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Abstract: Traffic surveillance systems are utilized to collect and monitor the traffic condition data of 

the road networks. This data plays a crucial role in a variety of applications of the Intelligent 

Transportation Systems (ITSs). In traffic surveillance, it is challenging to achieve accurate vehicle 

detection and count the vehicles from traffic videos. The most notable difficulties include real-time 

system operations for precise classification, identification of the vehicles’ location in traffic flows and 

functioning around total occlusions that hamper the vehicle tracking process. Conventional video-

related vehicle detection techniques such as optical flow, background subtraction and frame difference 

have certain limitations in terms of efficiency or accuracy. Therefore, the current study proposes to 

design the spotted hyena optimizer with deep learning-enabled vehicle counting and classification 

(SHODL-VCC) model for the ITSs. The aim of the proposed SHODL-VCC technique lies in accurate 
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counting and classification of the vehicles in traffic surveillance. To achieve this, the proposed 

SHODL-VCC technique follows a two-stage process that includes vehicle detection and vehicle 

classification. Primarily, the presented SHODL-VCC technique employs the RetinaNet object detector 

to identify the vehicles. Next, the detected vehicles are classified into different class labels using the 

deep wavelet auto-encoder model. To enhance the vehicle detection performance, the spotted hyena 

optimizer algorithm is exploited as a hyperparameter optimizer, which considerably enhances the 

vehicle detection rate. The proposed SHODL-VCC technique was experimentally validated using 

different databases. The comparative outcomes demonstrate the promising vehicle classification 

performance of the SHODL-VCC technique in comparison with recent deep learning approaches. 

Keywords: traffic surveillance; intelligent transportation systems; deep learning; RetinaNet; Vehicle 

detection; Vehicle classification 

 

1. Introduction 

The fast evolution of motor vehicles and the increasing urban population have paved the way for 

traffic problems. The intelligent transportation system (ITS) is a potential tool to overcome the traffic 

issues [1]. With the growth of computer vision (CV), the Internet of Things and communication 

technologies, traffic surveillance has become a key technology for traffic parameter collection and it 

serves a vital role [2]. Traffic flow can be defined as a basic and a significant parameter in ITSs whereas 

counting and detecting the number of vehicles from traffic videos in a rapid and accurate fashion, is a 

general research area [3]. In the past, many vision methods were modelled for automatic counting of 

the vehicles in traffic videos. Several existing vehicle counting techniques perform the vehicle 

detection process on the basis of vehicle appearance and the attributes that can be positioned through 

foreground recognition and the vehicles are counted on the basis of vehicle detection outcomes [4]. In 

general, the vehicle counting methodologies rely upon traffic videos and are classified into two 

subtasks such as vehicle counting and vehicle detection [5]. 

With an exponential growth of CV technologies and artificial intelligence, the object detection 

techniques related to deep learning (DL) are commonly examined in recent years [6]. This technique 

can automatically extract the features with the help of machine learning (ML) technique; therefore, 

this technique is capable of powerful image abstraction and automated higher-level feature 

representation [7]. Nowadays, the vision-related vehicle object recognition process is classified into 

conventional machine vision techniques and the complicated DL techniques. The conventional 

machine vision techniques make use of vehicle movement to separate it from the fixed background 

images [8]. The utilization of deep convolutional networks (CNN) has achieved phenomenal success 

in the domain of vehicle object detection. CNN is highly potential in learning the image features and 

can execute many relevant tasks like bounding box regression and its classification [9]. 

The detection technique can be classified into two categories [10]. The two-stage technique 

generates a candidate box of objects through different techniques and categorizes the object by CNN. 

On the other hand, the one-stage technique does not produce a candidate box but directly converts the 

positioning issue of object bounding box into a regression issue for processing [11]. With the 

computability of hardware and the growth of DL object detection, like GPUs, it is likely to construct 

a DL vehicle counting method with high efficiency and accuracy though it has a few difficulties too [12]. 
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The primary issue to be addressed is to develop a rapid vehicle detection method with optimum 

performance using TL without training data. Though the DL vehicle recognition methods can identify 

the vehicles with high accuracy levels [13], still there occurs unavoidable false detection or missing 

detection issues. Evading the errors, caused by such conditions, remains the primary difficulty to 

overcome so that the accuracy of vehicle counting can be enhanced, if the accurate of vehicle 

recognition is challenging to enhance [14]. 

