜋 𝛼|𝛽, 𝛾, 𝑑𝑎𝑡𝑎 given by Eq (16). 
Step 3: Generate 𝛾 from 𝜋 𝛾|𝛼, 𝛽, 𝑑𝑎𝑡𝑎 given by Eq (17). 
Step 4: From Eq (18), we can generate 𝛽∗from the distribution 𝑁 𝛽 , 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝛽  for 𝑖
1, . . . , 𝑀. 
 Generate a random number W from U(0,1). 

 Calculate the acceptance probabilities 𝜓 𝑚𝑖𝑛 1,
, ,

, ,
. 

 If 𝑊 𝜓 , set 𝛽 𝛽∗, else set 𝛽 𝛽 . 

Step 5: Calculate 𝑅  as . 

Step 6: Set 𝑖 𝑖 1. 
Step 7: Repeat steps 1–4 M times and obtain 𝑅 , . . . , 𝑅 . 
Step 8: Compute the Bayesian estimates under SqE, Linex and GeE as: 

𝑅 ∑ 𝑅 ,𝑅 𝑙𝑛 ∑ 𝑒 , 

𝑅 ∑ 𝑅 ’ where NB is the burn-in period. 

Step 9: Order 𝑅 ;   𝑖 1, . . , 𝑀, then the 100 1 𝛾 % CrIs of R   is given as follows: 

𝑅 / , 𝑅 /  

4. Simulation study 

This section is devoted to the comparative study of the proposed estimates under different unified 
PHCS. Different estimation methods of reliability parameters are applied using frequency and 
Bayesian estimations. For comparison and analysis, 10,000 cycles of simulations are repeated for the 
whole process. The performance of the estimates is compared based on the following criteria: 

 Mean square error (𝑀𝑆𝐸 ∑ 𝜃 𝜃 ): The smaller value of MSE indicates the better 

performance of the estimates. Here, 𝜃  denotes the obtained estimate at the ith sample of the 

unknown parameter 𝜃, and M is the number of generated sequence data. 

 Average coverage probabilities  

(𝐶𝑃 % ∑ 1 % ; % 𝜃 ;  𝜛 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑙𝑒𝑣𝑒𝑙.): 
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the probability of containing the true values of the parameters in between the interval estimates. 
Here, 1 .   is the indicator function, and 𝐿 .   and 𝑈 .   denote the lower and upper bounds of 
intervals, respectively. 

 Average lengths (𝐴𝐿 % ∑ 𝑈 1 𝜛 % 𝐿 1 𝜛 % ): Average length of the 

interval estimates with 𝜛 significance level has been evaluated. Smaller length corresponds 

to better performance of the interval estimates. Here, 𝐿 .  and 𝑈 .   denote the lower and 

upper bounds. 

We consider values (𝛼, 𝛽, 𝛾) as (3.5, 2, 4) to provide values of R as 0.533. Two different 𝑇 ; 𝑖 1,2 
values 𝑇 0.7, 𝑇 1.5  and 𝑇 1.5, 𝑇 2.8  are taken for both S-S variables. We have 
formulated three systematic CSs and determined the removals by providing fast failure, moderate 
failure and late failure, respectively. The MLEs are computed by applying the stochastic EMA. To 
make the iteration converge easily, the true values of the parameters are set for the initial values in 
simulation experiments. In the Bayesian estimations, very small values of the hyper-parameters, i.e., 
ai = bi = 0.0001 for i = 1, 2, 3 can be considered. However, due to the closeness of the BEs to the 
MLEs under this prior distribution, we also consider informative priors as 𝑎 7, 𝑏 2, 𝑎
2, 𝑏 1, 𝑎 8, 𝑏 2. The informative priors’ parameters are chosen such that their mean is equal 
to the true parameter values. On both assumptions of informative and non-informative priors, the 
Bayes estimates under three loss functions are calculated based on the Gibbs sampler within the 
MeHa algorithm. 

We propose four different sets of (m, n) as (30, 15), (30, 24), (50, 25) and (50, 40). For the MeHa 
algorithm, we take M = 10,000 and NB = 1000. The significance level was taken as 0.05  . The 
MSEs and average lengths (ALs) of R are presented in Tables 1–4. According to the results shown in 
Tables 1–4, we can get some conclusions.  

