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Abstract: This paper is devoted to considering the attainability of minimizers of the L2-constraint
variational problem

mγ,a = inf {Jγ(u) : u ∈ H2(RN),
∫
RN
|u|2dx = a2},

where

Jγ(u) =
γ

2

∫
RN
|∆u|2dx +

1
2

∫
RN
|∇u|2dx +

1
2

∫
RN

V(x)|u|2dx −
1

2σ + 2

∫
RN
|u|2σ+2dx,

γ > 0, a > 0, σ ∈ (0, 2
N ) with N ≥ 2. Moreover, the function V : RN → [0,+∞) is continuous

and bounded. By using the variational methods, we can prove that, when V satisfies four different
assumptions, mγ,a are all achieved.

Keywords: biharmonic Schrödinger equations; normalized solution; variational method; constrained
minimization technique

1. Introduction

Over the past several decades, the mixed dispersion nonlinear Schrödinger equation

i
∂ψ

∂t
− γ∆2ψ + β∆ψ − V(x)ψ + f (ψ) = 0 in RN (1.1)

has been studied by many researchers. Biharmonic Schrödinger equations have played an important
role in considering the small biharmonic dispersion terms in the transmission of intense laser beams in
a bulk medium with Kerr nonlinearity; see [1,2]. Biharmonic Schrödinger equations are also important
in depicting the motion of a vortex filament in an incompressible fluid; see [3]. Since then, biharmonic
Schrödinger equations have received attention due to whose applications in physics.
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An interesting topic is to study the standing waves of Eq (1.1). By applying the ansatz ψ(t, x) =
eiλtu(x), Eq (1.1) yields the following equation:

γ∆2u − β∆u + V(x)u = λu + f (u) in RN , (1.2)

where γ > 0, λ ∈ R, β ∈ R, and u : RN → R is a function which does not rely on time. Moreover, if
u(x) is a solution to (1.2), we can obtain that ψ(t, x) = eiλtu(x) is a solution to (1.1).

Above all, when γ = 0, β = 1 and V(x) ≡ 0, we consider the existence of the L2-constraint
variational problem

Dα = inf
{1
2

∫
RN
|∇u|2dx −

∫
RN

F(|u|)dx : u ∈ H1(RN),
∫
RN
|u|2dx = α2

}
.

When f (u) = |u|2σu (0 < σ < 2
N ), by assuming H1-precompactness of any minimizing sequences,

Cazenave and Lions [4] obtained the existence of the L2-constraint minimization problem. To this end,
the subadditivity assumption

Dα+β < Dα + Dβ (1.3)

is very crucial. Due to the assumption (1.3), we can eliminate the dichotomy of minimizing sequences.
If only V(x) ≡ 0, many papers are dedicated to this equation:

γ∆2u − β∆u = λu + f (u) in RN . (1.4)

Bonheure et al. considered a mixed dispersion nonlinear Schrödinger equation in [5]. More pre-
cisely, they studied the existence of the ground states and positive solutions. They also studied the
multiplicity of radial solutions and the standing waves of the related dispersive equation. Recently,
Goubet and Manoubi [6] studied semilinear Schrödinger equations with a non-standard dispersion that
is discontinuous at x = 0. They obtained both the existence and the uniqueness of standing waves
for these equations. Then, they discussed the orbital stability of these standing waves in a subspace
of the energy space, by using some classical methods such as the concentration-compactness method
of Lions. In [7], Khiddi and Essafi obtained the existence of infinitely many solutions for a class of
quasilinear Schrödinger equations without assuming the 4-superlinear at infinity on the nonlinearity.
The approach is based on the fountain theorem, and the involved potential term is continuous and sat-
isfies suitable regularities. In [8], Alotaibi et al. studied both the existence and nonexistence of global
weak solutions to a class of inhomogeneous nonlinear Schrödinger equations. The main problem is
related to gradient, which requires certain specific estimates to develop the precise proofs of results.
The approach is based on rescaled test function arguments derived from the Mitidieri and Pokhozhaev
method, and it also involves the Fujita critical exponent. In [9], Bonheure et al. studied two related
constraint minimization problems: One is related to a constraint on the L2-norm, and another one
is related to a constraint on the L2σ+2-norm. They also studied the attainability and the qualitative
properties of minimizers, namely, their sign, symmetry, decay and so on. In [10], Fernández et al.
established non-homogeneous Gagliardo-Nirenberg-type inequalities depending on the Tomas-Stein
inequality. They proved the attainability of minimizers in the mass-subcritical and mass-critical cases.
For more research about the biharmonic Schrödinger equations, see [11–15] and the references therein.

