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Abstract: Recently, deep neural networks have been widely used to solve financial risk modeling
and forecasting challenges. Following this hotspot, this paper presents a mixture model for conditional
volatility probability forecasting based on the deep autoregressive network and the Gaussian mixture
model under the GARCH framework. An efficient algorithm for the model is developed. Both simula-
tion and empirical results show that our model predicts conditional volatilities with smaller errors than
the classical GARCH and ANN-GARCH models.
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1. Introduction

Volatility forecasting is essential in asset pricing, portfolio allocation and risk management research.
Early volatility forecasting was based on economic models. The most famous economic models are
the ARCH model [1] and the GARCH model [2], which can capture volatility clustering and heavy-tail
features. However, they fail to capture asymmetry, such as leverage effects. The leverage effect is due
to the fact that negative returns have a more significant impact on future volatility than positive returns.
To overcome this drawback, the exponential GARCH (EGARCH) model [3] and GJR model [4] were
proposed. In the following years, new volatility models based on the GARCH model emerged, such
as the stochastic volatility model [5] proposed by Hull and White and the realized volatility model [6]
offered by Blair et al. They formed a class of GARCH-type volatility models for financial markets.

The traditional GARCH model has strict constraints and requires the financial time series to sat-
isfy the stationarity condition. It usually assumes conditional variances have a linear relationship with
previous errors and previous variances. However, many financial time series show certain nonstation-
ary and nonlinear characteristics in practice. Consequently, some extended model from GARCH is
necessary to study the volatility of these time series.

With the development of computer and big data technologies, machine learning brings new ideas to
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volatility forecasting [7–21]. Especially artificial neural networks(ANN) have shown an outstanding
performance. It derives its computational ideas from biological neurons and is now widely used in
various fields.

In financial risk analysis, researchers have utilized neural networks to study the volatility of finan-
cial markets. Hamid and Iqbal [22] apply ANN to predict the S&P500 index implied volatility, finding
that ANN’s forecasting performance surpasses that of the American option pricing model. Livieris
proposes an artificial neural network prediction model for forecasting gold prices and trends [23]. Ad-
ditionally, Dunis and Huang [24] explore neural network regression (NNR), recurrent neural networks,
and their collaborative NNR-RNN models for predicting and trading the volatility of daily exchange
rates of GBP/USD and USD/JPY, with results indicating that RNNs have the best volatility forecast-
ing performance. Beyond the direct application of neural networks, researchers have investigated a
series of mixture models [25–31] that combine ANNs and GARCH models. Liu et al. [32] introduce
a volatility forecasting model based on the recurrent neural network (RNN) and the GARCH model.
Experiments reveal that such mixture models enhance the predictive capabilities of traditional GARCH
models, capturing normality, skewness and kurtosis of financial volatility more accurately.

This study employs a mixture model (DeepAR-GMM-GARCH) that combines the deep autore-
gressive network, the Gaussian mixture model and the GARCH model for probabilistic volatility fore-
casting. First, we discuss the design of the mixture model; Second, the article presents the model’s
inference and the training algorithm of the model; Third, we conduct a simulation experiment using ar-
tificial data and compare the outcomes with traditional GARCH models, finding that our model yields
smaller RMSE and MAE; Last, we investigate the correlation between the square of extreme values
and the square of returns for the CSI300 index. The empirical data is partitioned into training and test
sets. After training and testing, we analyze the prediction results and observe that our proposed model
outperforms other models in both in-sample and out-of-sample analyses.

The key offerings presented in this article can be summarized as follows: Initially, this article in-
troduces a novel conditional volatility probability prediction model, which addresses the leptokurtic
and heavy-tail traits of conventional financial volatility. This model is built upon a deep autoregressive
network combined with a Gaussian mixture distribution. Subsequently, we incorporate extreme values
into the mixture model via the neural network. It is discovered that the inclusion of extreme values
enhances the accuracy of volatility predictions.

