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Abstract: Federated learning (FL) is a framework which is used in distributed machine learning to
obtain an optimal model from clients’ local updates. As an efficient design in model convergence and
data communication, cloud-edge-client hierarchical federated learning (HFL) attracts more attention
than the typical cloud-client architecture. However, the HFL still poses threats to clients’ sensitive
data by analyzing the upload and download parameters. In this paper, to address information leakage
effectively, we propose a novel privacy-preserving scheme based on the concept of differential pri-
vacy (DP), adding Gaussian noises to the shared parameters when uploading them to edge and cloud
servers and broadcasting them to clients. Our algorithm can obtain global differential privacy with
adjustable noises in the architecture. We evaluate the performance on image classification tasks. In our
experiment on the Modified National Institute of Standards and Technology (MNIST) dataset, we get
91% model accuracy. Compared to the previous two-layer HFL-DP, our design is more secure while as
being accurate.

Keywords: differential privacy; federated learning; hierarchical architecture; privacy preservation;
distributed network

1. Introduction

With the rapid development of mobile devices and Internet-of-Things (IoT), it is expected that ev-
erything will be connected closely [1, 2]. To apply artificial intelligence (AI) technology to different
scenes, we prefer to choose distributed machine learning (ML) to process tasks in cooperation with
each other [3]. Though practical and pragmatic as it is, it suffers many reliability and security risks in
a real distributed environment [4, 5]. When training the models cooperatively, the privacy of clients’
sensitive datasets becomes a great concern. Hence, federated learning, in which datasets are processed
only on the client side, has been proposed [6, 7]. FL aims to fit a common model by an empirical
risk minimization (ERM) objective. Nevertheless, FL still poses many worrying crises on information
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leakage, communication efficiency and device diversity [8–12].
As a commonly used architecture, client-server FL also suffers from stability problems, especially

in poor network [13]. To address these problems, the more efficient and stable architecture client-
edge-cloud hierarchical FL has been proposed [14]. The HFL allows multiple edge servers to perform
partial model aggregation. In this way, the model can be trained faster, and better communication-
computation trade-offs can be achieved. Edge servers are designed to aggregate the clients’ model
parameters. Hence, edge servers are capable of reducing the computing burden, message delay and
communication burden of cloud servers [15].

FL usually adopts stochastic gradient descent (SGD) in the training process. Based on distributed
SGD with a one-step local update, [16, 17] have analyzed the convergence performance of federated
learning. Federated proximal (FedProx) [18], taking advantage of regularization on a local loss func-
tion, improves the convergence performance and system stability.

With FL becoming more and more attractive, data security and confidentiality also raise great con-
cerns. FL seems to protect clients’ individual data by exchanging parameters instead of sensitive
information. However, there exist many malicious adversaries that are capable of stealing some secret
information [19]. The most useful way to prevent information exposure is to apply differential privacy
by adding noises in trained parameters [20]. As to the research about DP in FL, there are mainly three
aspects: client-level, sample-level and LDP-FL [21–26].

Though there are various designs above, the global differential privacy on three-layer hierarchical
federated learning is still unexplored. As to two-layer HFL-DP [27], the authors proposed a privacy-
preserving scheme based on the theory of local differential privacy, with addition of noise to the shared
model parameters before uploading them to edge and cloud servers. However, they did not control the
amount of Gaussian noise in the architecture. So, if we want to expand our layer architecture, we may
add so much noise to damage the utility, even leading to a tough convergence. Our design solves this
problem.

To design a practical and efficient algorithm to reach the balance between privacy of the sensitive
data and the quality of a trained model, in this paper, we propose our novel framework based on a
DP mechanism. The key value of our design is to realize the global privacy budget in the whole ar-
chitecture. At each time, we control the overall amount of noise we add instead of letting it increase
blindly. Consequently, the model accuracy can be adjusted due to the trade-off between model accu-
racy and privacy cost. From our perspective, there are few papers about the research of global privacy
in hierarchical federated learning. We conduct extensive tests based on real-world datasets to validate
the performance of our algorithm. Evaluations show that theoretical results and test results are consis-
tent. To summarize, we propose a novel scheme that satisfied the requirement of DP with global data
under a certain noises perturbation level by adding proper Gaussian noise and exploring the trade-off

between privacy parameters and model utility to comprehend the relation between privacy level and
model quality. By doing so, sensitive user data can be protected even if there exist many adversaries
from inner and outer cyberspace.