The current study focuses on design and development of the Spotted Hyena Optimizer with Deep 

Learning Enabled Vehicle Counting and Classification (SHODL-VCC) model for ITSs. The proposed 

SHODL-VCC technique follows a two-stage procedure i.e., vehicle detection and vehicle 

classification. Primarily, the presented SHODL-VCC technique employs the RetinaNet object detector 

to identify the vehicles. Next, the detected vehicles are classified into different class labels with the 

help of the deep wavelet auto-encoder (DWAE) model. To enhance the vehicle detection performance, 

the spotted hyena optimizer algorithm is exploited as a hyperparameter optimizer, which considerably 

enhances the vehicle detection rate. The SHODL-VCC technique was experimentally validated using 

different databases and the results are discussed. 

2. Related works 

In the study conducted earlier [15], it has been recommended that the deep learning techniques 

can be enforced for vehicle counting in traffic videos. In this study, a technique was primarily devised 

for vehicle recognition related to TL to sort out the issue of lack of annotated dataset. Afterwards, 

depending on the vehicle recognition process, a vehicle counting technique was modelled related to 

merging the vehicle tracking and virtual detection processes. At last, owing to possible circumstances 

of false and missing detections, the authors modelled the missing alarm and false alarm suppression 

modules for enriching the precision of vehicle counting process. In literature [16], the authors 

discussed about a deep learning application for constituting a vehicle counting mechanism without 

tracking the movements of the vehicles. In this study, the pre-trained YOLOv3 technique was utilized 

to reduce the time taken for deploying the DL architecture and for enhancing the system performance. 

The presented technique took moderate computational hours in object detection and achieved a 

good performance. 

Yin et al. [17] modelled a new approach for counting the vehicles in a human-like manner. The 

two major contributions of this study are as follows; firstly, the authors modelled a lightweight vehicle 

counting method called ST-CSNN with high potential. This counting technique compares the vehicles’ 

identity to get rid of the duplicate samples. Integrated with the spatio-temporal data among the frames, 

it could hasten the speed and enhance the precision of counting process. Secondly, the authors 

strengthened the model’s efficiency by including an enhanced loss function based on the Siamese 

neural networks. Youssef and Elshenawy [18] examined the utilization of cascade region-oriented R-

CNN network for enabling an automatic vehicle tracking and counting method in aerial video streams. 

The devised approach integrates the cascade R-CNN architecture and the feature pyramid networks to 

accomplish precise vehicle detection and classification. Navarro et al. [19] explored the possibility of 

utilizing a low-cost embed mechanism for real-time vehicle recognition and counting with the help of 

DNNs. The study compared the efficiency of two distinct object tracking techniques such as the 

centroid tracking algorithm and the Kalman filter with Hungarian method. 

Djukanović et al. [20] addressed the acoustic vehicle counting method utilizing one-channel audio. 
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The authors forecasted the pass-by instance of the automobiles in local minima for the clipped vehicle-

to-microphone distances. The outcomes from the experimentation exhibited that the NN-related 

distance regression method outpaced the previously-devised SVR. In the study conducted earlier [21], 

a precise technique was modelled for vehicle counting in videos with the help of KLT tracker and Mask 

R-CNN technique. In this method, the vehicle detection process can be executed for every N frame 

utilizing mask R-CNN instance segmentation method. This method outpaced the rest of the DL 

techniques that use bounding box detection, since the former delivers a segmentation mask for all the 

detected objects. Further, an outstanding performance was achieved in case of occlusion. Once the 

objects were identified, their corner points were tracked and extracted. A potential technique was 

presented in this study for assigning the point trajectories to their respective detected vehicles. 

3. Proposed model 

In the current study, the authors have established a novel SHODL-VCC system for automated 

vehicle counting and classification in the ITS. The proposed SHODL-VCC technique involves 

different sub-processes namely, the RetinaNet vehicle detector, the SHO-based parameter tuning and 

the DWAE-based vehicle classification. These three modules are briefed in the following subsections. 

Figure 1 represents the workflow of the proposed SHODL-VCC method. 