Usually, if V(x) ≡ 0, the scaling u(sx) is useful, and we can show (1.3). However, when V(x) . 0 the
scaling u(sx) does not work generally, and it is harder to show the subadditivity condition. Therefore,
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the L2-constraint minimization problem is hard. Just because of this, the solutions to the problem
would not be enough. For the biharmonic Schrödinger equations with a potential, see [16] and the
references therein.

Although the biharmonic nonlinear Schrödinger equations are related to physics, they are far from
being properly understood. The nonlinear Schrödinger equations have been studied in [17–21], but
the fourth order Schrödinger equations have been studied very little. Apart from some papers already
mentioned, there are actually few papers dealing with biharmonic nonlinear Schrödinger equations.

Inspired by the past work of [22–24], in this paper, we consider the attainability of minimizers of
the L2-constraint variational problem:

mγ,a = inf {Jγ(u) : u ∈ H2(RN),
∫
RN
|u|2dx = a2},

where

Jγ(u) =
γ

2

∫
RN
|∆u|2dx +

1
2

∫
RN
|∇u|2dx +

1
2

∫
RN

V(x)|u|2dx −
1

2σ + 2

∫
RN
|u|2σ+2dx,

γ > 0, a > 0, σ ∈ (0, 2
N ) with N ≥ 2 and the continuous bounded function V : RN → [0,+∞). Here,

we consider four functions:
(V1) V is a function that is 1-periodic in x1, x2, · · · , xN .
(V2) V is an asymptotically periodic function. Namely there exists a function Vq : RN → R which is
1-periodic in x1, x2, · · · , xN , and V satisfies the following conditions:

Vq(x) ≥ V(x), for any x ∈ RN . (1.5)

|Vq(x) − V(x)| → 0, as |x| → +∞. (1.6)

(V3) V ∈ L∞(RN), and
0 < inf

x∈RN
V(x) = V0 < lim inf

|x|→+∞
V(x) = V∞. (1.7)

(V4) Suppose that µW(x) = V(x) and a constant M1 > 0 such that

|{x ∈ RN : M1 < W(x)}| < +∞. (1.8)

Moreover, Ω = int(W−1(0)) , ∅.
Next, we describe the first result of this paper.

Theorem 1.1. Let γ > 0, σ ∈ (0, 2
N ) and assume that (V1) holds or (V2) holds. There exists a constant

δ(a) > 0 for any a > 0, and if |V |∞ < δ when V satisfies (V1), or |Vq|∞ < δ when V satisfies (V2),
mγ,a < 0 is achieved.

Our second result is combined with the L2-constraint variational problem:

mγ,a,ε = inf {Jγ,ε(u) : u ∈ H2(RN),
∫
RN
|u|2dx = a2} (1.9)

where

Jγ,ε(u) =
γ

2

∫
RN
|∆u|2dx +

1
2

∫
RN
|∇u|2dx +

1
2

∫
RN

V(εx)|u|2dx −
1

2σ + 2

∫
RN
|u|2σ+2dx,

γ > 0, a > 0, ε > 0 are real numbers, and σ ∈ (0, 2
N ) with N ≥ 2.

The second result is as follows.
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Theorem 1.2. Let γ > 0, σ ∈ (0, 2
N ) and assume that (V3) holds. Then, there exist two constants δ(a),

ε0 > 0 for any a > 0, and if |V |∞ < δ, mγ,a,ε < 0 is achieved for any ε ∈ (0, ε0).

In (V4), we choose r > 0 such that Br(x1) ⊂ Ω. We study a constrained variational problem:

mγ,a,µ = inf {Jλ,µ(u) : u ∈ H2(RN),
∫
RN
|u|2dx = a2},

where

Jγ,µ(u) =
γ

2

∫
RN
|∆u|2dx +

1
2

∫
RN
|∇u|2dx +

1
2

∫
RN
µW(x)|u|2dx −

1
2σ + 2

∫
RN
|u|2σ+2dx,

and γ > 0, a > 0, σ ∈ (0, 2
N ) with N ≥ 2. Finally, we describe the third main result.