The structure of this paper is as follows: Section 2 outlines the GARCH model and the deep autore-
gressive network. Section 3 delves into the mixture model, elaborating on inference, prediction and
the relevant algorithm. Section 4 encompasses the simulation studies that we propose. Lastly, Section
5 focuses on the empirical analysis of our proposed model.

2. The GARCH model and the deep autoregressive network

2.1. The GARCH model

Scholars usually believe that stock price or stock index returns are nonlinear, asymmetric, heavy-
tailed, returns are generally uncorrelated. Aggregation characterises volatility, which was first found
by Engle (1982) and Bollerslev (1986) in ARCH and GARCH models. The GARCH model is defined
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as follows:

rt = εt

√
ht,

ht = α0 +

q∑
i=1

αir2
t−i +

p∑
j=1

β jht− j,
(2.1)

where ht is the conditional heteroscedastic variance of return series rt.
Although there are many criteria of GARCH(p,q) models to find p and q, it is sufficient to apply the

GARCH(1,1) model to characterize the conditional volatilities.

2.2. The DeepAR model

The DeepAR model [33], illustrated in Figure 1, is a time series forecasting model that employs a
deep autoregressive recurrent network architecture. Distinct from other time series forecasting models,
DeepAR generates probabilistic predictions.
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Figure 1. The network structure of the DeepAR model with p inputs and q outputs.

Consider a time series [x1, . . . , xt0 , xt0+1, . . . , xT ] := x1:T . Given its past time series
[x1, . . . , xt0−2, xt0−1] := x1:t0−1, our objective is to predict the future time series [xt0 , . . . , xt0+(T−1), xt0+T ] :=
xt0:t0+T . The DeepAR model constructs the conditional distribution PΘ(xt0:T |x1:t0−1) using a latent fac-
tor z, which is implemented by a deep recurrent network architecture. This conditional distribution,
PΘ(xt0:T |x1:t0−1), comprises a product of likelihood factors (z)

PΘ

(
xt0:T | x1:t0−1

)
=

T∏
t=t0

PΘ (xt | x1:t−1)

=

T∏
t=t0

p (xt | θ (zt,Θ)) .

(2.2)

The likelihood p(xt|θ(zt)) is a fixed distribution with parameters determined by a function θ(zt,Θ)
of the network output zt. As suggested by the model’s authors, Gaussian likelihood is appropriate for
real-valued data.
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3. The mixture model

Forecasting the probability of volatility in finance and economics is an important problem. There
are mainly two methods to tackle this. First, statistical models such as ARCH and the GARCH models
are usually adopted. These models are specifically designed to capture the dynamic nature of volatility
over time and help to predict future levels of volatility based on past patterns.

Another strategy involves using machine learning models, such as neural networks, which can ana-
lyze vast amounts of data and uncover patterns that may not be readily apparent to human analysts. A
case in point is the DeepAR model is a series-to-series probabilistic forecasting model. The advantages
of the DeepAR model are: it makes probabilistic forecasting and allows to introduce additional covari-
ates. Due to these advantages, it can be used to predict financial volatility(ht) based on the series r2

t .
However, the DeepAR model usually assumes that p(xt|θ(zt)) (given in (2.2)) follows a Gaussian distri-
bution, which may be unreasonable due to the non-negative, leptokurtic and heavy-tail characteristics
of traditional financial volatility. To avoid this problem, people use the gaussian mixture distribution
to describe the density of p(ln(xt)|θ(zt)), see references [34]. Motivated by the above results, this paper
propose an improved mixture model: DeepAR-GMM-GARCH.

The conditional distribution of ln(ht) can be expressed as:

P(ln(ht)|r2
1:t−1, x1:t−1), (3.1)

where ht represents the future volatility at time t, [r1, ..., rt−2, rt−1] := r1:t−1 denotes the past return series
during the [1 : t− 1] period, and x1:t−1 refers to the covariate, which is observable at all times. The past
time horizon is represented by [1 : t − 1].
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Figure 2. The network structure of the DeepAR-GMM-GARCH model with m inputs and
one output.