2. Related work

2.1. Client-level

In client-level, in order to protect the clients’ information, we treat the clients’ model as a piece of
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data. In [21] DP-FedAvg and DP-FedSGD were proposed. The sampling is to sample the client, and
the noises are added at the center. Sensitivity is calculated based on the sampling rate, with average
weights for each client. McMahan et al. suggest that with a huge number of users engaging in, realizing
differential privacy costs more computation instead of decreasing utility. By their experiment, the
LSTM language models can be similar to un-noised models from quantitative and qualitative aspects
when using large datasets. They consider the effect of large step updates on the model. In [22] the
model uploaded by the client is clipped at the center so that an adaptive clipping operation can be
performed (such as taking the median value of the norm of each client model as the clipping norm).
The key point is concealing the contribution of individual clients in the training process. It was shown
that when the client’s participation is hidden, the model obtained by federated learning still has a good
performance. Then we can conclude that when enough clients are participating in the learning, the
model can achieve high accuracy. In [23] the uplink privacy protection is carried out first, and then the
downlink noises are added based on the uplink noises addition, and the convergence analysis is given.
A theoretical convergence limit is specified for the loss function of the trained FL model. Based on
this, we can know that the better the convergence performance is the lower the protection level. Vice,
given a fixed privacy protection level, increasing the overall number N of clients participating in FL
can improve the convergence performance of the final model; and under a given privacy protection
level, there is an optimal maximum number of aggregations T in terms of convergence performance.

2.2. Sample-level

In sample-level, we protect the sensitive information of the samples under the client. Each sample
under the client is regarded as a piece of data, and the federation center is regarded as an opponent.
In [24] integrates the DPAGD-CNN algorithm into federated machine learning. DPAGD-CNN is an
adaptive allocation algorithm for differential privacy budget under centralized machine learning. Con-
sidering the difference in user data, the model gets accurate when adjusting differential privacy. In [25]
sampling on the client instead of the data in the client side, but also applies the privacy measurement
method of MA and then adds a method based on the privacy budget to adapt the optimal number of
iterations, which is actually a novel form of self-adaptation privacy budget allocation. Wei et al. made
an exact relation between communication round T and privacy level.

2.3. LDP-FL

In LDP-FL, a client has only one sample datum, and if there are multiple sample data, multiple
gradients will be trained and uploaded to the federation center. In [26] the CLDP-SGD algorithm was
proposed, which first samples the clients, then samples again under the clients and finally shuffles the
gradients of different clients. There are multiple sample gradients, and the clients will pass multiple
gradients to the center. Noises are added locally based on coded perturbation.

2.4. HFL-DP

In federated learning, each participant can build the model without disclosing the underlying data
and only shares the weight update and gradient information of the model with the server. In order to
ensure the security of federated learning, noise is added to the model update to obscure the contribu-
tion of the client. In [28], they suggest a novel DP aggregation scheme to the improve update strategy.
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Meanwhile, they adopt the f-differential privacy to analyze the privacy loss so that the loss will be
calculated more accurately at every round. In [27], they suggest a design on local differential privacy.
They analyze the privacy loss by the moment accounting, so their design can get a tight privacy guar-
antee. By adding the noise to the shared model parameters before uploading them to edge and cloud
servers, they realize the strict differential privacy guarantee for the layers of clients and edge servers.

Table 1. Main notations.

Main notations
k1 Number of local updates for one edge aggregation
k2 Number of edge aggregations for one cloud aggregation
T Number of iterations
w0 Initial global parameter
σU Variance of the Gaussian noises for client
σE Variance of the Gaussian noises for edge server
t Index of iteration
wt

i Local parameters of client i in iteration t
C Clipping bound
n Number of clients
N Number of edge servers
µ Presetting constant of the proximal term

Table 2. Acronyms.

