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Abstract: A fractional cable (FC) equation is solved by the barycentric rational interpolation method
(BRIM). As the fractional derivative is a nonlocal operator, we develop a spectral method to solve the
FC equation to get the coefficient matrix as the full matrix. First, the fractional derivative of the FC
equation is changed to a nonsingular integral from the singular kernel to the density function. Second,
an efficient quadrature of a new Gauss formula is constructed to compute it simply. Third, a matrix
equation of the discrete FC equation is obtained by the unknown function replaced by a barycentric
rational interpolation basis function. Then, convergence rate for FC equation of the BRIM is derived.
At last, a numerical example is given to illustrate our results.
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1. Introduction

Lots of physical phenomena can be expressed by the FC equation, including, inter alia, dissipative
and dispersive partial differential equations (PDEs). In this paper, we consider the FC equation

∂ϕ(t, s)
∂t

= −µ0 0C
1−α1
t ϕ(t, s) + 0C

1−α2
t
∂2ϕ(t, s)
∂s2 + f (t, s), 0 ≤ s ≤ 1, 0 ≤ t ≤ T, (1.1)

ϕ(0, s) = 0, ϕ(1, s) = 0, s ∈ [0,T ], (1.2)
ϕ(t, 0) = φ(t), t ∈ [0, 1] (1.3)

where µ0 ∈ R, 0 < α1, α2 < 1 are constants. There are some definitions of fractional derivatives, such
as the Caputo type, Riemann-Liouville type and so on. In the following, we adopt the Caputo type
time fractional-order partial derivative as

0Cαt ϕ(t) =
1

Γ(1 − α)

∫ t

0

ϕ′(t)
(t − τ)α

dτ, (1.4)
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and Γ(α) is the Γ function.
In [1], a scheme combining the finite difference method in the time direction and a spectral method

in the space direction was proposed. In [2], two implicit compact difference schemes for the FC
equation were studied, this scheme was proved to be stable, and the convergence order O(τ + h4) was
given. In [3], a two-dimensional FC equation was solved by orthogonal spline collocation (OSC)
methods for space discretization and finite difference method for time, which was proved to be
unconditionally stable. In [4], the FC equation with two time Riemann-Liouville derivatives was
solved by an explicit numerical method; and the accuracy, stability and convergence of this method
were studied. In [5], FC equation with two fractional time derivatives were considered, and two new
implicit numerical methods for the FC equation were proposed, respectively. The stability and
convergence of these methods were also investigated. In [6], nonlinear FC equation was solved by a
two-grid algorithm with the finite element (FE) method. A time second-order fully discrete two-grid
FE scheme and the space direction were approximated. In [7], the discrete Crank-Nicolson (CN)
finite element method was obtained by the finite difference in time and the finite element in space to
approximate the FC equation, the stability and error estimate were analyzed in detail and the optimal
convergence rate was obtained. In [8], the FC equation involving two integro-differential operators
was solved by semi-discrete finite difference approximation, and the scheme was proved
unconditionally stable. In reference [9], numerical integration with the reproducing kernel gradient
smoothing integration are constructed. In reference [10], recursive moving least squares (MLS)
approximation was constructed.

Like the above methods to solve the FC equation by finite difference approach or finite element
method, the time direction and space direction were solved separatively. In the following, we
presented the BRIM to solve the time direction and space direction of FC equation at the same time.
Lagrange interpolation has been presented by mathematician Lagrange to fitting data to be a certain
function. When the number n increases, there are Runge phenomenon that the interpolation result
deviates from the original function. In order to avoid the Runge phenomenon, among them,
barycentric interpolation was developed in 1960s to overcome it. In recent years, linear rational
interpolation (LRI) was proposed by Floater [14–16] and error of linear rational interpolation [11–13]
is also proved. The barycentric interpolation collocation method (BICM) has developed by Wang et
al. [25, 26] and the algorithm of BICM has used for linear/non-linear problems [27, 28]. In recent
research, Volterra integro-differential equation (VIDE) [17, 21], heat equation (HE) [18], biharmonic
equation (BE) [19], telegraph equation (TE) [20], generalized Poisson equations [22], fractional
reaction-diffusion equation [23] and KPP equation [24] have been studied by the linear barycentric
rational interpolation method (LBRIM) and their convergence rate are also proved.