Tables 1 and 2 reflect that the MSE becomes smaller as the sample size increases, which shows 
the consistency of the estimators. The performances of the estimators are better when m increases. The 
values of 𝑇 ;  𝑖 1, 2  for the stress-strength variables are assumed to be the same for both 
components to account for the simultaneous testing time. We can see that the increasing of T1 and T2 
for other fixed values causes smaller MSE values in all cases since it provides more testing time to let 
more failure be observed. From the censoring scheme, it is observed that the CS III always has the 
worst performance. In parallel to increasing sample sizes, all estimates provide closer results to each 
other. The Bayesian method performs better than the frequency method obviously, and its estimates 
have smaller MSEs. The MSEs of the estimations based on the informative prior are smaller than the 
non-informative cases. The performances of the ML and Bayesian estimators are observed close to 
each other under non-informative prior. 

Moreover, it is noted from Tables 3 and 4 that the average lengths of the ApCIs and CrIs are 
decreasing with larger sample sizes. The CrIs have also smaller average length than ApCIs. The 
coverage probabilities (CP) of interval estimates under different censoring schemes show no apparent 
difference. Also, the CPs of the ApCIs are closer to the significance level (0.95) than the CrIs. 

From the above analysis of the results, we present the conclusion that the results of the BEs, 
especially under the Linex loss function, perform better than ML estimates in the proposed model 
environment.
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Table 1. The MSEs of the SSRe  under non-informative (NI) and informative (I) priors and T1 = 0.7 and T2 = 1.5. 

Table 2. The MSEs of the SSRe  under non-informative (NI) and informative (I) priors and 𝑇 1.5, 𝑇 2.8. 

n m CS MLE  SqE NIBayes  Linex NIBayes   GeE NIBayes   SqE IBayes  Linex IBayes   GeE IBayes   

30 15 I 0.024564 0.024082 0.019646 0.024283 0.015832 0.010574 0.015985 

30 15 II 0.023872 0.023218 0.019008 0.023559 0.015243 0.009844 0.015532 

30 15 III 0.025317 0.024100 0.019872 0.024677 0.016031 0.011307 0.016223 

30 24 I 0.021653 0.020532 0.016532 0.020687 0.012426 0.007632 0.012395 

30 24 II 0.020664 0.020050 0.014998 0.020351 0.011709 0.007214 0.011918 

30 24 III 0.021599 0.020879 0.016011 0.021166 0.012984 0.007888 0.012664 

50 25 I 0.019442 0.018955 0.011906 0.019101 0.010336 0.006048 0.010573 

50 25 II 0.018869 0.018005 0.011472 0.018065 0.009858 0.005770 0.010111 

50 25 III 0.019687 0.018978 0.012207 0.018999 0.010675 0.006545 0.010857 

50 40 I 0.017853 0.016992 0.009537 0.016998 0.008409 0.003885 0.008769 

50 40 II 0.017235 0.016438 0.009032 0.016225 0.007987 0.003121 0.008207 

50 40 III 0.017890 0.016959 0.010065 0.017050 0.008966 0.004089 0.008907 

n m CS MLE  SqE NIBayes  Linex NIBayes   GeE NIBayes   SqE IBayes  Linex IBayes   GeE IBayes   

30 15 I 0.018943 0.018146 0.014206 0.018398 0.010843 0.008954 0.010899 

30 15 II 0.018355 0.017896 0.013764 0.018005 0.010674 0.008556 0.010689 

30 15 III 0.019033 0.018280 0.013807 0.018469 0.011007 0.009216 0.011026 

30 24 I 0.016311 0.015786 0.012213 0.015723 0.009210 0.006591 0.009318 

30 24 II 0.016005 0.015442 0.011868 0.015419 0.009100 0.006228 0.008895 

30 24 III 0.016398 0.015743 0.012436 0.015659 0.009317 0.006682 0.009442 

50 25 I 0.014889 0.014623 0.009759 0.014755 0.008330 0.005754 0.008532 

        Continued on next page 



4025 

Electronic Research Archive      Volume 31, Issue 7, 4011-4033. 