Acronyms
federated learning FL
hierarchy federated learning HFL
differential privacy DP
Local Differential Privacy LDP
Internet-of-Things IoT
artificial intelligence AI
machine learning ML
empirical risk minimization ERM
Federated Proximal FedProx
stochastic gradient descent SGD
convolutional neural network CNN
Linear rectification function ReLu
Independent Identically Distribution IID

3. Preliminaries

In this section, we present the HFL framework and the thread model on which our paper based and
the related knowledge about DP.
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3.1. Hierarchical federated learning

Figure 1. Hierarchical federated learning architecture.

Let us consider a general HFL system consisting of three different parts in three logistic layers,
as shown in Figure 1. The clients connected to edge servers are various computers and mobile de-
vices. They are to train a local model from their individual data, and then send local updates to edge
server. Edge servers and cloud servers are responsible to aggregate and transmit back the aggregation
to corresponding clients.

3.2. Threat model

To further improve security in our system, we consider clients, edge servers, and the cloud server
to be all semi-honest, which means they will strictly follow the HFL framework but may infer privacy.
Also, there may be external attackers trying to usurp clients’ privacy. They are capable of inverting the
broadcast models from the servers in order to seize the private individual data, as explained in [29].

Factually, download channels suffer more security risks than upload channels. That is because
clients upload their model updates through direct and ephemeral upload channels while download
channels are broadcasting and lasting. We consider at most t1 exposures of uploaded updates from
each client to their edge server. Due to the broadcast effect, we assume that aggregated parameters
will be exposed in the downlink channel for every communication. Therefore, we assume t2 exposures
from each edge server to clients. Moreover, the value of t2 satisfies the condition that t|k1 ∧ t - k1k2.
Similarly, we assume there are t4 exposures from each edge server to the cloud server and t5 exposures
from the cloud server to edge servers. The value of t5 also satisfies the condition that t | k1k2. To be
more specific, we assume that there are t3 exposures in t1 for cloud aggregation, and t1 − t3 exposures
are counted as t1 only for edge aggregation.
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3.3. Differential privacy

In our hierarchical architecture, we apply a DP mechanism with parameters ε and δ to provide
strong privacy preservation. ε > 0 represents the distinguishable bound of all outputs on neighboring
datasets in a database, and δ is the probability of the event that the ratio of the probabilities for two
adjacent datasets cannot be bounded by eε after the mechanism. Therefore, a larger ε entails a higher
risk of privacy leakage for a clearer distinguishability of two neighboring datasets [30]. Now, we will
formally define DP as follows.
Definition 1. ((ε,δ)-Differential privacy): A randomized mechanismM satisfies (ε,δ)-DP if for X →
R with domain X and range R, and all result set S ⊆ R, there can be any neighboring datasets Di,
D′i ∈ X which only differ by one sample, and then we have

Pr[M(Di) ∈ S] ≤ eεPr[M(D′i) ∈ S] + δ (3.1)

In this paper, we use a Gaussian mechanism which adopts L2 norm sensitivity. To protect the
function output s(x), it needs to add zero-mean Gaussian noises with variance σ2I in each coordinate.

M(x) = s(x) +N(0, σ2I), (3.2)

where I is an identity matrix, and s() is a real-valued function.

To achieve (ε,δ)-DP, the noise scale σ ≥ c∆s/ε, and the constant c ≥
√

2ln(1.25/δ) for ε ∈ (0, 1).
∆s is the sensitivity of function s(x), which can be computed easily by ∆s = maxDi,D

′
i
||s(Di) − s(D′i)||.

Seeing the definitions above, we ought to choose a proper value of σ to satisfy (ε, δ)-DP.