In this paper, BRIM has been used to solve the FC equation. As the fractional derivative is the
nonlocal operator, the spectral method is developed to solve the FC equation and the coefficient matrix
is the full matrix. The fractional derivative of the FC equation is changed to nonsingular integral by the
order of density function plus one. New Gauss formula is constructed to compute it simply and matrix
equation of discrete FC equation is obtained by the unknown function replaced by barycentric rational
interpolation basis function. Then, the convergence rate of BRIM is proved.
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2. Matrix equation of FC equation

As there is singularity in Eq (1.1), the numerical methods cannot get high accuracy, by fractional
integration to second part of (1.1) to overcome the difficulty of singularity. We get

0Cαt ϕ(t, s)

=
1

Γ(ξ − α)

∫ t

0

∂ξϕ(τ, s)
∂τξ

dτ
(τ − t)α+1−ξ

=
1

(ξ − α)Γ(ξ − α)

[
∂ξϕ(0, s)
∂tξ

tξ−α +
∫ t

0

∂ξ+1ϕ(τ, s)
∂τξ+1

dτ
(t − τ)α−ξ

]
= Γξα

[
∂ξϕ(0, s)
∂tξ

tξ−α +
∫ t

0

∂ξ+1ϕ(τ, s)
∂τξ+1

dτ
(t − τ)α−ξ

]
, (2.1)

where Γξα = 1
(ξ−α)Γ(ξ−α) .

Combining (2.1) and (1.1), we have

∂ϕ

∂t
+ µ0Γ

ξ
α1

[
∂ξϕ(0, s)
∂tξ

tξ−α1 +

∫ t

0

∂ξ+1ϕ(τ, s)
∂τξ+1

dτ
(t − τ)α1−ξ

]
= Γξα2

[
∂ξ+2ϕ(0, s)
∂tξ∂s2 sξ−α2 +

∫ t

0

∂ξ+3ϕ(τ, s)
∂τξ+1∂s2

dτ
(s − τ)α2−ξ

]
+ f (t, s). (2.2)

In the following, we give the discrete formula of FC equation and to get the matrix equation from
BRIM.

Let

ϕ(t, s) =
m∑

j=1

R j(t)ϕ j(s) (2.3)

where
ϕ(ti, s) = ϕi(s), i = 1, 2, · · · ,m

and

R j(t) =

λ j

t − t j
n∑

k=1

λk

t − tk

(2.4)

where

λk =
∑
j∈Jk

(−1) j
j+dt∏

i= j, j,k

1
tk − ti

, Jk = { j ∈ {0, 1, · · · , l − dt} : k − dt ≤ j ≤ k}

is the basis function [18]. Taking (2.3) into Eq (2.2),

m∑
j=1

R′j(t)ϕ j(s) + µ0Γ
ξ
α1

m∑
j=1

R(ξ)
j (0)ϕ j(s)tξ−α1 +

∫ t

0
ϕ j(s)

R(ξ+1)
j (τ)dτ

(t − τ)α1−ξ


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= Γξα2

m∑
j=1

R(ξ)
j (0)ϕ(2)

j (s)tξ−α2 +

∫ t

0
ϕ(2)

j (s)
R(ξ+1)

j (τ)dτ

(t − τ)α2−ξ

 + f (t, s). (2.5)

By taking 0 = t1 < t2 < · · · < tm = T, a = s1 < s2 < · · · < sn = b with ht = T/m, hs = (b − s)/n or
uninform as Chebychev point s = cos((0 : m)′π/m), t = cos((0 : n)′π/n), we get

m∑
j=1

R′j(ti)ϕ j(s) + µ0Γ
ξ
α1

m∑
j=1

R(ξ)
j (0)ϕ j(s)tξ−α1

i +

∫ ti

0
ϕ j(s)