The proposed hybrid model assumes that the conditional density for logarithm of the volatility is
given by p(ln(ht)|r2

1:t−1, x1:t−1), which includes a set of latent factors, denoted as zt. A recurrent neural

Electronic Research Archive Volume 31, Issue 7, 3814–3831.



3818

network with hyperparameters(Θ1), specifically an LSTM, encodes the squared returns r2
t , the input

features xt and the previous latent factors zt−1, generating the updated latent factors zt. The likeli-
hood p(ln(ht)|θ(zt)) follows a Gaussian mixture distribution with parameters determined by a function
θ(zt,Θ2) of the network output zt. The network architecture of the DeepAR-GMM-GARCH model is
depicted in Figure 2.

3.1. The DeepAR-GMM-GARCH model

Due to the complex interplay between volatility and the factors that influence it, this paper’s central
model component declares that the volatility ht of a time series at time t is derived from the latent
variable zt−1 at time t − 1, the square of return r2

t−1 and the covariates xt−1. p(ln(ht)|θ(zt)) follows
a Gaussian mixture distribution composed of K components. In the empirical analysis, xt−1 will be
substituted with a vector of extreme values. A nonlinear mapping function g is used to establish this
relationship. The DeepAR-GMM-GARCH model proposed in this paper is as follows.

zt = g(zt−1, r2
t−1, xt−1,Θ1),

µk,t = log(1 + exp(wT
k,µzt + bk,µ)),

σk,t = log(1 + exp(wT
k,σzt + bk,σ)),

πk,t = log(1 + exp(wT
k,πzt + bk,π)),

P(ln(ht)|zt,Θ2) ∼
K∑

i=1

πkN(µk,t, σk,t),

rt = εt

√
ht,

K∑
i=1

πk = 1.

(3.2)

The model can be viewed as a structure for nonlinear volatility prediction models since the condi-
tional distribution of the perturbation εt in the model can be selected as N(0, 1) and T (0, 1, v). Conse-
quently, this gives rise to two distinct models, referred to as DeepAR-GMM-GARCH and DeepAR-
GMM-GARCH-t.

Assuming that the distribution of p(ln(ht)|θ(zt)) follows a Gaussian distribution, model (3.2) will be
reduced to a more simple version:

zt = g(zt−1, r2
t−1, xt−1,Θ1),

µt = log(1 + exp(wT
µ zt + bµ)),

σt = log(1 + exp(wT
σzt + bσ)),

P(ln(ht)|zt,Θ2) ∼ N(µt, σ
2
t ),

rt = εt

√
ht.

(3.3)

For similarity, we call the above as DeepAR-GARCH model.
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3.2. Inference and learning

3.2.1. Algorithm

For a given time series, our goal is to estimate the parameters Θ1 of the LSTM cells and the
parameters Θ2 in function θ which applies an affine transformation followed by a softplus acti-
vation. We employ a quasi-maximum likelihood estimation method with the likelihood function:
Θ = argmax

∑
i logp(h̃i|Θ1,Θ2). Inferring from this likelihood function necessitates taking into ac-

count the latent variable zt.
The flowchart for the training algorithm of the model is shown below. First, we utilize the BIC

criterion to identify the number of classifications, K, for all samples. Each data point is assigned
a label from 1 to K, and each cluster k has its mean vector and covariance matrix. Based on these
findings, we establish the initial πk as the proportion of data points labelled as k and set the initial mean
vector µk and covariance matrix