4. Hierarchical federated learning with differential privacy

4.1. Global differential privacy

To protect the parameter in upload and download channels, we design a global (ε, δ)-DP. First, we
elaborate our design from the clients’ upload parameters to the edge server. In every iteration, we
consider the batch size in a local training process to be equal to the number of training data, and then
we can give the definition of the i-th client in a local training process

sDi
U = arg min

w
Fi(w,Di)

=
1
|Di|

|Di |∑
j=1

arg min
w

Fi(w,Di, j),
(4.1)

where Di is the dataset of i-th clients, and Di, j is the j-th sample in Di. Hence, we can define the
sensitivity of sDi

U
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∆sDi
U = max

Di,D
′
i

||sDi
U − sD

′
i

U ||

= max
Di,D

′
i

||
1
|Di|

|Di |∑
j=1

arg min
w

Fi(w,Di, j)

−
1
|D′i|

|D′i |∑
j=1

arg min
w

Fi(w,D′i, j)||

=
2C
|Di|

,

(4.2)

where C is a clipping bound for wi, andDi andD′i are neighboring datasets. Generally, we define the
global sensitivity in the upload channel as

∆sU = max{∆sDi
U } = max{

2C
|Di|
}, ∀i. (4.3)

When clients take advantage of all the training datasets, it comes out to be a small global sensitivity.
Hence, we set the number of local datasets Di to be minimum by m. Due to exposure in the upload
channel, we define the Gaussian noises σU = c∆sU/ε. After t1 and t3 exposures, the noises increase to
σU1 = ct1∆sU/ε and σU2 = ct3∆sU/ε due to the linear relation of ε and σU . Similarly, σE = ct4∆sE/ε

in the process from edge server to cloud server.
Then, we consider edge servers that upload parameters to the cloud server. The aggregation weight

can be expressed as
w = p1w1 + p2w2 + ... + pNwN , (4.4)

where n means the number of edge servers connecting, and w represents the result of aggregation.
Thus, the sensitivity of edge server’s aggregation ∆sDi

E can be expressed as

∆sDi
E = max

Di,D
′
i

||sDi
E − sD

′
i

E ||. (4.5)

We have
sDi

E = p1w1(D1) + ... + piwi(Di) + ... + pnwn(Dn) (4.6)

and
sD
′
i

E = p1w1(D1) + ... + piwi(D′i) + ... + pnwn(Dn). (4.7)

Therefore, the sensitivity can be expressed as

∆sDi
E = max

Di,D
′
i

||piwi(Di) − piwi(D′i)||

= pi max
Di,D

′
i

||wi(Di) − wi(D′i)||

= pi∆sDi
U ≤

2Cpi

m

(4.8)

To meet the demand of small global sensitivity in the channel, the sensitivity ∆sE can be given as

∆sE = max{∆sDi
E } = max{

2Cpi

m
}, ∀i, (4.9)
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where m is the size of datasets in a client. To reach the proper sensitivity ∆sE, we set all pi = 1
n .

Similarly, we can define the sensitivity in cloud server as ∆sC = max{ 2Cpiqi
m }, where pi is the ratio of

selecting client and qi is the ratio of selecting edge server. We ought to add enough Gaussian noises
in upload channel and then consider whether or not to add noises in download channel to satisfy the
global (ε, δ)-DP.

4.2. HFL-DP

In our hierarchical system, we realize a secure and efficient model by global (ε, δ)-DP in Algorithm
1. We define the initial global parameter w(0) and introduce the proximal term µ to improve the stability
of the overall framework. The essence of this correction term is to increase the difference between the
parameters in the local model and the parameters in the global model.

Theorem 1. (DP guarantee for downlink channels): To ensure (ε,δ)-DP in the downlink channels
with aggregations, the standard deviation of Gaussian noises nE and nC can be defined as

nE =


2c ∗C
ε1mn

√
t2
2 − t2

1n ,t2 ≥
√

nt1,

0 ,t2 <
√

nt1.