Table 3. Average lengths and CPs of 95% ACI and HPD credible intervals for R when 𝑇 0.7, 𝑇 1.5. 

         

n m CS MLE  SqE NIBayes  Linex NIBayes   GeE NIBayes   SqE IBayes  Linex IBayes   GeE IBayes   

50 25 II 0.014532 0.014117 0.009360 0.014112 0.008005 0.005217 0.008331 

50 25 III 0.014921 0.014734 0.009729 0.014730 0.008417 0.005980 0.008701 

50 40 I 0.011995 0.011743 0.007683 0.011780 0.006043 0.003113 0.006145 

50 40 II 0.011658 0.010978 0.007104 0.010974 0.005285 0.002667 0.005670 

50 40 III 0.011998 0.011759 0.007900 0.011783 0.006221 0.003174 0.006230 

n m CS ACIs  CP ACI  HPD  CP HPD

30 15 I 0.564325 0.9684 0.510743 0.9795 
30 15 II 0.558947 0.9643 0.506388 0.9647 
30 15 III 0.569073 0.9668 0.510985 0.9675 
30 24 I 0.549836 0.9421 0.490846 0.9632 
30 24 II 0.535722 0.9598 0.485589 0.9368 
30 24 III 0.549907 0.9599 0.491289 0.9400 
50 25 I 0.510956 0.9411 0.458569 0.9409 
50 25 II 0.509746 0.9576 0.453212 0.0959 
50 25 III 0.513600 0.9549 0.459905 0.9392 
50 40 I 0.489532 0.9476 0.419775 0.9400 
50 40 II 0.484005 0.9539 0.416685 0.9580 
50 40 III 0.490443 0.9600 0.419899 0.9612 
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Table 4. Average lengths and CPs of 95% ACI and HPD credible intervals for R when 
𝑇 1.5,  𝑇 2.8. 

Table 5. Estimations of R for the real data example under different CSs. 

5. Real data analysis 

One of the engineering applications of reliability modeling is to consider the diameter of the 
splashing droplets under two different atomizing pressures. The data sets are taken from Planche et 
al. [38], which represents the splashing degree under different atomizing pressures (MPa). We consider 
splashing degree for atomizing pressures of 1.0 MPa (dataset 1) and 1.5 MPa (dataset 2). The splashing 
droplets under 1.5 and 1.0 MPa pressures are considered as stress data X and strength data Y, 
respectively. If the S-S reliability is greater than 0.50, we can say that the 1.5 pressure will increase 
the splashing phenomenon. Moreover, if the system reliability is less than 0.50, we will think of the 
reverse result of the aforementioned scenario.  In order to find the fitting performance of the 
IERayleigh distribution, we adopt the Kolmogorov-Smirnov statistic (KoSm) with the p-value. The 
KoSm statistics and corresponding p-values (given in brackets) are computed based on the MLEs of 
the model parameters. The KoSm values (p-values) for dataset I and dataset II are 0.077004 (0.8287) 
and 0.077926 (0.7162), respectively. Furthermore, PP and histogram plots for observations under 
dataset I and dataset II samples have been drawn in Figures 4 and 5, which present the same law as the 
numerical results. We assumed that this distribution has the same shape parameter to illustrate the 
proposed method. For testing that 𝐻 𝛽 𝛽 𝛽 , we perform a likelihood ratio test, and the 
respective value is 1.786. This value cannot get the critical point 𝜒 . 1 3.84. Thus, both stress 
and strength variables can be modeled by using the IERayleigh with equal 𝛽 parameter. 

n m CS ACIs  CP ACI HPD  CP HPD

30 15 I 0.516854 0.9600 0.473214 0.9365 
30 15 II 0.512205 0.9423 0.468956 0.9652 
30 15 III 0.517463 0.9565 0.473618 0.9410 
30 24 I 0.494370 0.9400 0.458704 0.9387 
30 24 II 0.489993 0.9555 0.454972 0.9609 
30 24 III 0.496748 0.9551 0.459115 0.9589 
50 25 I 0.478535 0.9409 0.429996 0.9611 
50 25 II 0.473800 0.9568 0.428095 0.9389 
50 25 III 0.478474 0.9559 0.429991 0.9409 
50 40 I 0.453361 0.9544 0.396932 0.9400 
50 40 II 0.450801 0.9485 0.395508 0.9576 
50 40 III 0.456110 0.9479 0.397112 0.9581 

SCs MLE MeHa ApCILs CrILs 
SCI 0.57092 0.57390 0.7689 0.5392 
SCII 0.56473 0.56620 0.8149 0.5948 
SCIII 0.56964 0.57289 0.8743 0.5432 
SCIV 0.57632 0.58092 0.7589 0.5326 
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Figure 4. The PP plot and histogram for splashing degree under 1.0 MPa. 