Theorem 1.3. Let γ > 0, σ ∈ (0, 2
N ) and assume that V satisfies (V4). Then, there exist two constants

r0(a), µ0(a) > 0 for any a > 0 such that mγ,a,µ < 0 is achieved for any µ ≥ µ0, r ≥ r0.

Notation

• C,C1,C2, . . . represent positive constants, and they are independent of each other.
• Br(y) represents an open ball centered at y ∈ RN with radius r > 0, Bc

r(y) represents its complement
in RN .
• ∥ · ∥ represents the common norm of the Sobolev space H2(RN), and
| · |p represents the common norm of the Lebesgue space Lp(RN), for p ∈ [1,∞].
• on(1) represents a real number sequence with on(1)→ 0 as n→ +∞.

2. Variational framework and some preliminaries

In the following, we study the functional Jγ : E → R, namely,

Jγ(u) =
γ

2

∫
RN
|∆u|2dx +

1
2

∫
RN
|∇u|2dx +

1
2

∫
RN

V(x)|u|2dx −
1

2σ + 2

∫
RN
|u|2σ+2dx,

constrained on the sphere in L2(RN) given by

S (a) = {u ∈ H2(RN) : |u|2 = a},

where γ > 0, and the continuous function V : RN → [0,+∞). E is described as the space

E = {u ∈ H2(RN) :
∫
RN

V(x)|u|2dx < +∞},

and the norm of E is given by

∥u∥ = (
∫
RN

(|∆u|2 + |∇u|2 + (V(x) + 1)|u|2)dx)
1
2 .

We can infer E = H2(RN) if V ∈ L∞(RN).

Electronic Research Archive Volume 31, Issue 7, 3759–3775.
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According to the definition of E, it is obvious that the embedding E ↪→ H2(RN) is continuous. The
following embeddings

E ↪→ L2σ+2(RN), for 2σ + 2 ∈ [2,+∞] when N = 2,

and
E ↪→ L2σ+2(RN), for 2σ + 2 ∈ [2, 2∗] when N ≥ 3,

are continuous, too.
In addition, we introduce two Gagliardo-Nirenberg interpolation inequalities; see [25–27]. When

the function u ∈ H2(RN), we have

∥u∥2σ+2
L2σ+2 ≤ CN(σ)∥∆u∥

σN
2

L2 ∥u∥
2σ+2−σN

2
L2 , (2.1)

where {
0 ≤ σ for N ≤ 4,
0 ≤ σ ≤ 4

N−4 for N > 4,

and
∥u∥2σ+2

L2σ+2 ≤ BN(σ)∥∇u∥σN
L2 ∥u∥2σ+2−σN

L2 , (2.2)

where {
0 ≤ σ for N ≤ 2,
0 ≤ σ ≤ 2

N−2 for N > 2,

the constants B = BN(σ) > 0 and C = CN(σ) > 0. Therefore, we have

Jγ(u) ≥
1
2

∫
RN
|∇u|2dx −

Ba2σ+2−σN

2σ + 2
(
∫
RN
|∇u|2dx)

σN
2 (2.3)

and

Jγ(u) ≥
γ

2

∫
RN
|∆u|2dx −

Ca2σ+2−σN
2

2σ + 2
(
∫
RN
|∆u|2dx)

σN
4 . (2.4)

Since σ ∈ (0, 2
N ), we know that σN < 2. Hence, Jγ is bounded from below on S (a) for any a > 0,

γ > 0. Relying on the above arguments, we infer that

mγ,a = inf
u∈S (a)

Jγ(u)

is well-defined.

Lemma 2.1. Let V ∈ L∞(RN) and γ > 0. There exists a constant δ(a) > 0 for each a > 0 such that
mγ,a < 0 when |V |∞ < δ.

Proof. We choose u1 ∈ S (a) for every a > 0, and set

uk(x) = e
Nk
2 u1(ekx), for all x ∈ RNand all k ∈ R.

