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Abstract: Traffic surveillance systems are utilized to collect and monitor the traffic condition data of
the road networks. This data plays a crucial role in a variety of applications of the Intelligent
Transportation Systems (ITSs). In traffic surveillance, it is challenging to achieve accurate vehicle
detection and count the vehicles from traffic videos. The most notable difficulties include real-time
system operations for precise classification, identification of the vehicles’ location in traffic flows and
functioning around total occlusions that hamper the vehicle tracking process. Conventional video-
related vehicle detection techniques such as optical flow, background subtraction and frame difference
have certain limitations in terms of efficiency or accuracy. Therefore, the current study proposes to
design the spotted hyena optimizer with deep learning-enabled vehicle counting and classification
(SHODL-VCC) model for the ITSs. The aim of the proposed SHODL-VCC technique lies in accurate
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counting and classification of the vehicles in traffic surveillance. To achieve this, the proposed
SHODL-VCC technique follows a two-stage process that includes vehicle detection and vehicle
classification. Primarily, the presented SHODL-VCC technique employs the RetinaNet object detector
to identify the vehicles. Next, the detected vehicles are classified into different class labels using the
deep wavelet auto-encoder model. To enhance the vehicle detection performance, the spotted hyena
optimizer algorithm is exploited as a hyperparameter optimizer, which considerably enhances the
vehicle detection rate. The proposed SHODL-VCC technique was experimentally validated using
different databases. The comparative outcomes demonstrate the promising vehicle classification
performance of the SHODL-VCC technique in comparison with recent deep learning approaches.

Keywords: traffic surveillance; intelligent transportation systems; deep learning; RetinaNet; Vehicle
detection; Vehicle classification

1. Introduction

The fast evolution of motor vehicles and the increasing urban population have paved the way for
traffic problems. The intelligent transportation system (ITS) is a potential tool to overcome the traffic
issues [1]. With the growth of computer vision (CV), the Internet of Things and communication
technologies, traffic surveillance has become a key technology for traffic parameter collection and it
serves a vital role [2]. Traffic flow can be defined as a basic and a significant parameter in ITSs whereas
counting and detecting the number of vehicles from traffic videos in a rapid and accurate fashion, is a
general research area [3]. In the past, many vision methods were modelled for automatic counting of
the vehicles in traffic videos. Several existing vehicle counting techniques perform the vehicle
detection process on the basis of vehicle appearance and the attributes that can be positioned through
foreground recognition and the vehicles are counted on the basis of vehicle detection outcomes [4]. In
general, the vehicle counting methodologies rely upon traffic videos and are classified into two
subtasks such as vehicle counting and vehicle detection [5].

With an exponential growth of CV technologies and artificial intelligence, the object detection
techniques related to deep learning (DL) are commonly examined in recent years [6]. This technique
can automatically extract the features with the help of machine learning (ML) technique; therefore,
this technique is capable of powerful image abstraction and automated higher-level feature
representation [7]. Nowadays, the vision-related vehicle object recognition process is classified into
conventional machine vision techniques and the complicated DL techniques. The conventional
machine vision techniques make use of vehicle movement to separate it from the fixed background
images [8]. The utilization of deep convolutional networks (CNN) has achieved phenomenal success
in the domain of vehicle object detection. CNN is highly potential in learning the image features and
can execute many relevant tasks like bounding box regression and its classification [9].

The detection technique can be classified into two categories [10]. The two-stage technique
generates a candidate box of objects through different techniques and categorizes the object by CNN.
On the other hand, the one-stage technique does not produce a candidate box but directly converts the
positioning issue of object bounding box into a regression issue for processing [11]. With the
computability of hardware and the growth of DL object detection, like GPUs, it is likely to construct
a DL vehicle counting method with high efficiency and accuracy though it has a few difficulties too [12].
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The primary issue to be addressed is to develop a rapid vehicle detection method with optimum
performance using TL without training data. Though the DL vehicle recognition methods can identify
the vehicles with high accuracy levels [13], still there occurs unavoidable false detection or missing
detection issues. Evading the errors, caused by such conditions, remains the primary difficulty to
overcome so that the accuracy of vehicle counting can be enhanced, if the accurate of vehicle
recognition is challenging to enhance [14].