 

Figure 1. Workflow of the proposed SHODL-VCC system. 
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3.1. Vehicle detection module: RetinaNet model 

Primarily, the presented SHODL-VCC technique employs the RetinaNet object detector to 

identify the vehicles. RetinaNet is one of the unified networks that is made up of two-task subnetworks 

with FPN as a backbone network [22]. Figure 2 shows the infrastructure of the RetinaNet method. 

During the candidate box extraction process, the concept of anchor frame is accepted unlike the RPN 

network. Further, the region of anchor boxes are amplified from 32  32 to 512  512. The anchor 

box of all the layers contains three sizes {20, 21/3, 22/3} and three aspect ratios {1:2, 1:1, 2:1}. Hence, 

the feature point of all the feature maps corresponds to nine anchor boxes. A feature pyramid is built 

on the top of the network whereas the FPN is built using the ResNet model. All the layers of the 

pyramid contain 256 channels. The two-task subnetworks are categorized into subnetwork and regression 

subnetwork. Here, the subnetwork forecasts the probability of 𝐾  classes on all the anchor boxes. 

Subnetwork is a smaller FCN that is connected with all the layers of FPN and the parameters are shared 

in it. For the provided pyramid-level outcome with 256 channel characteristic graph, the subnetwork 

applies four 3  3 convolutional layers. The channel count from all the layers still remains 256, but there 

exists a ReLU activation layer here. After that, 3  3 convolutional layers are present with a channel 

number of Ka (𝐾 denotes the count of classes and 𝑎 indicates the count of anchor boxes) and lastly it 

makes use of the sigmoid activation function. The regression subnetwork corresponds to the classifier 

subnetwork, and the smaller FCN is connected with all the layers of the FPN for border regression. 

 

Figure 2. Structure of the RetinaNet model. 

The RetinaNet model has a better recognition outcome in case of smaller objects since it employs 

a novel loss function i.e., focal loss (FL) [23]. The major concept of FL is to minimize the weight so 

as to categorize the samples and resolve the problems of imbalanced categories. Thus, in spite of large 

instance size, the contribution of the simply-categorized instances to loss function is smaller. For dual 

classification task, a typical Cross Entropy (𝐶E) loss is formulated as follows. 

 𝐶𝐸 (𝑝, 𝑦) = {
− log(𝑝) 𝑖𝑓 𝑦 = 1

− log(1 − 𝑝) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

In Eq (1), 𝑦 ∈ {±1} signifies the positive and negative instances whereas 𝑝 ∈ [0,1] denotes the 

probability value of 𝑦 = 1, anticipated by the model. 𝑝𝑡 is determined using the following expression. 
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 𝑝𝑡 = {
𝑝 𝑖𝑓 𝑦 = 1
1 − 𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

Next, the cross entropy loss is formulated as given below. 

 𝐶𝐸 (𝑝, 𝑦) = 𝐶𝐸(𝑝𝑡) = − log (𝑝𝑡) (3) 

The common solution to overcome the imbalance class is to add the weighted feature 𝛼 ∈ [0,1] 

i.e., the basis of FL function, as given below.  

 𝐶𝐸 (𝑝𝑡) = −𝛼𝑡  log (𝑝𝑡) (4) 

𝛼 balances the negative and positive samples. However, it does not differentiate the easy samples 

from the default ones. The FL increases the moderating factor (1 − 𝑝𝑡)
𝛾 to minimize the weight of the 

sample and focuses on the training of difficult negative instances. 

 𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)
𝛾  log (𝑝𝑡) (5) 

Here, γ ≥ 0 is the changeable focusing parameter that could smoothly fine-tune the proportion 

for easily-classified instance-weighted reduction and αt indicates the balancing variable. Once the FL 

is applied for training and once the detector finds the trained sample to be inaccurate, the pt becomes 

lesser and inclines to 0 whereas the adjustable factor approaches 1. Hence, the loss function has no 

effect; in case of easy-to-classify sample, pt approaches 1 whereas the adjustable factor approaches 0. 

Hence, the loss weight of the easily-classified instances reduces considerably. 