By calculation, we have ∫
RN
|uk(x)|2dx = a2

Electronic Research Archive Volume 31, Issue 7, 3759–3775.
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and ∫
RN
|uk(x)|2σ+2dx = eσNk

∫
RN
|u1(x)|2σ+2dx. (2.5)

Therefore, we infer that

Jγ(uk) ≤
γe4k

2

∫
RN
|∆u1|

2dx +
e2k

2

∫
RN
|∇u1|

2dx +
|V |∞a2

2

−
eσNk

2σ + 2

∫
RN
|u1|

2σ+2dx.

As σ ∈ (0, 2
N ), there exists a constant k < 0 such that

γe4k

2

∫
RN
|∆u1|

2dx +
e2k

2

∫
RN
|∇u1|

2dx −
eσNk

2σ + 2

∫
RN
|u1|

2σ+2dx = Dk < 0.

Now, we choose fixed δ = −Dk
a2 and consider |V |∞ < δ, and we have

Jγ(uk) < Dk −
Dk

2
=

Dk

2
< 0,

which shows mγ,a < 0.

Lemma 2.2. Let γ > 0, and there are x1 ∈ R
N , r > 0 and

V(x) = 0, for any x ∈ Br(x1). (2.6)

Then, there exists a constant r0 > 0 that does not rely on µ in (V4) and such that mγ,a < 0 for any r ≥ r0.

Proof. We choose u1 ∈ S (a) ∩C∞0 (RN), x1 ∈ R
N with V(x) = 0 for any x ∈ Br(x1) and set

uk(x) = e
Nk
2 u1(ek(x − x1)), for any x ∈ RNand any k ∈ R.

By calculation we have ∫
RN
|uk(x)|2dx = a2

and ∫
RN
|uk(x)|2σ+2dx = eσNk

∫
RN
|u1(x)|2σ+2dx, (2.7)

which lead to

Jγ(uk) =
γe4k

2

∫
RN
|∆u1|

2dx +
e2k

2

∫
RN
|∇u1|

2dx

+
1
2

∫
supp(u1)

V(e−kx + x1)|u1|
2dx −

eσNk

2σ + 2

∫
RN
|u1|

2σ+2dx.

As σ ∈ (0, 2
N ), there exists a constant k < 0 such that

γe4k

2

∫
RN
|∆u1|

2dx +
e2k

2

∫
RN
|∇u1|

2dx −
eσNk

2σ + 2

∫
RN
|u1|

2σ+2dx = Dk < 0.
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Now, we can choose M1 = sup{|x| : x ∈ supp(u1)}, r0 = e−kM1 for each r ≥ r0 > 0. Then, it is easy
to deduce that

V(e−kx + x1) = 0, for all x ∈ supp(u1).

Hence,
Jγ(uk) < 0,

which shows mγ,a < 0.

Lemma 2.3. Let the conditions of Lemma 2.1 hold or Lemma 2.2 hold. When 0 < a2 < a1, then
a2

2
a2

1
mγ,a1 < mγ,a2 < 0.

Proof. We set ω > 1 such that a1 = ωa2 and choose a minimizing sequence (un) ⊂ S (a2) with respect
to mγ,a2 , namely,

Jγ(un)→ mγ,a2 , as n→ +∞.

Let ũn = ωun, and it is easy to see ũn ∈ S (a1). Then

mγ,a1 ≤ J(ũn) = ω2J(un) +
(ω2 − ω2σ+2)

2σ + 2

∫
RN
|un|

2σ+2dx.

Claim 2.4. There exist two constants C1 > 0 and n1 ∈ N such that
∫
RN |un|

2σ+2dx ≥ C1 for any n ≥ n1.

If not, we can infer that ∫
RN
|un|

2σ+2dx→ 0, as n→ +∞,

and if necessary we can choose a subsequence. Let us recall that

−
1

2σ + 2

∫
RN
|un|

2σ+2dx ≤ Jγ(un) = mγ,a2 + on(1) < 0, for n ∈ N,

which is a contradiction. Hence, the proof of Claim 2.4 is completed.
Applying Claim 2.4, ω2 − ω2σ+2 < 0, we can get that for n ∈ N big enough

mγ,a1 ≤ ω
2J(un) +

(ω2 − ω2σ+2)C1

2σ + 2
.

Taking the limit n→ +∞, we have

mγ,a1 ≤ ω
2mγ,a2 +

(ω2 − ω2σ+2)C1

2σ + 2
< ω2mγ,a2 ,

namely,
a2

2

a2
1

mγ,a1 < mγ,a2 ,

and the proof of the Lemma 2.3 is completed.