The current study focuses on design and development of the Spotted Hyena Optimizer with Deep
Learning Enabled Vehicle Counting and Classification (SHODL-VCC) model for ITSs. The proposed
SHODL-VCC technique follows a two-stage procedure i.e., vehicle detection and vehicle
classification. Primarily, the presented SHODL-VCC technique employs the RetinaNet object detector
to identify the vehicles. Next, the detected vehicles are classified into different class labels with the
help of the deep wavelet auto-encoder (DWAE) model. To enhance the vehicle detection performance,
the spotted hyena optimizer algorithm is exploited as a hyperparameter optimizer, which considerably
enhances the vehicle detection rate. The SHODL-VCC technique was experimentally validated using
different databases and the results are discussed.

2. Related works

In the study conducted earlier [15], it has been recommended that the deep learning techniques
can be enforced for vehicle counting in traffic videos. In this study, a technique was primarily devised
for vehicle recognition related to TL to sort out the issue of lack of annotated dataset. Afterwards,
depending on the vehicle recognition process, a vehicle counting technique was modelled related to
merging the vehicle tracking and virtual detection processes. At last, owing to possible circumstances
of false and missing detections, the authors modelled the missing alarm and false alarm suppression
modules for enriching the precision of vehicle counting process. In literature [16], the authors
discussed about a deep learning application for constituting a vehicle counting mechanism without
tracking the movements of the vehicles. In this study, the pre-trained YOLOvV3 technique was utilized
to reduce the time taken for deploying the DL architecture and for enhancing the system performance.
The presented technique took moderate computational hours in object detection and achieved a
good performance.

Yin et al. [17] modelled a new approach for counting the vehicles in a human-like manner. The
two major contributions of this study are as follows; firstly, the authors modelled a lightweight vehicle
counting method called ST-CSNN with high potential. This counting technique compares the vehicles’
identity to get rid of the duplicate samples. Integrated with the spatio-temporal data among the frames,
it could hasten the speed and enhance the precision of counting process. Secondly, the authors
strengthened the model’s efficiency by including an enhanced loss function based on the Siamese
neural networks. Youssef and Elshenawy [18] examined the utilization of cascade region-oriented R-
CNN network for enabling an automatic vehicle tracking and counting method in aerial video streams.
The devised approach integrates the cascade R-CNN architecture and the feature pyramid networks to
accomplish precise vehicle detection and classification. Navarro et al. [19] explored the possibility of
utilizing a low-cost embed mechanism for real-time vehicle recognition and counting with the help of
DNNs. The study compared the efficiency of two distinct object tracking techniques such as the
centroid tracking algorithm and the Kalman filter with Hungarian method.

Djukanovi¢ et al. [20] addressed the acoustic vehicle counting method utilizing one-channel audio.
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The authors forecasted the pass-by instance of the automobiles in local minima for the clipped vehicle-
to-microphone distances. The outcomes from the experimentation exhibited that the NN-related
distance regression method outpaced the previously-devised SVR. In the study conducted earlier [21],
a precise technique was modelled for vehicle counting in videos with the help of KLT tracker and Mask
R-CNN technique. In this method, the vehicle detection process can be executed for every N frame
utilizing mask R-CNN instance segmentation method. This method outpaced the rest of the DL
techniques that use bounding box detection, since the former delivers a segmentation mask for all the
detected objects. Further, an outstanding performance was achieved in case of occlusion. Once the
objects were identified, their corner points were tracked and extracted. A potential technique was
presented in this study for assigning the point trajectories to their respective detected vehicles.

3. Proposed model

In the current study, the authors have established a novel SHODL-VCC system for automated
vehicle counting and classification in the ITS. The proposed SHODL-VCC technique involves
different sub-processes namely, the RetinaNet vehicle detector, the SHO-based parameter tuning and
the DWAE-based vehicle classification. These three modules are briefed in the following subsections.
Figure 1 represents the workflow of the proposed SHODL-VCC method.