∑
k to the mean vector and covariance matrix within cluster k. As a

result, we obtain the parameter values (θ = π̃k,0, µ̃k,0, σ̃
2
k,0) from the initial cluster and use them to pre-

train the DeepAR-GMM-GARCH model. This approach allows our model to converge quickly. Next,
we partition the training sample data into multiple batches, select one sample from a batch and use
the sample (r2

t0−m, . . . , r
2
t0−1) as the input for the DeepAR-GMM-GARCH model. The model calculates

a set of π̃k,t, µ̃k,t, σ̃
2
k,t, after which we sample from this Gaussian mixture model, compute the loss,

and update the parameters through gradient descent. Since direct differentiation of the sampling is
infeasible, we apply the reparameterization trick to adjust the model’s parameters. We continue this
training process until the end of the training cycle. Last, we input the training set sample into our
trained model for prediction evaluation. The model sequentially calculates the parameters for both
the latent variable and the mixed Gaussian model and then proceeds with sampling. Ultimately, we
provide the prediction results derived from the sampling outcomes.

The training algorithm is shown in the Algorithm 1.

Algorithm 1 Training Procedure for DeepAR-GMM-GARCH Mixture Model
1: for each batch do
2: for each t ∈ [t0 − m, t0 − 1] do
3: if t is t0 − m then
4: zt−1 = 0
5: else {t is not t0 − m}
6: zt = g(zi−1, r2

i−1, xt−1,Θ1)
7: end if
8: for each k ∈ [1,K] do
9: µ̃k,t = log(1 + exp(wT

k,µzt + bk,µ))
10: σ̃2

k,t = log(1 + exp(wT
k,σzt + bk,σ))

11: π̃k,t = log(1 + exp(wT
k,πzt + bk,π))

12: end for
13: sample ln(h̃t) ∼ GMM(̃πk,t, µ̃k,t, σ̃

2
k,t)

14: end for
15: compute Loss, model parameters Θ1, Θ2 adjust using gradient descent method.
16: end for
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3.2.2. Loss function

During the training process, the definition of the loss function determines the prediction quality of
the model. We use the the average negative loglikelihood function as the loss function Loss = Lh. In
the GARCH model, we usually assume that εt obeys a Gaussian distribution or a Student distribution,
two loss functions are as follows:
(1) When εt ∼ N(0, 1), the loss function is:

Lh = −
1
N

N∑
t=1

[log(̃ht −
r2

t

2̃ht

)]. (3.4)

(2) When εt ∼ t(0, 1, v), the loss function is:

Lh = −
1
N

N∑
t=1

[log(̃ht) +
1
2

(v + 1) log(1 +
r2

t

h̃t(v − 2)
)]. (3.5)

To calculate the above loss functions, we need to get samples for h̃t based on algorithm1 given in
Section 3.2.1. In practice, if εt follows other distributions, based on the idea of QMLE, we still can use
the loss function given in (3.4) see Liu and So, 2020.

4. Simulation

Experiments are carried out on volatility inference using simulated time series. These series exhibit
flexibility, with both volatility and mixing coefficients changing over time, as detailed below:

rt = εt

√
ht, εt ∼ N(0, 1),

p (ht|Ft−1) = η1,tφ
(
µt, σ

2
1,t

)
+ η2,tφ

(
µt, σ

2
2,t

)
,

µt = a0 + a1ht−1,

σ2
1,t = α01 + α11r2

t−1 + β1σ
2
1,t−1,

σ2
2,t = α02 + α12r2

t−1 + β2σ
2
2,t−1,

π1,t = c0 + c1ht−1,

η1,t = exp
(
π1,t

)
/
(
1 + exp

(
π1,t

))
,

(4.1)

where Ft−1 denotes the information set through time t − 1 and φ is the Gaussian density function.
η1,t and η2,t are mixing coefficients of two gaussian distribution and satisfy: η2,t = (1 − η1,t). When
generating the simulation data, we set: α01 = 0.01, α11 = 0.1, β1 = 0.15, α02 = 0.04, α12 = 0.15,
β2 = 0.82, c0 = 0.02, c1 = 0.90, a0 = 0.02, a1 = 0.6. The time series has initial values:r0 = 0.1, σ2

0 = 0,
h0 = 0. The sample sizes of T = 500, 1000 and 1500 are considered, and the replication time is 1000.