Lemma 2.5. Suppose that there exists a minimizing sequence (un) ⊂ S (a) with respect to mγ,a such
that u , 0, un(x)→ u(x) a.e. in RN , and un ⇀ u in H2(RN). Then, un → u in H2(RN), Jγ(u) = mγ,a and
u ∈ S (a).
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Proof. Actually, if not, we can obtain that |u|2 = c , a. Relying on u , 0 and Fatou’s lemma, it is easy
to infer that c ∈ (0, a). Applying Brezis-Lieb lemma (see [28, Lemma 1.32]), we can obtain

|un − u|22 = |un|
2
2 − |u|

2
2 + on(1)

and
|un − u|2σ+2

2σ+2 = |un|
2σ+2
2σ+2 − |u|

2σ+2
2σ+2 + on(1).

Let ũn = un − u, bn = |ũn|2, and assume |ũn|2 → b. We infer a2 = c2 + b2 and bn ∈ (0, a) for n big
enough. Moreover, by using Lemma 2.3, we have

mγ,a + on(1) = Jγ(un) = Jγ(u) + Jγ(ũn) + on(1)

≥ mγ,bn + mγ,c + on(1) ≥
b2

n

a2 mγ,a + mγ,c + on(1).

Taking the limit n→ +∞, we obtain that

mγ,a ≥
b2

a2 mγ,a + mγ,c. (2.8)

As c ∈ (0, a), we can apply the Lemma 2.3 in (2.8), and it is easy to obtain this inequality:

mγ,a >
b2

a2 mγ,a +
c2

a2 mγ,a = (
b2

a2 +
c2

a2 )mγ,a = mγ,a.

We get a contradiction, which implies |u|2 = a, namely, u ∈ S (a).
Since |un|2 = |u|2 = a, un ⇀ u in L2(RN),

un → u in L2(RN).

Using the interpolation theorem in the Lebesgue space, it is easy to obtain that

un → u in L2σ+2(RN).

Moreover, as
∫
RN γ|∆u|2 + |∇u|2 + V(x)|u|2dx is convex and continuous in H2(RN), this functional is

weakly lower semicontinuous, namely,

lim inf
n→+∞

∫
RN
γ|∆un|

2 + |∇un|
2 + V(x)|un|

2dx ≥
∫
RN
γ|∆u|2 + |∇u|2 + V(x)|u|2dx.

The above limit together with mγ,a = lim
n→+∞

Jγ(un) shows that

mγ,a ≥ Jγ(u).

Since u ∈ S (a), Jγ(u) = mγ,a, and Jγ(un) → Jγ(u). Since un → u in L2σ+2(RN), we infer un → u in
H2(RN).
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3. Periodic case

We suppose that V satisfies V1 and set a minimizing sequence un ⊂ S (a) with respect to mγ,a,
namely,

Jγ(un)→ mγ,a, as n→ +∞.

As σ ∈ (0, 2
N ), the above limit combined with (2.3) and (2.4) ensures (|∆un|2) and (|∇un|2) are

bounded sequences. Hence, (un) is a bounded sequence in H2(RN). Furthermore, there exist a subse-
quence of (un), still represented by (un), and u ∈ H2(RN) such that

un(x)→ u(x) a.e. in RN ,

and
un ⇀ u in H2(RN).

As the discussion of Claim 2.4, there is a constant C1 > 0, and the following inequality is established∫
RN
|un|

2σ+2dx ≥ C1, for n ∈ N big enough. (3.1)

Lemma 3.1. If (un) ⊂ S (a) is a minimizing sequence, then (un) can be chosen to be a new minimizing
sequence ũn ⊂ S (a) such that ũn ⇀ ũ and ũ , 0.

Proof. Above all, there exist β > 0, R > 0 and yn ∈ R
N such that∫

BR(yn)
|un|

2dx ≥ β, for all n ∈ N. (3.2)

If not, we can infer that un → 0 in L2σ+2(RN), which is a contradiction. A brief discussion implies
that we can suppose yn ∈ R

N and R > 0 big enough in (3.2). Then, setting ũn(x) = u(x + yn), we
infer (ũn) ⊂ S (a) and (ũn) is also a minimizing sequence with respect to mγ,a. Furthermore, there exists
ũ ∈ H2(RN)\{0} such that

ũn(x)→ ũ(x) a.e. in RN ,

and
ũn ⇀ ũ in H2(RN).