3.2. Hyperparameter tuning module: SHO algorithm 

In order to improve the vehicle detection performance of the RetinaNet algorithm, the spotted 

hyena optimizer algorithm is used. Spotted Hyenas (SHy) are known as skilled pursuers and they are 

the largest among the hyaena species [24]. Further, they are well-known as ‘laughing hyenas’ since 

their vocals sound like human laughter. They are intelligent social creatures and their behaviors are 

extremely complicated to understand. The SHy traces the prey using its well-developed senses of 

hearing, smell and sight. Such behaviors of SHy led Dhiman et al. to develop a metaheuristic technique, 

i.e., spotted hyenas optimization algorithm. In this study, the authors constructed the mathematical 

approach based on Shy’s behavior and mutual dexterity for optimization. Three actions related to the 

SHO are catch, encircling and the noticeable catch. 

Surrounding of catch: To progress these arithmetical archetypes, it is predictable that the present 

best challenger is the intended catch based on the fact that the hunt field is formally recognized [25]. 

In the study, the catch is proposed to the location that is familiar to the hunt mediator so as to attain 

the benefit and is mathematically processed in the following equations. 

 𝐷⃗⃗ = |𝐵⃗ ⋅ 𝑃𝑝⃗⃗  ⃗(𝑥) − 𝑃⃗ (𝑥)| (6) 

 𝑃⃗ (𝑥 + 1) = 𝑃𝑝⃗⃗  ⃗(𝑥) − 𝐸⃗ ⋅ 𝐷⃗⃗ ℎ (7) 

Now 𝐷⃗⃗ ℎ indicates the stretch between SHy and the prey, 𝜒 denotes the existing count, 𝐵⃗  and 𝐸⃗  
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represent the vector coefficients, 𝑃⃗ 𝑝  shows the spot vector of the pursuit and 𝑃⃗   denotes the locale 

vector of Shy as given below.  

 𝐵⃗ = 2𝑟𝑑1
⃗⃗⃗⃗  (8) 

 𝐸⃗ = 2ℎ⃗ 𝑟𝑑 2 − ℎ⃗  (9) 

 ℎ⃗ = 5 − (𝑡 ∗ (
5

𝑡 max 
))𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,2,3… , 𝑡max (10) 

Here, 𝑡 represents the iteration count and 𝑡max indicates the maximal number of iterations. 𝑟 𝑑1 

and 𝑟 𝑑2 denote the random vectors within [0, 1]. 

Tricking: In order to arithmetically describe the demeanor of SHy, it is predictable that the best 

pursuit mediator has the data with regards to the position of the pursuit. The lasting hunt mediator 

forms an assemblage on the way to the best hunt mediator and stores the best consequence to regenerate 

the position as given below. 

 𝐷⃗⃗ ℎ = |𝐵⃗ ⋅ 𝑃ℎ
⃗⃗⃗⃗ − 𝑃⃗ (𝑥)| (11) 

 𝑃⃗ 𝑘 = 𝑃ℎ
⃗⃗⃗⃗ − 𝐸⃗ ⋅ 𝐷⃗⃗ ℎ (12) 

 𝐶ℎ
⃗⃗⃗⃗ = 𝑃⃗ ℎ + 𝑃⃗ 𝑘+1 + ⋯+ 𝑃⃗ 𝑘+𝑁 (13) 

Now, 𝑃⃗ ℎ denotes the locale of the initial best Shy, 𝑃⃗  denotes the locale of the supplementary SHy 

and 𝑁 defines the number of SHy in the following equation. 

 𝑁 = 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑠 (𝑃⃗ ℎ𝑃⃗ ℎ+1𝑃⃗ ℎ+2, … , (𝑃⃗ ℎ + 𝑀⃗⃗ )) (14) 

In Eq (14), 𝑀⃗⃗  denotes the arbitrary vector within [0.5, 1], 𝑛𝑜𝑠 indicates the architecture of the 

number of consequences and the total number of competitor results. After adding 𝑀⃗⃗  , the value is 

compared with the best consequence in a specified quest field. 𝐶  indicates the assembly of 𝑁 numbers 

of the best consequence. 

Intruding quest (exploitation): In order to develop the prototype based on the equation and to 

attack the prey, ℎ⃗  mathematical measure is reduced. The discrepancy in 𝐸⃗  gets similarly condensed 

from 5 to 0 with computation. |𝐸| < 1 pressurizes the assemblages of SHy to outbreak, close to the 

hunt as given below. 

 𝑃⃗ (𝑥 + 1) =
𝐶 ℎ

𝑁
 (15) 

In Eq (15), 𝑃⃗ (𝑥 + 1) stores the best product and revises the position of other hunt mediators and 

is reliable with the position of premium pursuit mediators. 