         

Figure 5. The PP plot and histogram for splashing degree under 1.5 MPa. 

It is observed that since all the estimates of 𝑅 𝑃 𝑋 𝑌  values are greater than 0.50, the 1.5 
MPa pressure should be used for decreasing the splashing phenomenon on the considered scenario. 
We assume different unified PHCS censoring plans as 

SCI: 1 2 1 2 1 2 1 2 1 266, 80, 51, 70, 42, 66, 190, 204, 130, 140x y x x y xn n m m k k T T T T           

SCII: 1 2 1 2 1 2 1 2 1 266, 80, 51, 70, 42, 66, 178, 204, 125, 140x y x x y xn n m m k k T T T T           

SCIII: 1 2 1 2 1 2 1 2 1 266, 80, 51, 70, 47, 69, 178, 204, 125, 140x y x x y xn n m m k k T T T T           

SCIV:  1 2 1 2 1 2 1 2 1 266, 80, 51, 70, 47, 69, 168, 175, 120, 124x y x x y xn n m m k k T T T T           

By applying the model established above and the proposed methods, the MLEs based on 
stochastic EMA, Bayesian point estimation based on Gibbs sampler together with MeHa method, 
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approximate confidence intervals and HPD credible intervals can be acquired and constructed. The 
prior beliefs of the parameters are unavailable. So, we chose non-informative priors with hyper-
parameter values (ai, bi) = (0.0001, 0.0001), i = 1, 2, 3, for Bayesian computation.  

The point estimation results along with 95% ApCI and CrI are reported in Table 5 for this real 
data study. We observed close estimates to each other for both estimation methods. Moreover, both 
approximate Bayes estimates of R are similar. The CrI lengths (CrILs) are obtained smaller than ApCI 
lengths (ApCILs). It is observed that since all the estimates of R values are greater than 0.50, the 1.5 
MPa increases the splashing phenomenon.  

We also consider the diagnostic plot for showing the convergence of the simulated Markov chains. 
We consider the trace plot which is a plot of the iteration number i against the value of Ri at each 
iteration. We present the trace plot of the stress-strength reliability in MCMC chains with 14,000 
iterations and first 5000 time being burn-in time in Figure 6. The trace plot shows that the Markov 
chain fluctuates around estimation with a similar variation. Further, as we see from Figure 7, the 
density plot seems to have asymmetrical and unimodal shape. It has a unique peak, and it determines 
the mode of the distribution. We present the diagnostic plots for SCII. The plots of the other censoring 
schemes are similar. 

 

Figure 6. The trace plot of R for SCII. 

 

Figure 7. The density plot of R for SCII. 



4029 

Electronic Research Archive  Volume 31, Issue 7, 4011–4033. 

6. Conclusions 

The issue of a stress-strength reliability model for IERayleigh distribution under unified PHCS 
was examined in this study. The unified PHCS is a flexible progressive censoring that can be used to 
reduce cost and time. It provides many different options for reliability studies and helps to overcome 
many problems in reliability engineering. We used classical and Bayesian methods for the estimation 
procedures, and we observed consistent results. Since MLE of R cannot be obtained in a closed form, 
the stochastic EMA is proposed to estimate the unknown parameters. The asymptotic intervals are 
created based on the Fisher matrix. The Bayesian estimates are calculated using the Gibbs sampler 
together with the MeHa algorithm with three loss functions and gamma priors. In addition, the 
constriction of the HPD credible intervals is provided based on MCMC samples. An extensive 
simulation study is implemented to validate the accuracy of the produced estimators. We found that, 
for point and interval estimations, the Bayes estimators using MCMC method outperformed MLEs. 
Therefore, if previous knowledge about the data is available, one may consider employing the 
Bayesian approach using the Gibbs sampler together with the MeHa algorithm for all practical 
purposes when analyzing data; otherwise, one may turn to MLEs or Bayesian estimation based on non-
informative prior. Finally, we consider a real engineering example to show the potential application of 
our reliability model problem. The results show that increasing the pressure reduces the splashing 
phenomenon and thus improves the surface quality. Finally, the considered problem in this study can 
be extended in different ways such as considering the correlation between the stress and strength 
random variables and multicomponent stress-strength reliability model.  
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Appendix  