For the series simulated from (4.1), we apply three models to forecast their volatility, namely, the
GARCH model with εt ∼ N(0, 1)(GARCH-n), the GARCH model withεt ∼ T (0, 1, v)(GARCH-t) and
the DeepAR-GMM-GARCH model. Using MCMC sampling method, the degree of freedom for the
Student-t distribution is determined to be 6. For the DeepAR-GMM-GARCH model, we set a recurrent
neural network with three LSTM layers and 24 hidden nodes. For the input nodes m in Figure 2, we
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use the Grid Search Algorithm to find their optimal values. We use BIC rule to choose K based on the
Mclust package [35]. Our model’s hyperparameters are trained by the software Optuna, a commonly
applied automatic hyperparameters optimization software.

Table 1 informs the three volatility forecasting models’ in-sample errors (RMSE and MAE). The
GARCH-n and GARCH-t show similar performance, and our DeepAR-GMM-GARCH model is out-
standing; All the models get decreased RMSE as sample size increase. These results imply the pro-
posed estimation can be asymptotically convergent. Table 2 reports the average out-of-sample errors of
the three volatility forecasting models. Similar to the in-sample results, our DeepAR-GMM-GARCH
model is superior to the GARCH-n and GARCH-t models.

Table 1. The average in-sample errors of the GARCH-n, the GARCH-t and the DeepAR-
GMM-GARCH models.

sample size Modle RMSE MAE

T = 500
GARCH-n 0.1364 0.0628
GARCH-t 0.1211 0.0591
DeepAR-GMM-GARCH 0.1068 0.0548

T = 1000
GARCH-n 0.0621 0.0437
GARCH-t 0.0578 0.0419
DeepAR-GMM-GARCH 0.0398 0.0331

T = 1500
GARCH-n 0.0604 0.0428
GARCH-t 0.0652 0.0401
DeepAR-GMM-GARCH 0.0300 0.0325

Note: Number of replications = 1000.

Table 2. The average out-of-sample errors of the GARCH-n, the GARCH-t and the DeepAR-
GMM-GARCH models.

sample size Modle RMSE MAE

T = 500
GARCH-n 0.3564 0.3028
GARCH-t 0.3271 0.3091
DeepAR-GMM-GARCH 0.2761 0.2311

T = 1000
GARCH-n 0.2619 0.2117
GARCH-t 0.2318 0.2033
DeepAR-GMM-GARCH 0.2091 0.1834

T = 1500
GARCH-n 0.2241 0.2179
GARCH-t 0.2213 0.1971
DeepAR-GMM-GARCH 0.1911 0.1722

Note: Number of replications = 1000.

5. Empirical anaysis

Comprehensive stock index represents the average of the economic performance of the whole finan-
cial market. In this section, we study the China Shanghai Shenzhen index(CSI 300 index) daily OHLC
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data. The OHLC data contains daily high, low, open and close prices. Scholars have pointed out that
combining the open, high, low and close prices can obtain more effective volatility estimates. Hence,
We also intruduce OHLC data to our mixture model.

5.1. CSI 300 data set

The data of the CSI 300 index studied in this paper are from January 4, 2010, to December 30,
2021, with a total of 2916 trading days. Let rt be the returns of the corresponding series, which are
calculated using the closing price Ct series of the CSI300 index.

rt = 100 log
Ct+1

Ct
. (5.1)

The time series of rt and r2
t are ploted in Figure 3. We can find that r2

t displays a significant volatility
clustering characteristic, and the amplitude of volatility is gradually decreasing.
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Figure 3. The time series of rt and r2
t for the CSI 300 index, as shown in (5.1), spans from

January 4, 2010, to December 30, 2021.