Hunt for aim (exploration): SHy habitually pursues the prey based on the position of SHy that 

subsists in 𝐶ℎ
⃗⃗⃗⃗ . It separately swings to hunt and pursues the prey [26]. Next, 𝐸⃗  is exploited by a random 

standard > 1 or < −1 to coerce the hunt mediator and swing the distance from the prey. This strategy 

certifies the SHO method to pursue a wide attainment.  

Fitness selection becomes a vital factor in the SHO technique. Solution encoding is used to assess 
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the goodness of the candidate solution. Nowadays, the accuracy value is the main condition used to 

design a fitness function. 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃) (16) 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (17) 

In this expression, TP represents true positive whereas FP denotes the false positive value. 

3.3. Vehicle classification module: DWAE model 

Finally, the DWAE model is employed for automated vehicle classification process. A typical AE 

possesses an unsupervised feature learning ability, strong inference ability and robustness [27]. The 

property of the Wavelet Transform (WT) has time‐frequency, localization and focal features. As a result, 

it is necessary to combine the WTs and a typical AE to resolve the real-world challenges. The study 

presents a novel type of unsupervised neural network named ‘DWAE’ that could catch the non‐stationary 

vibration signals and characterize the complicated data. Equation (18) shows the decoding stage. 

 𝑋 = 𝜉(𝜅′𝑌 + 𝑏′) (18) 

Here 𝑋 represents the result of the reconstructed vector, 𝑘 indicates the kernel vector, 𝑏′ signifies 

the bias value and ∈ indicates the error value more in the process of backpropagation [28]. The DWAE 

training method is shown herewith. 

In the training sample 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]
𝐴, the outcome of the hidden unit is 𝑖. 

 𝑔𝑖(𝑜𝑢𝑡) = 𝜙
(𝛴𝑖−1

𝑛 𝑣𝑖𝑗𝑦𝑙−𝑒𝑖)

𝑏𝑖
 (19) 

In Eq (19), 𝜙 signifies the wavelet activation function 

𝑦𝑙(𝑟 = 1,2, …,𝑛) represents the 𝑙𝑡ℎ dimensional input of the trained samples 

𝑣𝑖𝑗(𝑖 = 1,2,3, …,𝑔) indicates the weight connecting betwixt the input as well as hidden units. 

𝑏𝑖 and 𝑒𝑖 characterize 𝑣𝑖𝑗(𝑖 = 1,2,3, …,𝑔) that directs the scale and shift factors of the wavelet 

activation function for the 𝑖𝑡ℎ hidden unit. 

 𝜙(𝑎) =  cos (5𝑎)exp (
𝑎2

2
) (20) 

 𝑔𝑖  (𝑜𝑢𝑡)  = 𝜙𝑏.𝑒(𝑖) =  cos (5 ×
(𝛴𝑙−1

𝑛 𝑣𝑖𝑙𝑦𝑙−𝑒𝑖)

𝑏𝑖
2 × (−

1

2

𝛴𝑙−1
𝑛 𝑣𝑖𝑗𝑦𝑙−𝑒𝑖

𝑏𝑖
)2) (21) 

Like typical AE, the activation function of the resultant layer is selected as the sigmoid function. 

Next, the outcome of DWAE is evaluated by [29]. 

 𝑦 = 𝑠𝑖𝑔𝑚 (∑ 𝑣𝑟𝑖
𝑞
𝑖−1 ( cos 5 ×

(𝛴𝑖−1
𝑛 𝑣𝑖𝑙𝑦𝑙−𝑒𝑖)

𝑏𝑖
×  exp (

−1

2

(𝛴𝑙−1
𝑛 𝑣𝑖𝑙𝑦𝑙−𝑒𝑖)

𝑏𝑖
)2)) (22) 

In Eq (22), 𝑦  denotes 𝑖  the reconstruction dimensional resultant of the trained sample and 𝑣𝑟𝑖 

indicates the weight connecting between the hidden 𝑟 and 𝑖. 
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4. Performance validation  

In this section, the proposed model was validated using the vehicle dataset comprising 900 

samples under three classes, as defined in Table 1. Figure 3 represents the sample images. 

Table 1. Details of the dataset. 