R(ξ+1)
j (τ)dτ

(ti − τ)α1−ξ


= Γξα2

m∑
j=1

R(ξ)
j (0)ϕ(2)

j (s)tξ−α2
i +

∫ ti

0
ϕ(2)

j (s)
R(ξ+1)

j (τ)dτ

(ti − τ)α2−ξ

 + f (ti, s), (2.6)

by noting the notation, R j(ti) = δi j,R′j(ti) = R(1,0)
i j , where R(1,0)

i j is the first order derivative of barycentric
matrix. Equation (2.6) can be written as

m∑
j=1

R(1,0)
i j ϕ j(s) + µ0Γ

ξ
α1

m∑
j=1

R(ξ)
j (0)ϕ j(s)tξ−α1

i +

∫ ti

0
ϕ j(s)

R(ξ+1)
j (τ)dτ

(ti − τ)α1−ξ


= Γξα2

m∑
j=1

R(ξ)
j (0)ϕ(2)

j (s)tξ−α2
i +

∫ ti

0
ϕ(2)

j (s)
R(ξ+1)

j (τ)dτ

(ti − τ)α2−ξ

 + f (ti, s). (2.7)

Similarly as the discrete t for s, we get

ϕ j(s) =
n∑

k=1

Rk(s)ϕik (2.8)

where ϕi(s j) = ϕ(ti, s j) = ϕi j, i = 1, · · · ,m; j = 1, · · · , n and

Ri(s) =

wi

s − si
m∑

k=1

wk

s − sk

(2.9)

where

wi =
∑
j∈Ji

(−1) j
j+ds∏

k= j, j,i

1
si − sk

, Ji = { j ∈ {0, 1, · · · ,m − ds} : i − ds ≤ j ≤ i},

is the basis function [18].
Taking (2.8) into Eq (2.7), we get

m∑
j=1

n∑
k=1

R(1,0)
i j Rk(s)ϕik + µ0Γ

ξ
α1

m∑
j=1

n∑
k=1

R(ξ)
j (0)Rk(s)tξ−α1

i +

∫ ti

0
Rk(s)

R(ξ+1)
j (τ)dτ

(ti − τ)α1−ξ

 ϕik

= Γξα2

m∑
j=1

n∑
k=1

R(ξ)
j (0)R(2)

k (s)tξ−α2
i +

∫ ti

0
R(2)

k (s)
R(ξ+1)

j (τ)dτ

(ti − τ)α2−ξ

 ϕik + f (ti, s). (2.10)
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By taking s1, s2, · · · , sn at the mesh-point, we get

m∑
j=1

n∑
k=1

R(1,0)
i j Rk(sl)ϕik + µ0Γ

ξ
α1

m∑
j=1

n∑
k=1

R(ξ)
j (0)Rk(sl)t

ξ−α1
i +

∫ ti

0
Rk(sl)

R(ξ+1)
j (τ)dτ

(ti − τ)α1−ξ

 ϕik

= Γξα2

m∑
j=1

n∑
k=1

R(ξ)
j (0)R(2)

k (sl)t
ξ−α2
i +

∫ ti

0
R(2)

k (sl)
R(ξ+1)

j (τ)dτ

(ti − τ)α2−ξ

 ϕik + f (ti, sl). (2.11)

By noting the notation, Rk(sl) = δkl,R′′k (sl) = R(0,2)
i j , where R(0,2)

i j is the second order derivative of
barycentrix matrix.

m∑
j=1

n∑
k=1

R(1,0)
i j δklϕik + µ0Γ

ξ
α1

m∑
j=1

n∑
k=1

R(ξ)
j (0)δklt

ξ−α1
i + δkl

∫ ti

0

R(ξ+1)
j (τ)dτ

(ti − τ)α1−ξ

 ϕik

= Γξα2

m∑
j=1

n∑
k=1

R(ξ)
j (0)R(0,2)

i j tξ−α2
i + R(0,2)

i j

∫ ti

0

R(ξ+1)
j (τ)dτ

(ti − τ)α2−ξ

 ϕik + f (ti, sl), (2.12)

where

Rk(τ) =

λk

τ − τk
n∑

k=0

λk

τ − τk

and 

R
′

i (τ) = Ri(τ)

− 1
τ − τk

+

l∑
s=0

λk

(τ − τk)2

l∑
s=0

λk

τ − τk

 ,
...