Vehicles Detection Process: RetinaNet Model
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Figure 1. Workflow of the proposed SHODL-VCC system.
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3.1. Vehicle detection module: RetinaNet model

Primarily, the presented SHODL-VCC technique employs the RetinaNet object detector to
identify the vehicles. RetinaNet is one of the unified networks that is made up of two-task subnetworks
with FPN as a backbone network [22]. Figure 2 shows the infrastructure of the RetinaNet method.
During the candidate box extraction process, the concept of anchor frame is accepted unlike the RPN
network. Further, the region of anchor boxes are amplified from 32 x 32 to 512 x 512. The anchor
box of all the layers contains three sizes {2°,21/3, 22/3} and three aspect ratios {1:2, 1:1, 2:1}. Hence,
the feature point of all the feature maps corresponds to nine anchor boxes. A feature pyramid is built
on the top of the network whereas the FPN is built using the ResNet model. All the layers of the
pyramid contain 256 channels. The two-task subnetworks are categorized into subnetwork and regression
subnetwork. Here, the subnetwork forecasts the probability of K classes on all the anchor boxes.
Subnetwork is a smaller FCN that is connected with all the layers of FPN and the parameters are shared
in it. For the provided pyramid-level outcome with 256 channel characteristic graph, the subnetwork
applies four 3 x 3 convolutional layers. The channel count from all the layers still remains 256, but there
exists a ReLU activation layer here. After that, 3 x 3 convolutional layers are present with a channel
number of Ka (K denotes the count of classes and a indicates the count of anchor boxes) and lastly it
makes use of the sigmoid activation function. The regression subnetwork corresponds to the classifier
subnetwork, and the smaller FCN is connected with all the layers of the FPN for border regression.

// Class W)(ﬂ W)(H \\"'XH

+ / Subnet [V 2 ........ 2 I\ S >
} | Sibnsts. |/ 2% | o | st
/
/ Class+Box
Il / > — | Subnets /

il ' Class+Box | W"g w"’“(" \\’X‘l"
b asstBox [\ | | | ;50 = > | 756 F=— > | 150

' 'T b Subnets \\\\ )(25 x4 X2 . b
7 \ Box

g 4
\
A\

(b) Feature Pyramid Net (c) Class Subnet (top) (d) Box Subnet (bottom)

(a) ResNet

Figure 2. Structure of the RetinaNet model.

The RetinaNet model has a better recognition outcome in case of smaller objects since it employs
a novel loss function i.e., focal loss (FL) [23]. The major concept of FL is to minimize the weight so
as to categorize the samples and resolve the problems of imbalanced categories. Thus, in spite of large
instance size, the contribution of the simply-categorized instances to loss function is smaller. For dual
classification task, a typical Cross Entropy (CE) loss is formulated as follows.

—log(p)ify=1

CE (p,y) = {_ log(1 — p) otherwise @

In Eq (1), y € {£1} signifies the positive and negative instances whereas p € [0,1] denotes the
probability value of y = 1, anticipated by the model. p; is determined using the following expression.
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1 — p otherwise

Next, the cross entropy loss is formulated as given below.

CE (p,y) = CE(py) = —log (py) (3)

The common solution to overcome the imbalance class is to add the weighted feature @ € [0,1]
i.e., the basis of FL function, as given below.

CE (p,) = —a, log (p) 4)

a balances the negative and positive samples. However, it does not differentiate the easy samples
from the default ones. The FL increases the moderating factor (1 — p;)? to minimize the weight of the
sample and focuses on the training of difficult negative instances.

FL(py) = —a,(1 —p.)" log (p;) ()

Here, y = 0 is the changeable focusing parameter that could smoothly fine-tune the proportion
for easily-classified instance-weighted reduction and a; indicates the balancing variable. Once the FL
is applied for training and once the detector finds the trained sample to be inaccurate, the p; becomes
lesser and inclines to 0 whereas the adjustable factor approaches 1. Hence, the loss function has no
effect; in case of easy-to-classify sample, p; approaches 1 whereas the adjustable factor approaches 0.
Hence, the loss weight of the easily-classified instances reduces considerably.

3.2. Hyperparameter tuning module: SHO algorithm

In order to improve the vehicle detection performance of the RetinaNet algorithm, the spotted
hyena optimizer algorithm is used. Spotted Hyenas (SHy) are known as skilled pursuers and they are
the largest among the hyaena species [24]. Further, they are well-known as ‘laughing hyenas’ since
their vocals sound like human laughter. They are intelligent social creatures and their behaviors are
extremely complicated to understand. The SHy traces the prey using its well-developed senses of
hearing, smell and sight. Such behaviors of SHy led Dhiman et al. to develop a metaheuristic technique,
i.e., spotted hyenas optimization algorithm. In this study, the authors constructed the mathematical
approach based on Shy’s behavior and mutual dexterity for optimization. Three actions related to the
SHO are catch, encircling and the noticeable catch.