Class No. of Images 

Car 300 

Bus 300 

Truck 300 

Total Number of Samples 900 

 

Figure 3. Sample images. 

In Figure 4, the confusion matrices generated by the proposed SHODL-VCC technique are clearly 

shown in the vehicle classification process. The results found that the SHODL-VCC technique 

accurately recognized three different vehicles namely, car, bus and truck. 
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Figure 4. Confusion matrices of the SHODL-VCC system (a-b) TRS/TSS of 80:20 and (c-

d) TRS/TSS of 70:30. 

In Table 2, the vehicle classification results of the SHODL-VCC technique are provided. Figure 5 

shows the vehicle classification outcomes of the SHODL-VCC technique on 80% of TRS. The results 

found that the SHODL-VCC technique identified all three types of vehicles accurately. Further, the 

SHODL-VCC technique was found to have attained an average 𝑎𝑐𝑐𝑢𝑦 of 98.80%, 𝑝𝑟𝑒𝑐𝑛 of 98.20%, 

𝑟𝑒𝑐𝑎𝑙 of 98.20%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.19% and an 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 98.65%. 

Figure 6 provides the detailed vehicle classification outcomes of the SHODL-VCC system on 20% 

of TSS. The outcomes infer that the SHODL-VCC system identified all three types of vehicles in an 

accurate manner. Further, the SHODL-VCC methodology accomplished an average 𝑎𝑐𝑐𝑢𝑦 of 98.52%, 

𝑝𝑟𝑒𝑐𝑛 of 97.98%, 𝑟𝑒𝑐𝑎𝑙 of 97.70%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.78% and an 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 98.28%. 

Table 2. Vehicle classification outcomes of the SHODL-VCC approach on 80:20 of TRS/TSS. 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝑺𝒄𝒐𝒓𝒆 

Training Phase (80%) 

Car 98.89 97.93 98.74 98.33 98.85 

Bus 98.75 97.51 98.74 98.12 98.75 

Truck 98.75 99.16 97.12 98.13 98.35 

Average 98.80 98.20 98.20 98.19 98.65 

Testing Phase (20%) 

Car 99.44 100.00 98.36 99.17 99.18 

Bus 97.78 93.94 100.00 96.88 98.31 

Truck 98.33 100.00 94.74 97.30 97.37 

Average 98.52 97.98 97.70 97.78 98.28 



3714 

Electronic Research Archive  Volume 31, Issue 7, 3704–3721. 

 

Figure 5. Average outcomes of the SHODL-VCC approach on 80% of TRS. 

 

Figure 6. Average outcomes of the SHODL-VCC approach on 20% of TSS. 

In Table 3, the vehicle classification outcomes of the SHODL-VCC methodology is portrayed. 

Figure 7 demonstrates the brief vehicle classification outcomes of the SHODL-VCC approach on 70% 

of TRS. The results infer that the SHODL-VCC method identified all three types of vehicles accurately. 

Further, the SHODL-VCC technique accomplished an average 𝑎𝑐𝑐𝑢𝑦 of 97.57%, 𝑝𝑟𝑒𝑐𝑛 of 96.34%, 

𝑟𝑒𝑐𝑎𝑙 of 96.34%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.33% and an 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 97.26%. 

Figure 8 shows the brief vehicle classifier classification outcomes of the proposed SHODL-VCC 

technique on 30% of TSS. The outcomes imply that the SHODL-VCC system identified all three types 

of vehicles accurately. Further, the SHODL-VCC methodology accomplished an average 𝑎𝑐𝑐𝑢𝑦 of 

96.79%, 𝑝𝑟𝑒𝑐𝑛 of 95.18%, 𝑟𝑒𝑐𝑎𝑙 of 95.31%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.18% and an 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 96.46%. 
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Table 3. Vehicle classification outcomes of the SHODL-VCC approach on 70:30 of TRS/TSS. 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝑺𝒄𝒐𝒓𝒆 

Training Phase (70%) 

Car 97.62 96.79 96.35 96.57 97.32 

Bus 98.41 96.23 99.03 97.61 98.57 

Truck 96.67 96.00 93.66 94.81 95.89 

Average 97.57 96.34 96.34 96.33 97.26 

Testing Phase (30%) 

Car 97.41 94.05 97.53 95.76 97.44 

Bus 97.78 94.90 98.94 96.88 98.05 

Truck 95.19 96.59 89.47 92.90 93.88 

Average 96.79 95.18 95.31 95.18 96.46 

 

Figure 7. Average outcomes of the SHODL-VCC approach on 70% of TRS. 