R(ξ+1)
i (τ) = [R(ξ)

i (τ)]
′

, ξ ∈ N+.

The integral term of (2.12) can be written as∫ ti

0

R(ξ+1)
j (τ)dτ

(ti − τ)α1−ξ
= Qα1

j (ti) = Qα1
ji , (2.13)

∫ ti

0

R(ξ+1)
j (τ)dτ

(ti − τ)α2−ξ
= Qα2

j (ti) = Qα2
ji , (2.14)

then we get

m∑
j=1

n∑
k=1

R(1,0)
i j δklϕik + µ0Γ

ξ
α1

m∑
j=1

n∑
k=1

[
R(ξ)

j (0)δklt
ξ−α1
i + δklQ

α2
j (ti)

]
ϕik

= Γξα2

m∑
j=1

n∑
k=1

[
R(ξ)

j (0)R(0,2)
i j tξ−α2

i + R(0,2)
i j Qα1

j (ti)
]
ϕik + f (ti, sl). (2.15)
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The integral (2.12) is calculated by

Qα1
j (ti) =

∫ ti

0

R(ξ+1)
j (τ)dτ

(ti − τ)α1−ξ
:=

g∑
i=1

R(ξ+1)
i (τθ,α1

i )Gθ,α1
i , (2.16)

and

Qα2
j (ti) =

∫ ti

0

R(ξ+1)
j (τ)dτ

(ti − τ)α2−ξ
:=

g∑
i=1

R(ξ+1)
i (τθ,α2

i )Gθ,α2
i , (2.17)

where Gθ,α1
i ,G

θ,α2
i are Gauss weights and τθ,α1

i , τ
θ,α2
i are Gauss points with weights (ti−τ)ξ−α1 , (ti−τ)ξ−α2 ,

see reference [22].
Equation systems (2.15) can be written as

[
R(01) ⊗ In + Γ

ξ
α2

(
M(ξ0)

1 ⊗ In + Im ⊗ Qα2
)]



ϕ11
...

ϕ1n

ϕn1
...

ϕmn



−
[
µ0Γ

ξ
α1

(
M(ξ0)

1 ⊗ In + Im ⊗ Qα1
)]



ϕ11
...

ϕ1n

ϕn1
...

ϕmn


=



f11
...

f1n

fn1
...

fmn


, (2.18)

Im and In are identity matrices, ⊗ is Kronecker product.
Then Eq (2.18) can be noted as[

R(01) ⊗ In + Γ
ξ
α2

(
M(ξ0)

1 ⊗ In + Im ⊗ Qα2
)
− µ0Γ

ξ
α1

(
M(ξ0)

1 ⊗ In + Im ⊗ Qα1
)]
Φ = F (2.19)

and
RΦ = F, (2.20)

with R = R(01) ⊗ In + Γ
ξ
α2

(
M(ξ0)

1 ⊗ In + Im ⊗ Qα2
)
− µ0Γ

ξ
α1

(
M(ξ0)

1 ⊗ In + Im ⊗ Qα1
)

and
Φ = [ϕ11. . .ϕ1n. . .ϕn1. . .ϕmn]T , F = [ f11. . . f1n. . . fn1. . . fmn]T .

The boundary condition can be solved by substitution method, additional method or elimination
method, see [26]. We adopt substitution method and additional method to deal with boundary
condition.

3. Convergence rate of FC equation

In this part, error estimate of the FC equation is given with rn(s) =
n∑

i=1

ri(s)ϕi to replace ϕ(s), where

ri(s) is defined as (2.9) and ϕi = ϕ(si). We also define

e(s) := ϕ(s) − rn(s) = (s − si) · · · (s − si+d)ϕ [si, si+1, . . . , si+d, s] , (3.1)

Electronic Research Archive Volume 31, Issue 6, 3649–3665.
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see reference [18].
Then we have

Lemma 1. For e(s) be defined by (3.1) and ϕ(s) ∈ Cd+2[a, b], d = 1, 2, · · · , there∣∣∣e(k)(s)
∣∣∣ ≤ Chd−k+1, k = 0, 1, · · · . (3.2)