Surrounding of catch: To progress these arithmetical archetypes, it is predictable that the present
best challenger is the intended catch based on the fact that the hunt field is formally recognized [25].
In the study, the catch is proposed to the location that is familiar to the hunt mediator so as to attain
the benefit and is mathematically processed in the following equations.

D=|B P(x)—P(x)| (6)
P(x+1) =P, (x) - E D, (7)

Now 5,1 indicates the stretch between SHy and the prey, y denotes the existing count, Band E
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represent the vector coefficients, 13;) shows the spot vector of the pursuit and P denotes the locale

vector of Shy as given below.

B = 2rd_1) (®)
F = 2ird, — ®
}_{ B 5 - <t * (tmsax)> Where t = 1;2;3 ey tmax (10)

Here, t represents the iteration count and t,,, indicates the maximal number of iterations. 7y,
and 7z, denote the random vectors within [0, 1].

Tricking: In order to arithmetically describe the demeanor of SHy, it is predictable that the best
pursuit mediator has the data with regards to the position of the pursuit. The lasting hunt mediator
forms an assemblage on the way to the best hunt mediator and stores the best consequence to regenerate
the position as given below.

D, =|B P, — B(x)| (11)
P, =P, —E-Dy (12)
Ch =Py + Peyq + -+ Py (13)

Now, ﬁh denotes the locale of the initial best Shy, P denotes the locale of the supplementary SHy
and N defines the number of SHy in the following equation.

N = Countnos (ﬁhﬁh+1ﬁh+2' ey (ﬁh + M)) (14)

In Eq (14), M denotes the arbitrary vector within [0.5, 1], nos indicates the architecture of the
number of consequences and the total number of competitor results. After adding M , the value is
compared with the best consequence in a specified quest field. C indicates the assembly of N numbers
of the best consequence.

Intruding quest (exploitation): In order to develop the prototype based on the equation and to
attack the prey, h mathematical measure is reduced. The discrepancy in E gets similarly condensed
from 5 to 0 with computation. |E| < 1 pressurizes the assemblages of SHy to outbreak, close to the
hunt as given below.

Px+1) = (15)

z [

In Eq (15), P (x + 1) stores the best product and revises the position of other hunt mediators and
is reliable with the position of premium pursuit mediators.

Hunt for aim (exploration): SHy habitually pursues the prey based on the position of SHy that
subsists in C_h) It separately swings to hunt and pursues the prey [26]. Next, Eis exploited by a random
standard > 1 or < —1 to coerce the hunt mediator and swing the distance from the prey. This strategy
certifies the SHO method to pursue a wide attainment.

Fitness selection becomes a vital factor in the SHO technique. Solution encoding is used to assess

Electronic Research Archive Volume 31, Issue 7, 3704-3721.
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the goodness of the candidate solution. Nowadays, the accuracy value is the main condition used to
design a fitness function.

Fitness = max (P) (16)
TP
= TP+FP (17)

In this expression, TP represents true positive whereas FP denotes the false positive value.

3.3. Vehicle classification module: DWAE model

Finally, the DWAE model is employed for automated vehicle classification process. A typical AE
possesses an unsupervised feature learning ability, strong inference ability and robustness [27]. The
property of the Wavelet Transform (WT) has time-frequency, localization and focal features. As a result,
it is necessary to combine the WTs and a typical AE to resolve the real-world challenges. The study
presents a novel type of unsupervised neural network named ‘DWAE’ that could catch the non-stationary
vibration signals and characterize the complicated data. Equation (18) shows the decoding stage.

X =E('Y +b") (18)

Here X represents the result of the reconstructed vector, k indicates the kernel vector, b’ signifies
the bias value and € indicates the error value more in the process of backpropagation [28]. The DWAE
training method is shown herewith.

In the training sample ¥ = [yq, Y5, ..., ¥ ]*, the outcome of the hidden unit is i.

gi(our) = ¢ EE22e) (19)
In Eq (19), ¢ signifies the wavelet activation function
yl(r =1,2, ...,n) represents the [th dimensional input of the trained samples
vij(i=1,2,3, ...,9) indicates the weight connecting betwixt the input as well as hidden units.
bi and ei characterize vij(i = 1,2,3, ...,g) that directs the scale and shift factors of the wavelet
activation function for the itk hidden unit.