The collected data is divided into training data and test data. Table 3 describes the statistical char-
acteristics of training and test data, respectively. The mean of rt is relatively small, only 0.007465.
The standard deviation is 2.251006, which displays that the degree of variation is large. The skewness
is less than 0, and the kurtosis is greater than 3, indicating that the sequence is of left deviation and
heavy tail. The test data has the same characteristics as the training data, such as data dispersion, large
volatility, left deviation and higher protrusion than the normal distribution. This may imply that the
normal distribution may not be suitable for our data, and other heavy-tailed distributions, such as t
distribution or mixed normal distribution, could be more suitable.

Table 3. Descriptive statistics for the training and test sets of CSI 300 returns.

Data Set Period Mean Std. Skew. Kurt.
training data 04/01/2010 to 29/12/2017 0.007465 2.251006 −0.755580 5.136707
test data 02/01/2018 to 30/12/2021 0.019125 1.717302 −0.427819 3.248347

Besides the close price(Ct), we also introduce the high price(Ht), the open price(Ot) and the low
price(Lt). Define ut = (Ht − Ot)2, dt = (Lt − Ot)2, ct = (Ct − Ot)2.

The correlation matrix below (5.2) shows the correlation coefficients between ut, dt, ct and r2
t . It

can be found that there is large correlation coefficient between the pair (ut,r2
t ), (dt,r2

t ) and (ct,r2
t ). From

a common sense, large values for ut, dt and ct, usually means large volatility(r2
t ). However, classical
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volatility models do not take such extreme values into account. Consequently, it is reasonable to use
neural network together with ut, dt and ct to forecast volatility, because neural network can introduce
additional covariates and capture the complex relation between different covariates.

r2
t ut dt ct

r2
t 1.000 0.394 0.475 0.716

ut 0.394 1.000 0.012 0.556
dt 0.475 0.012 1.000 0.690
ct 0.716 0.556 0.690 1.000


(5.2)

5.2. Error measures

This paper uses four evaluation indicators to measure the predictive performance of the model, they
are: NMAE, HR, linear correlation coefficient and rank correlation coefficient, which is defined as
follows:

NMAE =

∑N
t=1

∣∣∣∣r2
t+1 − h̃t+1

∣∣∣∣∑N
t=1

∣∣∣r2
t+1 − r2

t

∣∣∣ , (5.3)

HR =
1
N

N∑
t=1

θt,

θt =

 1 :
(̃
ht+1 − r2

t

) (
r2

t+1 − r2
t

)
≥ 0

0 : else
,

(5.4)

where N represents the number of predicted samples. Both NMAE and HR values range between 0
and 1. The smaller the values of these two indicators, the better the model’s performance.

Scholars usually use high-frequency data volatility estimates as a proxy for actual volatility to eval-
uate forecasting models. We also use realized volatility(σ2

RV,t) as a proxy for actual volatility, calculated
by summing up the squares of intra-day returns every 5 minutes.

σ2
RV,t =

48∑
i=1

[log rt,i − log rt,i−1]2. (5.5)

We focus on the out-of-sample predictive performance of the models, the correlation between re-
alized volatilities σ2

RV,t+1 and predicted volatilities h̃t+1 is measured only on the test set. We calculated
Pearson’s coefficient

r =

∑N
i=1

(
σ2

RV,t+1 − σ
2
RV

) (̃
ht+1 − h̃

)
√∑N

i=1

(
σ2

RV,t+1 − σ
2
RV

)2
√∑N

i=1

(̃
ht+1 − h̃

)2
, (5.6)

where σ2
RV and h̃ denote the respective mean values, and Spearman’s rank order correlation coefficient

rs. rs is also calculated using Eq (5.6). However, the actual volatilities are replaced by their ranks.
Spearman’s rank order correlation coefficient is considered more robust than Pearson’s coefficient. r
and rs are both between −1 and 1. A value of r(rs) around 0 means that the realized volatilities and
predicted volatilities are uncorrelated.
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5.3. In-sample results and out-sample results

5.3.1. In-sample results

Simulation experiments demonstrate that our proposed model exhibits greater prediction accuracy
than the GARCH model. In this section, to highlight the advantages of our model, we compare it
to the classic GARCH model, ANN-GARCH (an existing neural network GARCH model) and the
DeepAR-GARCH model using empirical data.