(4.10)

nC =


2c ∗C
ε2mnN

√
t2
5 − t2

4N − t2
3Nn ,t5 ≥

√
t2
4N + t2

3Nn,

0 ,t5 <
√

t2
4N + t2

3Nn.
(4.11)

Proof. First, we start from proof of the value of nE. According to the definition of global (ε, δ)-DP
in the uplink channels, the additive noises of clients can be given as σU = c ∗ t1∆sU/ε1, for the linear
relation between ε1 and σU with Gaussian mechanism. Here, we assume the noises added in clients
obey the same distribution n ∼ φ(n) due to the property of global (ε, δ)-DP. Then, the aggregation in
an edge server with additive noises can be given as

w̃ =

n∑
i=1

pi(wi + ni) =

n∑
i=1

piwi +

n∑
i=1

pini (4.12)

Hence, the distribution of
n∑

i=1
pini can be given as

Φ(n) =

n⊗
i=1

φi(n), (4.13)

where
⊗

is a convolutional operation, and pini ∼ φi(n). If we set ni with clients’ noise scale σU

by Gaussian mechanism, then
n∑

i=1
pini is a Gaussian distribution. According to the definition of ∆sE,

pi = 1
n will lead to a small sensitivity. To make it a global (ε, δ)-DP in download channels, we assume

the value of noise scale to be σA = ct2∆sE/ε1. Therefore, the additive noises at edge server can be
expressed as

nE =

√
σ2

A −
σ2

U

n
=


2c ∗C
ε1mn

√
t2
2 − t2

1n ,t2 ≥
√

nt1,

0 ,t2 <
√

nt1.

(4.14)
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Hence, the value of nE has been proved.
Then, we consider the value of nC. In the uplink channels, we set the standard deviation of additive

noise in clients and edge servers to be σU = ct3∆sU/ε2 and σE = ct4∆sE/ε2. To ensure the global (ε,
δ)-DP, the noises vectors in each client obey the same distribution n ∼ φ(n), and the noises in each edge
server obey the same distribution N ∼ φ(N). We can get the aggregation at cloud server with artificial
noises from clients and edge server as

w̃ =

N∑
j=1

n∑
i=1

q j pi(wi + ni) +

N∑
j=1

q jN j

=

N∑
j=1

n∑
i=1

q j piwi +

N∑
j=1

n∑
i=1

q j pini +

N∑
j=1

q jN j

(4.15)

We know the distributions of q j pini and q jN j are Gaussian distributions. Moreover, we set the
standard deviation of noises σA = ct5∆sC/ε2.Therefore, the additive noises at cloud server can be
expressed as

nC =

√
σ2

A −
σ2

U

n ∗ N
−
σ2

E

N
=


2c ∗C
ε2mnN

√
t2
5 − t2

4N − t2
3Nn ,t5 ≥

√
t2
4N + t2

3Nn,

0 ,t5 <
√

t2
4N + t2

3Nn.
(4.16)

Hence, the value of nC has been proved.
At the beginning of this algorithm, the edge servers and cloud server broadcast their own privacy

guarantees, and the cloud server sends the initial global parameter to all clients. In every local update,
the client trains the model parameters by using its own local datasets. After the local training of each
client, the local parameter will be clipped by the threshold C, and then Gaussian noise are added to the
parameter wi of each client i. The amount of noises depends on the parameter σU , which is calculated
above. Upon receiving all its clients’ local parameters, the edge server calculates the aggregated model
parameter by weighted average.

After aggregating the model parameters, the edge server chooses to broadcast the aggregation to the
selected client or to upload it towards the cloud server. In the case of the aggregation, the aggregated
parameters need to be broadcast to clients, and it should add the noises nE to aggregation according to
Theorem 1. In another case, the aggregation parameter which will be sent to the cloud server in edge
also needs protection by adding noises according to the value of σE.

The cloud server aggregates the model received from all edge servers if iteration t meets the pre-
set condition. After the aggregation in the cloud server, the model parameters will have noises added
according to the value of nC. Here, we need to pay attention to the privacy protection performance
of our algorithm. First, any malicious adversary cannot get reach to individual training datasets. Due
to the local perturbations, it is very tough to infer any valid information from the uploaded parame-
ters. Similarly, an adversary may reveal sensitive information from parameters in a download channel.
Hence, when broadcasting the aggregated model parameters to clients, additive noises may be added
to parameters based on the theorem above.
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Algorithm 1 HFL-DP
1: for t = 1, 2, 3, ...,T do
2: // Client:
3: for Clienti, i = 1, 2, ..., n do
4: if t|k1 = 0 then
5: Update the local parameters wt

i as
6: wt

i = arg min
wi

(Fi(wi) +
µ

2 ||wi − wt−1||2)