¢(a) = cos (5a)exp (%2) (20)
g (out) = $pe(D) = cos (5 x TEatwed y o (_1EEvizenyz) @1)

Like typical AE, the activation function of the resultant layer is selected as the sigmoid function.
Next, the outcome of DWAE is evaluated by [29].

(1 vayi—e;)

y = sigm (T, v < cos 5 x e, X exp (%w*i;%_e’))z)) (22)

In Eq (22), y denotes i the reconstruction dimensional resultant of the trained sample and v,;
indicates the weight connecting between the hidden r and i.

Electronic Research Archive Volume 31, Issue 7, 3704-3721.
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4, Performance validation

In this section, the proposed model was validated using the vehicle dataset comprising 900
samples under three classes, as defined in Table 1. Figure 3 represents the sample images.

Table 1. Details of the dataset.

Class No. of Images
Car 300
Bus 300
Truck 300
Total Number of Samples 900

Figure 3. Sample images.

In Figure 4, the confusion matrices generated by the proposed SHODL-VCC technique are clearly
shown in the vehicle classification process. The results found that the SHODL-VCC technique
accurately recognized three different vehicles namely, car, bus and truck.

Electronic Research Archive
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Figure 4. Confusion matrices of the SHODL-VCC system (a-b) TRS/TSS of 80:20 and (c-
d) TRS/TSS of 70:30.

In Table 2, the vehicle classification results of the SHODL-VCC technique are provided. Figure 5
shows the vehicle classification outcomes of the SHODL-VCC technique on 80% of TRS. The results
found that the SHODL-VCC technique identified all three types of vehicles accurately. Further, the
SHODL-VCC technique was found to have attained an average accu,, of 98.80%, prec, of 98.20%,
reca; of 98.20%, Fycore 0f 98.19% and an AU Cy.pre 0f 98.65%.

Figure 6 provides the detailed vehicle classification outcomes of the SHODL-VCC system on 20%
of TSS. The outcomes infer that the SHODL-VCC system identified all three types of vehicles in an
accurate manner. Further, the SHODL-VCC methodology accomplished an average accu,, of 98.52%,

prec, of 97.98%, reca; of 97.70%, Fyeore of 97.78% and an AU Cypppe of 98.28%.

Table 2. Vehicle classification outcomes of the SHODL-VCC approach on 80:20 of TRS/TSS.

Labels Accu, Prec, Reca,; Fscore AUCgcpre
Training Phase (80%)

Car 98.89 97.93 98.74 98.33 98.85
Bus 98.75 97.51 98.74 98.12 98.75
Truck 98.75 99.16 97.12 98.13 98.35
Average 98.80 98.20 98.20 98.19 98.65
Testing Phase (20%)

Car 99.44 100.00 98.36 99.17 99.18
Bus 97.78 93.94 100.00 96.88 98.31
Truck 98.33 100.00 94.74 97.30 97.37
Average 98.52 97.98 97.70 97.78 98.28

Electronic Research Archive Volume 31, Issue 7, 3704-3721.
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Figure 5. Average outcomes of the SHODL-VCC approach on 80% of TRS.
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Figure 6. Average outcomes of the SHODL-VCC approach on 20% of TSS.

In Table 3, the vehicle classification outcomes of the SHODL-VCC methodology is portrayed.
Figure 7 demonstrates the brief vehicle classification outcomes of the SHODL-VCC approach on 70%
of TRS. The results infer that the SHODL-VCC method identified all three types of vehicles accurately.
Further, the SHODL-VCC technique accomplished an average accu,, of 97.57%, prec, of 96.34%,
reca; of 96.34%, F;;pre 0f 96.33% and an AU C.pp-e Of 97.26%.

Figure 8 shows the brief vehicle classifier classification outcomes of the proposed SHODL-VCC
technique on 30% of TSS. The outcomes imply that the SHODL-VCC system identified all three types
of vehicles accurately. Further, the SHODL-VCC methodology accomplished an average accu,, of
96.79%, prec, of 95.18%, reca; of 95.31%, Fy.yre 0f 95.18% and an AUC¢,ye Of 96.46%.