Among the four models, the GARCH and ANN-GARCH models predict conditional volatility,
whereas the DeepAR-GARCH and DeepAR-GMM-GARCH models provide probabilistic forecasts
for conditional volatility. To facilitate comparison, we will calculate the mean and quantiles of the
probability density function for conditional volatility derived from the DeepAR-GARCH and DeepAR-
GMM-GARCH models.

The estimated parameters of the GARCH models(GARCH-n and GARCH-t) are summarized in
Tables 4 and 5. For the GARCH-t model, the degrees of freedom parameter v is estimated at around
6. The GARCH-n and GARCH-t models are all nearly estimated with higher values of β1 and lower
values of α1. The sum of α1 and β1 is almost 1, Which implies the sequence may be non-stationary.
Therefore, our model without the stationary constraint is more suitable. The ANN-GARCH model
employs a three-layer ANN structure, featuring two input nodes, 24 nodes for the hidden layer and a
single output node. Likewise, the DeepAR-GARCH and DeepAR-GMM-GARCH models also have a
three-layer design, consisting of 14 input nodes, 24 nodes for the hidden layer and an output layer with
two output nodes and five output nodes.

Table 4. Parameter estimation of GARCH-n model.

Data Set a0 α1 β1

CS I300 1.8365e − 04 0.1000 0.8800

Table 5. Parameter estimation of GARCH-t model.

Data Set a0 α1 β1 ν

CS I300 1.8103e − 04 0.1000 0.8400 6.4625

Table 6. In-sample forecasting results for the GARCH-n, GARCH-t, DeepAR-GARCH and
DeepAR-GMM-GARCH models.

Data Set Model Loss NMAE HR

In-sample

GARCH-n 1.401 0.763 0.704
GARCH-t 1.331 0.761 0.637
ANN-GARCH 1.603 0.827 0.690
DeepAR-GARCH 1.541 0.748 0.717
DeepAR-GMM-GARCH 1.311 0.751 0.630

Table 6 lists the performance of five volatility prediction models. In the in-sample study, the
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DeepAR-GMM-GARCH model has the smallest HR and loss, and the DeepAR-GARCH model has
the smallest NMAE. The volatility prediction performance of the DeepAR-GMM-GARCH model is
better than the traditional GARCH and DeepAR models.
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Figure 4. Subplots (a), (b), (c) and (d) are the plots of the in-sample volatility forecast-
ing results of the classic GARCH, ANN-GARCH, DeepAR-GARCH and DeepAR-GMM-
GARCH models. (a) is the comparison of volatility forecasting results from the GARCH
models. (b) is the comparison of volatility forecasting results between the ANN-GARCH
model and r2

t . (c) is the comparison of probabilistic forecasting models between the DeepAR-
GARCH model and DeepAR-GMM-GARCH model. (d) is the comparison of 90% quan-
tile forecasting results between the DeepAR-GARCH model and DeepAR-GMM-GARCH
model.

In Figure 4, we display a portion of the forecasting results from various models and compare them
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with r2
t . As shown in (a), the forecasting results from the GARCH models differ from r2

t . The GARCH
models fail to capture significant changes in r2

t . From (b),(c), it is evident that the neural network
models capture the trend of r2

t and more accurately predict large fluctuations, with the DeepAR-GMM-
GARCH model demonstrating the best performance. In (d), we observe that the estimated 90% quan-
tiles from the DeepAR-GMM-GARCH model appear to be closer to the observations (r2

t ).