The proof is completed.

3.1. Proof of Theorem 1.1 (Part I)

Proof. Using Lemma 3.1, we can get a bounded minimizing sequence (un) ⊂ S (a) with respect to mγ,a

and its weak limit u , 0. Now, by Lemma 2.5, it is easy to infer u ∈ S (a), Jγ(u) = mγ,a and un → u in
H2(RN). Hence, by the Lagrange multiplier, there exists a constant λ(a) ∈ R such that

J′γ(u) = λ(a)Ψ′(u) in (H2(RN))′, (3.3)

where Ψ : H2(RN)→ R, and

Ψ(u) =
∫
RN
|u|2dx, u ∈ H2(RN).

According to (3.3),
γ∆2u − ∆u + V(x)u = λ(a)u + |u|2σu in RN .

Therefore, the proof is completed when V satisfies (V1).
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4. Asymptotically periodic case

In this section, let V . Vq. Therefore, there exists a measurable set Ω ⊂ RN with |Ω| > 0 and

Vq(x) > V(x), for any x ∈ Ω. (4.1)

Then, let us represent by Jγ,q : H2(RN)→ R the functional

Jγ,q(u) =
γ

2

∫
RN
|∆u|2dx +

1
2

∫
RN
|∇u|2dx +

1
2

∫
RN

Vq(x)|u|2dx −
1

2σ + 2

∫
RN
|u|2σ+2dx,

and the constant
mγ,a,q = inf

u∈S (a)
Jγ,q(u).

Depending on the conditions of Theorem 1.1, as the discussion in Section 3, there exists up ∈ S (a)
such that Jγ,p(up) = mγ,a,p. Furthermore, by (4.1), we can infer

mγ,a < mγ,a,q. (4.2)

Now, we choose a minimizing sequence (un) ⊂ S (a) with respect to mγ,a, namely,

Jγ(un)→ mγ,a, as n→ +∞.

Since σ ∈ (0, 2
N ), as the discussion in Section 2, sequence (un) is bounded in H2(RN). Therefore,

there exist u ∈ H2(RN) and a subsequence of (un), still represented by (un), such that

un(x)→ u(x) a.e. in RN ,

and
un ⇀ u in H2(RN).

Lemma 4.1. If u is the weak limit of (un) ⊂ S (a), then u , 0.

Proof. If not, we have that un ⇀ 0 in H2(RN). Then,

Jγ,q(un) +
∫
RN

(V(x) − Vq(x))|un|
2dx + on(1) = Jγ(un) = mγ,a + on(1),

which leads to

mγ,a,p +

∫
RN

(V(x) − Vq(x))|un|
2dx + on(1) ≤ Jγ(un) = mγ,a + on(1). (4.3)

Since un → 0 in L2
loc(R

N), the condition (1.6) shows∫
RN

(V(x) − Vq(x))|un|
2dx→ 0.

Let n→ +∞ in (4.3), and applying the above limit, we get that

mγ,a ≥ mγ,a,q.

We get a conclusion that contradicts (4.2). Hence, u is nontrivial.
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4.1. Proof of Theorem 1.1 (Part II)

Relying on Lemma 4.1, first of all, we have a minimizing sequence (un) ⊂ S (a) with respect to
mγ,a and its weak limit u , 0. By using Lemma 2.5, we can obtain un → u in H2(RN), u ∈ S (a),
Jγ(u) = mγ,a. The rest is similar to Theorem 1.1 when V satisfies (V1), and we do not repeat it.

5. Proof of Theorem 1.2

In this section, let us represent by Jγ,∞, Jγ,0, : H2(RN)→ R these functionals:

Jγ,∞(u) =
γ

2

∫
RN
|∆u|2dx +

1
2

∫
RN
|∇u|2dx +

1
2

∫
RN

V∞|u|2dx

−
1

2σ + 2

∫
RN
|u|2σ+2dx

and

Jγ,0(u) =
γ

2

∫
RN
|∆u|2dx +

1
2

∫
RN
|∇u|2dx +

1
2

∫
RN

V0|u|2dx

−
1

2σ + 2

∫
RN
|u|2σ+2dx.