7: Clip the local parameters
8: wt

i = wt
i/max(1, ||w

t
i ||

C )
9: Add noises and upload parameters

10: w̃t
i = wt

i + σU

11: else
12: Update the local parameters wt

i as
13: wt

i = arg min
wi

(Fi(wi) +
µ

2 ||wi − wt−1||2)

14: end if
15: end for
16: // Edge Server:
17: if t|k1 = 0 then
18: for Edge serverl, l = 1, 2, ...,N do
19: Conduct Edge Aggregation
20: wl ←

∑
i∈n |Di |w̃t

i
|Dl |

;
21: if t|k1k2 = 0 then
22: Add noises and upload parameters
23: w̃l = wl + σE

24: else
25: for Clienti, i ∈ n do
26: wt

i ← wl + nD

27: end for
28: end if
29: end for
30: end if
31: // Cloud Server:
32: if t|k1k2 = 0 then
33: Conduct Cloud Aggregation
34: w←

∑
i∈N |Dl

i |w̃
l

|D| ;
35: for Clienti, i ∈ n do
36: wt

i ← w + nD

37: end for
38: end if
39: end for
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5. Evaluation

In this part, we evaluate the proposed HFL-DP in Python 3.7 and PyTorch 1.12.1 with real-world
datasets. To analyze the performance of our algorithm, we conduct the experiment by varying the
protection levels ε, the number of clients n, the number of Edge servers N, the value of clipping
bound C.

We train our convolutional neural network (CNN) on the standard MNIST dataset for handwritten
digit classification datasets and the CIFAR-10 dataset for ten class images with Python. MNIST dataset
is composed of 60,000 training examples and 10,000 testing examples. Each example is a 28 × 28 grey-
level image of handwritten digits. The CIFAR-10 dataset is composed of 32 × 32 color images in ten
different classes. There are 60,000 examples for each class, with 40,000 examples for training, 10,000
for testing and 10,000 for validation.

In our neural network, we use two convolutional layers with ReLu units and softmax. We also
use the cross-entropy function as a criterion. We assume the data we use are IID. In our experiment,
the relevant parameters of the same layer are consistent, and we assume the communication channels
among different layers are unimpeded.

5.1. Performance loss with protection

To show the influence of privacy preservation, we compare the proposed algorithm with non-private
HierFAVG [14] on MNIST. We set n = 50, N = 5, C = 15, ε1 = 20 and ε2 = 25. Figures 2 and 3
indicate that privacy preservation costs a bit of accuracy. We can get that the non privacy-preserving
trained model is better than the privacy-preserving trained model due to the unfavorable influence of
Gaussian noise. Also, HFL converges faster than HFL-DP. However, the loss of accuracy is decreasing
with the iteration round proceeding on. Though there may be 5 and 11% losses in the final model, it
costs not much.

Figure 2. Accuracy comparison on MNIST.
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Figure 3. Accuracy comparison on CIFAR.

5.2. Performance evaluation on protection levels

In Figure 4, we set different values of protection levels ε = 10, ε = 20 and ε = 50, both for ε1 and
ε2. In our experiment, we choose n = 50, N = 5, T = 50, k1 = 2 and k2 = 2 and then we can get
model accuracy of the aggregation rounds. As shown in Figure 4, the accuracy of the model increases
if we relax the privacy guarantees. That is because ε represents the distinguishable bound of all outputs
on neighboring datasets in a database. A larger ε entails a higher risk of privacy leakage for a clearer
distinguishability of two neighboring datasets. However, as we continue to increase the value of ε,
the accuracy does not increase much. So, a better choice of ε will balance the safety and utility. For
example, when the value of ε gets bigger than 20, it will not entail a better model accuracy. We can set
20 as a preferable value in this case.