For the FC equation, rational interpolation function of ϕ(t, s) is defined as rmn(t, s)

rmn(t, s) =

m+ds∑
i=1

n+dt∑
j=1

wi, j

(s − si)
(
t − t j

)ϕi, j

m+ds∑
i=1

n+dt∑
j=1

wi, j

(s − si)
(
t − t j

) (3.3)

where

wi, j = (−1)i−ds+ j−dt
∑
k1∈Ji

k1+ds∏
h1=k1,h1, j

1∣∣∣si − sh1

∣∣∣ ∑k2∈Ji

k2+dt∏
h2=k2,h2, j

1∣∣∣t j − th2

∣∣∣ . (3.4)

We define e(t, s) be the error of ϕ(t, s) as

e(t, s) : = ϕ(t, s) − rmn(t, s) (3.5)
= (s − si) · · ·

(
s − si+ds

)
ϕ
[
si, si+1, . . . , si+d1 , s; t

]
+

(
t − t j

)
· · ·

(
t − t j+dt

)
ϕ
[
s; t j, t j+1, . . . , t j+d2 , t

]
− (s − si) · · ·

(
s − si+ds

) (
t − t j

)
· · ·

(
t − t j+dt

)
ϕ
[
si, si+1, . . . , si+d1 , s; t j, t j+1, . . . , t j+d2 , t

]
.

With similar analysis of Lemma 1, we have

Theorem 1. For e(t, s) defined as (3.5) and ϕ(t, s) ∈ Cds+2[a, b] ×Cdt+2[0,T ], then we have∣∣∣e(k1,k2) (s, t)
∣∣∣ ≤ C(hds−k1+1

s + hdt−k2+1
t ), k1, k2 = 0, 1, · · · . (3.6)

Let ϕ(sm, tn) be the approximate function of ϕ(t, s) and L to be bounded operator, there holds

Lϕ(tm, sn) = f (tm, sn) (3.7)

and

lim
m,n→∞

Lϕ(tm, sn) = ϕ(t, s). (3.8)

Then we get

Theorem 2. For ϕ(tm, sn) : Lϕ(tm, sn) = ϕ(t, s) and L defined as (3.7), there

|ϕ(t, s) − ϕ(tm, sn)| ≤ C(hds−1 + τdt−1).
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3656

Proof. By

Lϕ(t, s) − Lϕ(tm, sn)

=
∂ϕ(t, s)
∂t

− 0C
1−α1
t
∂2ϕ(t, s)
∂s2 + µ0 0C

1−α2
t ϕ(t, s) − f (t, s)

−

[
∂ϕ(tm, sn)
∂t

− 0C
1−α1
t
∂2ϕ(tm, sn)
∂s2 + µ0 0C

1−α2
t ϕ(tm, sn) − f (tm, sn)

]
=
∂ϕ

∂t
−
∂ϕ

∂t
(tm, sn) −

[
0C

1−α1
t
∂2ϕ

∂s2 − 0C
1−α1
t
∂2ϕ

∂s2 (sm, tn)
]

+µ0

[
0C

1−α2
t ϕ(t, s) − 0C

1−α2
t (tm, sn))

]
−[ f (t, s) − f (tm, sn)]
:= E1(t, s) + E2(t, s) + E3(t, s) + E4(t, s),

(3.9)

here
E1(t, s) =

∂ϕ

∂t
−
∂ϕ

∂t
(tm, sn),

E2(t, s) = 0C
1−α1
t
∂2ϕ

∂s2 − 0C
1−α1
t
∂2ϕ

∂s2 (tm, sn),

E3(t, s) = µ0

[
0C

1−α2
t ϕ(t, s) − 0C

1−α2
t (tm, sn))

]
,

E4(t, s) = f (t, s) − f (tm, sn).