Furthermore, let us represent by mγ,a,∞, mγ,a,0 these constants:

mγ,a,∞ = inf
u∈S (a)

Jγ,∞(u)

and
mγ,a,0 = inf

u∈S (a)
Jγ,0(u).

According to the conditions of Theorem 1.2, we can get a constant δ(a) > 0 for any a > 0, and
|V |∞ < δ. Hence, by (V3), we have V0 < δ and V∞ < δ. Depending on Section 3, we can get two
functions u0, u∞ ∈ S (a) and Jγ,∞(u∞) = mγ,a,∞, Jγ,0(u0) = mγ,a,0. Moreover, from Lemma 2.1 and (1.7),

mγ,a,0 < mγ,a,∞ < 0. (5.1)

Lemma 5.1. mγ,a,0 ≥ lim sup
ε→0+

mγ,a,ε.

Proof. In the following, let x1 ∈ R
N such that

V(x1) = inf
x∈RN

V(x),

and vε(x) = u1(x − x1
ε

). So, vε ∈ S (a), and

mγ,a,ε ≤ Jγ,ε(vε) =
γ

2

∫
RN
|∆u1|

2dx +
1
2

∫
RN
|∇u1|

2dx +
1
2

∫
RN

V(εx + x1)|u1|
2dx

−
1

2σ + 2

∫
RN
|u1|

2σ+2dx.
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Taking the limit ε→ 0+, we have

lim sup
ε→0+

mγ,a,ε ≤ lim
ε→0+

Jγ,ε(vε) = Jγ,0(u0) = mγ,a,0.

From Lemma 5.1 and (5.1), there exists ε0 > 0 such that

mγ,a,ε < mγ,a,∞, for all ε ∈ (0, ε0). (5.2)

We choose a minimizing sequence (un) ⊂ S (a) with respect to mγ,a,ε, namely,

Jγ,ε(un)→ mγ,a,ε, as n→ +∞.

As σ ∈ (0, 2
N ), the above limit combined with (2.3) and (2.4) ensures (|∆un|2) and (|∇un|2) are

bounded sequences, from where we infer that (un) is bounded in H2(RN). Therefore, there exist a
function u ∈ H2(RN) and a subsequence of (un), still represented by (un), such that

un(x)→ u(x) a.e. in RN ,

and
un ⇀ u in H2(RN).

Lemma 5.2. When ε ∈ (0, ε0), u , 0, where u is the weak limit of (un).

Proof. If not, we have u = 0. Then,

mγ,a,ε + on(1) = Jγ,ε(un) = Jγ,∞(un) +
∫
RN

(V(εx) − V∞)|un|
2dx.

Relying on (V3), for each given η > 0, there exist a constant R > 0 and

V(x) ≥ V∞ − η, for any |x| ≥ R.

Therefore,

mγ,a,ε + on(1) = Jγ,ε(un) ≥ Jγ,∞(un) +
∫

BR/ε(0)
(V(εx) − V∞)|un|

2dx − η
∫

Bc
R/ε(0)
|un|

2dx.

We recall that (un) is bounded in H2(RN), un → 0 in L2(BR/ε(0)). Hence, can infer that

mγ,a,ε + on(1) ≥ Jγ,∞(un) − ηC1 ≥ mγ,a,∞ − ηC1

where C1 > 0. As η > 0 is arbitrary, we have

mγ,a,∞ ≤ mγ,a,ε,

and we get a conclusion that contradicts (5.2). Hence, u , 0 when ε ∈ (0, ε0).
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5.1. Proof of Theorem 1.2

Depending on Lemma 5.2, we can choose (un) ⊂ S (a) which is a minimizing sequence with respect
to mγ,a,ε such that un ⇀ u and u , 0. Moreover, using Lemma 2.5, it follows that un → u in H2(RN),
u ∈ S (a), and Jγ,ε(u) = mγ,a,ε.

6. Proof of Theorem 1.3

The following part is dedicated to studying the attainability of minimizers when V satisfies (V4).
We can choose a minimizing sequence (un) ⊂ S (a) with respect to mγ,a,µ, namely,

Jγ,µ → mγ,a,µ, as n→ +∞.

Since σ ∈ (0, 2
N ), arguing as the discussion in Section 2, we infer that (un) is bounded in E. There-

fore, we can get u ∈ E and a subsequence of (un), still represented by (un), such that

un(x) ⇀ u(x) a.e. in RN ,

and
un ⇀ u in E.