 

Figure 8. Average outcomes of the SHODL-VCC approach on 30% of TSS. 
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Figure 9. TACC and VACC analyses results of the SHODL-VCC approach. 

The TACC and VACC values achieved by the proposed SHODL-VCC algorithm in terms of 

vehicle classification performance are shown in Figure 9. The figure infers that the SHODL-VCC 

method revealed a better performance with improved TACC and VACC values. Further, it can be 

noticed that the SHODL-VCC method reached the maximum TACC outcomes. 

The TLS and VLS values, achieved by the SHODL-VCC technique in terms of vehicle 

classification performance, are portrayed in Figure 10. The figure infers that the SHODL-VCC method 

achieved an improved performance with minimum TLS and VLS values. Further, it can be understood 

that the SHODL-VCC approach resulted in minimal VLS outcomes. 

 

Figure 10. TLS and VLS analyses outcomes of the SHODL-VCC approach. 
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An evident precision-recall study was conducted upon the SHODL-VCC algorithm using the test 

database and the results are shown in Figure 11. The figure implies that the SHODL-VCC system led 

to improved precision-recall values in all three class labels. 

A detailed ROC study was conducted upon the SHODL-VCC approach using the test database 

and the results are illustrated in Figure 12. The outcome infers that the SHODL-VCC algorithm 

revealed its capability in classifying the three class labels. 

 

Figure 11. Precision-recall outcomes of the SHODL-VCC algorithm. 

 

Figure 12. ROC curve outcomes of the SHODL-VCC algorithm. 
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Table 4. 𝐴𝑐𝑐𝑢𝑦 analysis outcomes of the SHODL-VCC system with other methods. 

Methods Accuracy (%) 

SHODL-VCC 98.52 

Faster RCNN Model 96.87 

YOLOv3 Model 95.93 

YOLOv4 Model 97.68 

VBVD-DL Model 97.55 

 

Figure 13. 𝐴𝑐𝑐𝑢𝑦 analysis outcomes of the SHODL-VCC approach with recent algorithms. 

Finally, a detailed comparative 𝑎𝑐𝑐𝑢𝑦  examination was conducted upon the SHODL-VCC 

technique on vehicle classification tasks and the results are reported in Table 4 and Figure 13 [30]. The 

results indicate that the YOLOv3 model achieved the least 𝑎𝑐𝑐𝑢𝑦 of 95.93% while the Faster RCNN 

model produced a slightly improved 𝑎𝑐𝑐𝑢𝑦 of 96.87%. 

Moreover, the YOLOv4 and VBVG-DL models obtained reasonably closer 𝑎𝑐𝑐𝑢𝑦 values such 

as 97.68% and 97.55% respectively. However, the SHODL-VCC technique reached a superior 

outcome with an 𝑎𝑐𝑐𝑢𝑦 of 98.52%. These experimental results demonstrate the supreme performance 

of the SHODL-VCC algorithm on vehicle classification process. 

5. Conclusions 

In this study, the authors have established a novel SHODL-VCC system for automated vehicle 

counting and classification in the ITSs. The SHODL-VCC technique majorly follows a 2-stage 

procedure such as vehicle detection and vehicle classification. Primarily, the presented SHODL-VCC 

technique employs the RetinaNet object detector to identify the vehicles. Next, the detected vehicles 

are classified into different class labels using the DWAE model. To enhance the vehicle detection 

performance, the spotted hyena optimizer algorithm is exploited as a hyperparameter optimizer, which 
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considerably improves the vehicle detection rate. The proposed model can be used in several real-time 

applications such as traffic flow management, toll booth management, parking management, public 

safety and intelligent navigation. The simulation outcomes of the SHODL-VCC technique were 

validated on different databases. The comparative results demonstrate the promising vehicle 

classification performance of the SHODL-VCC technique than the rest of the deep learning approaches 

with a maximum accuracy of 98.52%. In the future, the vehicle classification performance of the 

SHODL-VCC technique can be improved with the help of fusion-based ensemble voting process. 
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