As for E1(t, s), we get

E1(t, s) =
∣∣∣∣∣∂ϕ∂t (t, s) −

∂ϕ

∂t
(tm, sn)

∣∣∣∣∣
=

∣∣∣∣∣∂ϕ∂t (t, s) −
∂ϕ

∂t
(tm, s) +

∂ϕ

∂t
(tm, s) −

∂ϕ

∂t
(tm, sn)

∣∣∣∣∣
≤

∣∣∣∣∣∂ϕ∂t (t, s) −
∂ϕ

∂t
(tm, s)

∣∣∣∣∣ + ∣∣∣∣∣∂ϕ∂t (tm, s) −
∂ϕ

∂t
(tm, sn)

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m−ds∑
i=1

(−1)i∂ϕ

∂t
[si, si+1, . . . , si+d1 , sn, t]

m−ds∑
i=1

λi(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−dt∑
j=1

(−1) j∂ϕ

∂t
[t j, t j+1, . . . , t j+d2 , sn, tm]

n−dt∑
j=1

λ j(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∂e∂t (tm, s)
∣∣∣∣∣ + ∣∣∣∣∣∂e∂t (tm, sn)

∣∣∣∣∣ ,
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we get

|E1(t, s)| ≤ C(hds + τdt). (3.10)

As E2(t, s), we have

E2(t, s) = 0C
1−α1
t
∂2ϕ

∂s2 − 0C
1−α1
t
∂2ϕ

∂s2 (tm, sn)

= Γξα2

[
∂ξ+2ϕ(0, s)
∂tξ∂s2 sξ−α2 +

∫ t

0

∂ξ+3ϕ(τ, s)
∂τξ+1∂s2

dτ
(t − τ)α2−ξ

]
−Γξα2

[
∂ξ+2ϕ(0, sn)
∂tξ∂s2 sξ−α2

n +

∫ tm

0

∂ξ+3ϕ(τ, sn)
∂τξ+1∂s2

dτ
(tm − τ)α2−ξ

]
= Γξα2

[
∂ξ+2ϕ(0, s)
∂tξ∂s2 sξ−α2 −

∂ξ+2ϕ(0, sn)
∂tξ∂s2 sξ−α2

n

]
+Γξα2

[∫ t

0

∂ξ+3ϕ(τ, s)
∂τξ+1∂s2

dτ
(t − τ)α2−ξ

−

∫ tm

0

∂ξ+3ϕ(τ, sn)
∂τξ+1∂s2

dτ
(tm − τ)α2−ξ

]

(3.11)

and

|E2(t, s)|

≤

∣∣∣∣∣∣Γξα2

[
∂ξ+2ϕ(0, s)
∂tξ∂s2 sξ−α2 −

∂ξ+2ϕ(0, sn)
∂tξ∂s2 sξ−α2

n

]∣∣∣∣∣∣
+

∣∣∣∣∣∣Γξα2

[∫ t

0

∂ξ+3ϕ(τ, s)
∂τξ+1∂s2

dτ
(t − τ)α2−ξ

−

∫ tm

0

∂ξ+3ϕ(τ, sn)
∂τξ+1∂s2

dτ
(tm − τ)α2−ξ

]∣∣∣∣∣∣
≤ |Γξα2

|

∣∣∣∣∣∣ ∂ξ+2ϕ

∂tξ∂s2 (0, s) −
∂ξ+2ϕ

∂tξ∂s2 (0, sn)

∣∣∣∣∣∣ + |Γξα2
|

∣∣∣∣∣∣ ∂ξ+3ϕ

∂tξ+1∂s2 (t, s) −
∂ξ+3ϕ

∂tξ+1∂s2 (tm, sn)

∣∣∣∣∣∣
:= E21(t, s) + E22(t, s)

(3.12)

where

E21(t, s) = |Γξα2
|

∣∣∣∣∣∣ ∂ξ+2ϕ

∂tξ∂s2 (0, s) −
∂ξ+2ϕ

∂tξ∂s2 (0, sn)

∣∣∣∣∣∣ ,
E22(t, s) = |Γξα2

|

∣∣∣∣∣∣ ∂ξ+3ϕ

∂tξ+1∂s2 (t, s) −
∂ξ+3ϕ

∂tξ+1∂s2 (tm, sn)

∣∣∣∣∣∣ .
(3.13)
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Now we estimate E21(t, s) and E22(t, s) part by part, for the second part we have

E22(t, s) = |Γξα2
|

∣∣∣∣∣∣ ∂ξ+3ϕ

∂tξ+1∂s2 (t, s) −
∂ξ+3ϕ

∂tξ+1∂s2 (tm, sn)