Figure 4. Different privacy preservation levels.
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5.3. Performance evaluation on number of clients and edge servers

In this experiment, we set the protection parameter ε = 20 and four groups of different numbers
of clients and servers. We choose n = 50, N = 5, T = 50, k1 = 2 and k2 = 2. Figure 5 shows that
when the scale of communication system becomes larger, it needs more noise to realize security. So,
a larger communication system may entail more performance loss. In our algorithm, we try to control
the amount of noise by Eqs (4.10) and (4.11) instead of adding Gaussian noise blindly. So, it may not
decrease the accuracy greatly. For example, when n = 100 and N = 20, it gets the result of 82%. Under
the same condition, when n = 10 and N = 5, it gets the result of 91%. Moreover, we can also know that
a more practical model can be trained by fewer participants while preserving sensitive information. A
safe system that contains many users remains to be researched.

Figure 5. Number of clients and edge servers.

5.4. Performance evaluation on clipping bound

We choose various clipping bounds C = 5, C = 10 and C = 15. In our experiment, we set ε = 20,
n = 50 and N = 5. Figure 6 indicates that once the value of the clipping bound is large enough, the
model accuracy will not increase anymore. First, the gradient is clipped, so that the gradient of all
samples is less than clipping bound C. Then, a sufficiently large Gaussian noise is added to the clipped
gradient to achieve differential privacy. The clipping bound C is equivalent to the concept of sensitivity
mentioned before, i.e., the maximum impact that each sample can cause will not exceed C. When a
large enough noise positively correlated with C is added to the gradient, the sample can be hidden to
meet the requirements of differential privacy.
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Figure 6. Clipping bound.

6. Result comparison

To further summarize the results of the existing methodological analysis of HFL-DP, the results of
the analysis in this paper were compared with the existing literature. The results of the analysis of
the different HFL-DP schemes are shown in the Table 3. In [28], the authors researched differential
privacy on Server-Client architecture. They used f-DP for training tracking in order to get a tighter
definition of privacy. This can make it more communication rounds than using a moment accountant.
Meanwhile, they implemented a trick on the clipping method to let the model curve better. In their
experiment, the final model accuracy of 25 rounds was 91%. In [27], the authors calculated the noises
to realize (ε l

i ,δ
l
i)-DP for client and (ε l,δl)-DP for edge. The final model accuracy was 90%. This idea

effectively realized privacy leakage from the upload aspect.
In [28], the research is designed for Server-Client architecture from client level. The authors do not

consider the three-layer HFL yet. In [27], though it gets a better result seemingly, it ignores the privacy
leakage in the download channel. If we add directly adequate noises in download channel as the author
mentions in [27], it will entail a negative effect of noise accumulation in the hierarchical system on the
model utility. Because of the hierarchical structure, we may add noises on the edge side and cloud side
in the download channel. Although the amount of noise on each side is different, it still makes a bad
influence after several transmissions. Therefore, our design aims to control the amount of noise from
the whole system as articulated in Algorithm 1. The additive noises in every download channel can be
calculated by (4.13) and (4.15).

In summary, a better model utility can be obtained in a three-layer HFL-DP by studying the overall
privacy loss and then controlling the amount of noise added each time.
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Table 3. Comparison among different HFL-DP.

Client Edge ε ACC Reference
100 - - 82% paper [28]
100 10 10 90% paper [27]
100 10 10 82% this paper

7. Conclusions

In this paper, we proposed a novel privacy-preserving method with the concept of global differ-
ential privacy. Our scheme provides confidentiality for clients’ sensitive data to avoid security
threats from not only participants in the communication system but also adversaries from outer cy-
berspace. We realize the communication protection by adding noises to shared model parameters in
each channel. So, user data cannot be directly inferred by any adversary while still keeping high
utility for the training model. In our experiment on the MNIST dataset, we get 91% model ac-
curacy. Compared to previous two-layer HFL-DP [27], our design is more secure while being as
accurate. Then, we evaluated the performance based on the image classification. The experiment re-
sults show that our method is practical and efficient with proper parameters. Therefore, we can bal-
ance the trade-off between efficiency and safety by adjusting relevant parameters. In the future, we
will do further research about adaptive adjustment to realize the preferable privacy budget and the non-
IId data’s effect on the utility of our algorithm. Meanwhile, we will tune our algorithm to adapt to the
changes in user data distribution.
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