To sum up, from the estimation results of Table 6 and the plots in Figure 4, it is shown that introduc-
ing the extreme values(ut,dt,ct) can help to improve the forecasting accuracy of the mixture volatility
models. Hence the proposed approach is of particular practical value.

5.3.2. Out-sample results

In the out-of-sample analysis, as discussed in Section 5.1, the test set comprises the time series of
972 trading days subsequent to the respective training set.

Table 7. Out-of-sample forecasting results for the GARCH-n, GARCH-t, ANN-GARCH,
DeepAR-GARCH and DeepAR-GMM-GARCH models.

Data Set Model Loss NMAE HR

Out-sample

GARCH-n 2.320 0.917 0.868
GARCH-t 2.008 0.915 0.859
ANN-GARCH 2.517 0.903 0.783
DeepAR-GARCH 1.916 0.929 0.801
DeepAR-GMM-GARCH 2.100 0.790 0.722

Table 7 presents the performance of the models using common error measures (loss function,
NMAE and HR). The DeepAR-GARCH model attains a lower loss function value compared to the
neural network models on the test set. The neural network models display lower NMAE and HR
values than the GARCH model on the training set. The DeepAR-GMM-GARCH models exhibit the
lowest NMAE and HR values on the test data set.

In Figure 5, we plot part of the forecasting results from the five models mentioned with out-sample
data set and compare it with r2

t . It can be seen from (a) that the GARCH models do not capture
significant changes of r2

t , the same as the in-sample results. For (b),(c), The neural network models
capture most of the fluctuations of r2

t well, the DeepAR-GMM-GARCH model performing the best.

From (d), we could find that The estimated 90% quantiles from the DeepAR-GMM-GARCH model
seem to be more closely aligned with the observations (r2

t ).

Section 5.2 mentions that the linear correlation r and the rank correlation rs are two measures for
comparing realized volatilities. The linear correlation r and the rank correlation rs between predicted
and realized volatilities of the test set are reported in Table 8. On average, the DeepAR-GMM-GARCH
model shows the best performance of all models. It obtains the highest rank correlation on the test set.
Rank correlation is more robust than linear correlation since it detects correlations nonparametrically.
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Figure 5. Subplots (a), (b), (c) and (d) are the plots of the out-sample volatility forecast-
ing results of the classic GARCH, ANN-GARCH, DeepAR-GARCH and DeepAR-GMM-
GARCH models. (a) is the comparison of volatility forecasting results from the GARCH
models. (b) is the comparison of volatility forecasting results between the ANN-GARCH
model and realized volatility(r2

t ). (c) is the comparison of probabilistic forecasting mod-
els between the DeepAR-GARCH model and DeepAR-GMM-GARCH model. (d) is the
comparison of 90% quantile forecasting results between the DeepAR-GARCH model and
DeepAR-GMM-GARCH model.
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Table 8. A comparison of linear correlation (r) and rank correlation (rs) between the real-
ized volatility and volatility predicted by GARCH-n, GARCH-t, DeepAR-GARCH, ANN-
GARCH and DeepAR-GMM-GARCH models for test data set on the CSI300 index. The
best model (the highest correlation) is underlined.

Out-sample GARCH-n GARCH-t ANN-GARCH DeepAR-GARCH DeepAR-GMM-GARCH

r 0.381 0.420 0.490 0.473 0.504
rs 0.477 0.502 0.500 0.516 0.527

6. Conclusions

This paper studies a mixture volatility forecasting model based on the autoregressive neural work
and the GARCH model to obtain more precise forecasting for the conditional volatility model. The
inference, loss functions and training algorithm of the mixture model are given. The simulation results
show that our model performs better with less error than the classic GARCH models. The empiri-
cal study based on the CSI300 index shows that our model can significantly improve the forecasting
accuracy with extreme values compared to the usual models.

Our research findings can offer valuable insights into the prediction of volatility uncertainty. In
future studies, our model can be employed for various high-frequency volatility analysis, where it is
anticipated to exhibit enhanced performance.
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