∣∣∣∣∣∣
= |Γξα2

|

∣∣∣∣∣∣ ∂ξ+3ϕ

∂tξ+1∂s2 (t, s) −
∂ξ+3ϕ

∂tξ+1∂s2 (tm, s) +
∂ξ+3ϕ

∂tξ+1∂s2 (tm, s) −
∂ξ+3ϕ

∂tξ+1∂s2 (tm, sn)

∣∣∣∣∣∣
≤ |Γξα2

|

∣∣∣∣∣∣ ∂ξ+3ϕ

∂tξ+1∂s2 (t, s) −
∂ξ+3ϕ

∂tξ+1∂s2 (tm, s)

∣∣∣∣∣∣ + |Γξα2
|

∣∣∣∣∣∣ ∂ξ+3ϕ

∂tξ+1∂s2 (tm, s) −
∂ξ+3ϕ

∂tξ+1∂s2 (tm, sn)

∣∣∣∣∣∣

= |Γξα2
|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m−ds∑
i=1

(−1)i ∂
ξ+3ϕ

∂tξ+1∂s2 [si, si+1, . . . , si+d1 , sn, t]

m−ds∑
i=1

λi(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+|Γξα2
|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−dt∑
j=1

(−1) j ∂
ξ+3ϕ

∂tξ+1∂s2 [t j, t j+1, . . . , t j+d2 , sn, tm]

n−dt∑
j=1

λ j(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |Γξα2

|

∣∣∣∣∣∣ ∂ξ+3e
∂tξ+1∂s2 (tm, s)

∣∣∣∣∣∣ + |Γξα2
|

∣∣∣∣∣∣ ∂ξ+3e
∂tξ+1∂s2 (tm, sn)

∣∣∣∣∣∣ ,
then we have

|E22(t, s)| ≤

∣∣∣∣∣∣ ∂ξ+3e
∂tξ+1∂s2 (tm, s)

∣∣∣∣∣∣ +
∣∣∣∣∣∣ ∂ξ+3e
∂tξ+1∂s2 (tm, sn)

∣∣∣∣∣∣ ≤ C(hds−ξ + τdt−1). (3.14)

For E21(t, s), we get
|E21(t, s)| ≤ C(hds+1−ξ + τdt−1). (3.15)

Similarly as E2(t, s), for E3(t, s) we have

|E3(t, s)| ≤ C(hds + τdt). (3.16)

Combining (3.9), (3.15), (3.16) together, proof of Theorem 2 is completed.

4. Numerical examples

In this part, one example is presented to test the theorem. The nonuniform partition in this
experiment defined as second kind of Chybechev point s = cos((0 : m)′π/m), t = cos((0 : n)′π/n).

Example 1. Consider the FC equation

∂ϕ

∂t
= 0C

1−α1
t
∂2ϕ

∂s2 ϕ(t, s) − µ0 0C
1−α2
t ϕ(t, s) + f (t, s), 0 ≤ s ≤ 1, 0 ≤ t ≤ T,
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with the analysis solutions is

ϕ(t, s) = t2 sin(πs),

with the initial condition

ϕ(s, 0) = 0,

and boundary condition

ϕ(0, t) = ϕ(1, t) = 0,

and

f (t, s) = 2
(
t +

π2t1+α1

Γ(2 + α1)
+

t1+α2

Γ(2 + α2)

)
sin(πs).

In Figures 1 and 2, errors of m = n = 10, [a, b] = [0, 1] and m = n = 10, dt = ds = 7, [a, b] = [0, 1] in
Example 1. (a) uniform; (b) nonuniform for FC equation by rational interpolation collocation methods
are presented, respectively. From the figure, we know that the precision can reach to 10−6 for both
uniform and nonuniform partition.

(a) uniform (b) nonuniform

Figure 1. Errors of m = n = 10, [a, b] = [0, 1] in Example 1 (a) uniform; (b) nonuniform.
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(a) uniform (b) nonuniform

Figure 2. Errors of m = n = 10, dt = ds = 7, [a, b] = [0, 1] in Example 1 (a) uniform; (b)
nonuniform.