Electronic Research Archive Volume 31, Issue 7, 3704-3721.
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Table 3. Vehicle classification outcomes of the SHODL-VCC approach on 70:30 of TRS/TSS.

Labels Accu, Prec, Recaq, Fscore AUCgcore
Training Phase (70%)
Car 97.62 96.79 96.35 96.57 97.32
Bus 98.41 96.23 99.03 97.61 98.57
Truck 96.67 96.00 93.66 94.81 95.89
Average 97.57 96.34 96.34 96.33 97.26
Testing Phase (30%)
Car 97.41 94.05 97.53 95.76 97.44
Bus 97.78 94.90 98.94 96.88 98.05
Truck 95.19 96.59 89.47 92.90 93.88
Average 96.79 95.18 95.31 95.18 96.46
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Figure 7. Average outcomes of the SHODL-VCC approach on 70% of TRS.
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Figure 8. Average outcomes of the SHODL-VCC approach on 30% of TSS.
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Figure 9. TACC and VACC analyses results of the SHODL-VCC approach.

The TACC and VACC values achieved by the proposed SHODL-VCC algorithm in terms of
vehicle classification performance are shown in Figure 9. The figure infers that the SHODL-VCC
method revealed a better performance with improved TACC and VACC values. Further, it can be

noticed that the SHODL-VCC method reached the maximum TACC outcomes.
The TLS and VLS values, achieved by the SHODL-VCC technique in terms of vehicle

classification performance, are portrayed in Figure 10. The figure infers that the SHODL-VCC method
achieved an improved performance with minimum TLS and VLS values. Further, it can be understood

that the SHODL-VCC approach resulted in minimal VLS outcomes.
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Figure 10. TLS and VLS analyses outcomes of the SHODL-VCC approach.
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An evident precision-recall study was conducted upon the SHODL-VCC algorithm using the test
database and the results are shown in Figure 11. The figure implies that the SHODL-VCC system led
to improved precision-recall values in all three class labels.

A detailed ROC study was conducted upon the SHODL-VCC approach using the test database
and the results are illustrated in Figure 12. The outcome infers that the SHODL-VCC algorithm
revealed its capability in classifying the three class labels.
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Table 4. Accu,, analysis outcomes of the SHODL-VCC system with other methods.

Methods Accuracy (%)
SHODL-VCC 98.52
Faster RCNN Model 96.87
YOLOvV3 Model 95.93
YOLOv4 Model 97.68
VBVD-DL Model 97.55
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Figure 13. Accu,, analysis outcomes of the SHODL-VCC approach with recent algorithms.

Finally, a detailed comparative accu, examination was conducted upon the SHODL-VCC
technique on vehicle classification tasks and the results are reported in Table 4 and Figure 13 [30]. The
results indicate that the YOLOv3 model achieved the least accu,, of 95.93% while the Faster RCNN
model produced a slightly improved accu,, of 96.87%.

Moreover, the YOLOv4 and VBVG-DL models obtained reasonably closer accu,, values such
as 97.68% and 97.55% respectively. However, the SHODL-VCC technique reached a superior
outcome with an accu,, of 98.52%. These experimental results demonstrate the supreme performance
of the SHODL-VCC algorithm on vehicle classification process.

5. Conclusions

In this study, the authors have established a novel SHODL-VCC system for automated vehicle
counting and classification in the ITSs. The SHODL-VCC technique majorly follows a 2-stage
procedure such as vehicle detection and vehicle classification. Primarily, the presented SHODL-VCC
technique employs the RetinaNet object detector to identify the vehicles. Next, the detected vehicles
are classified into different class labels using the DWAE model. To enhance the vehicle detection
performance, the spotted hyena optimizer algorithm is exploited as a hyperparameter optimizer, which

Electronic Research Archive Volume 31, Issue 7, 3704-3721.
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considerably improves the vehicle detection rate. The proposed model can be used in several real-time
applications such as traffic flow management, toll booth management, parking management, public
safety and intelligent navigation. The simulation outcomes of the SHODL-VCC technique were
validated on different databases. The comparative results demonstrate the promising vehicle
classification performance of the SHODL-VCC technique than the rest of the deep learning approaches
with a maximum accuracy of 98.52%. In the future, the vehicle classification performance of the
SHODL-VCC technique can be improved with the help of fusion-based ensemble voting process.
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