Proof of Theorem 2.1 

Fix 𝑄 , 𝛾 and  . Since 𝑙𝑛 𝑡 𝑡 1, 𝑡 0 holds, let 𝑡 , and then 

𝑄 𝑙𝑛 𝛼 𝑄 𝑙𝑛 𝑄 𝑙𝑛 𝛼 𝑄 𝑄 𝑄 𝑙𝑛 𝛼.                    (A.1) 

By putting 𝛼
Ą

;    Ą ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

∑ 𝑅 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝑅∗ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉  in the Eq (A.1), we have 

𝑄 𝑙𝑛 𝛼 𝛼 ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

∑ 𝑅 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝑅∗ 𝑙𝑛 1

𝑒𝑥𝑝 𝜉 𝑄 𝑄 𝑙𝑛 𝛼 𝛼Ą 𝑄 𝑄 𝑙𝑛 𝛼.  

This implies that 

𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 𝑄 𝑙𝑛 𝛼 𝑄 𝑙𝑛 𝛾 𝑚 𝑚 𝑙𝑛 𝛽 𝛽 ℑ 𝛼Ą 𝛾Ą ∑ 𝑙𝑛 1

𝑒𝑥𝑝 𝜉
: :

∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝛼Ą 𝑄 𝑄 𝑙𝑛 𝛼 𝑄 𝑙𝑛 𝛾 𝑚

𝑚 𝑙𝑛 𝛽 𝛽 ℑ 𝛼Ą 𝛾Ą ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

∑ 𝑙𝑛 1 𝑒𝑥𝑝

𝜉
: :

𝑄 𝑄 𝑙𝑛 𝛼 𝑄 𝑙𝑛 𝛾 𝑚 𝑚 𝑙𝑛 𝛽 𝛽 ℑ 𝛾Ą ∑ 𝑙𝑛 1 𝑒𝑥𝑝

𝜉
: :

∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

  

where Ą ∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

∑ 𝑅 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝑅∗ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉  

and 
1 2

1 1 2 2

2 2
: : : :

1 1

Q Q

i m n i m n
i i

x y 

 

    . 

Using the transformation 𝛼Ą 𝑄 , we have 

𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 𝛼Ą 𝑄 𝑙𝑛 𝛼 𝑄 𝑙𝑛 𝛾 𝑚 𝑚 𝑙𝑛 𝛽 𝛽 ℑ 𝛾Ą ∑ 𝑙𝑛 1

𝑒𝑥𝑝 𝜉
: :

∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 .  
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Equality holds if and only if ˆ  . Now, we want to show the MLE of γ , given α and β ,exists and 
has the following expression. 

𝛾
∑

: :
∑

: :
∗

.        (A.2) 

Using a similar procedure, we consider 𝑡 , and so by taking 𝛾 from Eq (A.2), we have 

𝑄 𝑙𝑛 𝛾 𝛾Ą 𝑄 𝑄 𝑙𝑛 𝛾. 

Then, 

𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 𝛾Ą 𝑄 𝑙𝑛 𝛾 𝑄 𝑙𝑛 𝛼 𝑚 𝑚 𝑙𝑛 𝛽 𝛽 ℑ 𝛼Ą ∑ 𝑙𝑛 1 𝑒𝑥𝑝

𝜉
: :

∑ 𝑙𝑛 1 𝑒𝑥𝑝 𝜉
: :

𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 .  

So, the existence of 𝛾  makes 𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎 𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎  , and when 𝛾 𝛾 , the equal 
sign holds. This proves that the function 𝑙 𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎   reaches its maximum value at the point 
𝛼, 𝛽, 𝛾 , where 𝛽 is given. 
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