Lemma 6.1. There exist two constants C1, r0 > 0,which do not rely on µ > 0, and

lim inf
n→+∞

∫
RN
|un|

2σ+2dx ≥ C1, for all r ≥ r0. (6.1)

Proof. Set u1 ∈ S (a) ∩C∞0 (RN) with supp(u1) ⊂ Ω, where Ω = int(W−1(0)) , ∅, x1 ∈ Ω, and

uk(x) = e
Nk
2 u1(ek(x − x1)), for any x ∈ RNand any k ∈ R.

By calculation, we have ∫
RN
|uk(x)|2dx = a2,

and ∫
RN
|uk(x)|2σ+2dx = eσNk

∫
RN
|u1(x)|2σ+2dx. (6.2)

Therefore,

Jγ,µ(uk) =
γe4k

2

∫
RN
|∆u1|

2dx +
e2k

2

∫
RN
|∇u1|

2dx +
µ

2

∫
supp(u1)

W(e−kx + x1)|u1|
2dx

−
eσNk

2σ + 2

∫
RN
|u1|

2σ+2dx.

As σ ∈ (0, 2
N ), there exists a constant k < 0 such that

γe4k

2

∫
RN
|∆u1|

2dx +
e2k

2

∫
RN
|∇u1|

2dx −
eσNk

2σ + 2

∫
RN
|u1|

2σ+2dx = Dk < 0.
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Now, we choose M1 = sup{|x| : x ∈ supp(u1)} and r0 = e−kM1. If r ≥ r0 > 0, and then

W(e−kx + x1) = 0, for all x ∈ supp(u1).

Hence,
Jγ,µ(uk) < 0.

It shows there is a constant C1 > 0 that does not rely on µ and mγ,a,µ < −C1 when µ > 0. Let us
recall

mγ,a,µ + on(1) = Jγ,µ(un)

=
γ

2

∫
RN
|∆un|

2dx +
1
2

∫
RN
|∇un|

2dx +
µ

2

∫
RN

W(x)|un|
2dx

−
1

2σ + 2

∫
RN
|un|

2σ+2dx.

Then, we have

−C1 + on(1) ≥ −
1

2σ + 2

∫
RN
|un|

2σ+2dx

and
lim inf

n→+∞

∫
RN
|un|

2σ+2dx ≥ C1 > 0,

where C1 is independent of µ.

Lemma 6.2. There exist two constants µ0 > 0, R > 0, and when µ ≥ µ0 > 0, this inequality is
established:

lim sup
n→+∞

∫
Bc

R(0)
|un|

2σ+2dx ≤
C1

2
,

where C1 > 0 is given in Lemma 6.1.

Proof. Actually, as the discussion in [29, Lemma 2.5], for each ε > 0, there exist R > 0 and µ0 > 0
such that

lim sup
n→+∞

∫
Bc

R(0)
|un|

2dx ≤ ε, for all µ ≥ µ0.

Now, apply that the result (un) is bounded in L2∗(RN) by a constant, and the constant is independent
of µ. In the following, we can use interpolation theorem of Lebesgue spaces and the proper ε > 0 to
get the expected result.

Lemma 6.3. When µ ≥ µ0 > 0, u , 0, where u is the weak limit of (un).

Proof. If not, we have that u = 0 for some µ ≥ µ0. As un → 0 in L2σ+2(BR(0)) for each R > 0, according
to Lemmas 6.1 and 6.2 we have

C1 ≤ lim inf
n→+∞

∫
RN
|un|

2σ+2dx = lim inf
n→+∞

∫
Bc

R(0)
|un|

2σ+2dx ≤ lim sup
n→+∞

∫
Bc

R(0)
|un|

2σ+2dx ≤
C1

2
.

We get a contradiction, which implies that there exists a constant µ0 > 0 such that u , 0 when
µ ≥ µ0.
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6.1. Proof of Theorem 1.3

According to Lemma 6.3, we can get (un) ⊂ S (a) which is a minimizing sequence with respect to
mγ,a,µ such that un ⇀ u and u , 0. Moreover, we can use Lemma 2.5, and then, un → u in E, u ∈ S (a)
and Jγ,µ(u) = mγ,a,µ.
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