Table 1. Errors of FC equation with m = n = 10, α1 = α2 = 0.2.

method of substitution method of additional
uniform nonuniform uniform nonuniform

Larange 1.4662e-06 2.1919e-08 2.7900e-07 1.4310e-07
Rational 1.3038e-05 2.4541e-07 4.9788e-06 1.4310e-07

In Table 1, errors of the FC equation with m = n = 10, α1 = α2 = 0.2 for substitution methods
and additional methods are presented, there are nearly no difference for the two methods. Additional
method is more simple than substitution methods to add the boundary condition. In the following, we
choosing the substitution method to deal with the boundary condition.

Table 2. Errors of FC equation for α1 = 0.4, α2 = 0.6, dt = ds = 5.

uniform nonuniform uniform nonuniform
t (12, 12) (12, 12) (12, 12)dt = ds = 5 (12, 12)dt = ds = 5
0.5 2.1021e-11 3.8250e-09 6.8506e-06 1.6436e-06
1 9.0394e-13 4.4206e-10 4.6667e-06 7.8141e-07
5 6.1833e-12 5.6655e-08 2.3777e-04 4.2230e-05
10 1.0094e-12 8.5622e-07 1.9813e-04 1.5634e-05
15 3.5397e-12 1.8827e-05 8.5498e-04 8.2551e-05

Errors of the FC equation for α1 = 0.4, α2 = 0.6, dt = ds = 5 with t = 0.1, 0.9, 1, 5, 10, 15 are
presented under the uniform and nonuniform in Table 2. As the time variable become from 0.5 to 15,
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there are high accuracy for our methods. We can improve the accuracy by increasing m, n or choosing
the parameter dt, ds approximately which means our methods is useful.

In Table 3, errors of α1 = 0.01, 0.1, 0.3, 0.5, 0.9, 0.99 under uniform with m = n = 10, dt = 5, ds = 5
with α2 = 0.1, 0.4, 0.6, 0.8, 0.99 are presented under the uniform partition. From the table, we know
that for different α1, α2 our methods have high accuracy with little number m and n. In the following
table, numerical results are presented to test our theorem. From Tables 4 and 5, error of uniform for
α1 = α2 = 0.2, ds = 5 with different dt are given, the convergence rate is O(hdt). From Table 5, with
space variable uniform for α1 = α2 = 0.2, dt = 5, the convergence rate is O(h7), we will investigate in
future paper. For Tables 6 and 7, the errors of Chebyshev partition for s and t are presented. For dt = 5,
the convergence rate is O(hds) in Table 6, while in Table 7, the convergence rate is O(hdt) which agrees
with our theorem.

Table 3. Errors of α1 under uniform with m = n = 10, dt = 5, ds = 5.

α1 α2 = 0.1 α2 = 0.4 α2 = 0.6 α2 = 0.8 α2 = 0.99
0.01 1.0153e-04 1.0246e-04 1.0300e-04 1.0346e-04 1.0384e-04
0.1 1.2753e-05 1.2865e-05 1.2930e-05 1.2987e-05 1.3033e-05
0.3 2.7464e-05 2.7704e-05 2.7845e-05 2.7971e-05 2.8074e-05
0.5 4.5746e-06 4.6152e-06 4.6399e-06 4.6609e-06 4.6794e-06
0.9 9.0295e-06 9.1193e-06 9.1240e-06 9.2142e-06 9.2479e-06
0.99 1.8981e-06 1.8247e-06 1.5293e-06 1.9193e-06 2.0670e-06

Table 4. Errors of uniform for α1 = α2 = 0.2, ds = 5.

m, n dt = 2 dt = 3 dt = 4 dt = 5
8 1.3626e-02 6.9619e-03 2.0708e-03 9.8232e-04
10 9.6780e-03 1.5332 3.4354e-03 3.1653 6.9542e-04 4.8900 3.2829e-04 4.9117
12 7.0485e-03 1.7389 1.9408e-03 3.1320 2.9186e-04 4.7621 1.3132e-04 5.0255
14 5.4466e-03 1.6725 1.2017e-03 3.1097 1.4211e-04 4.6686 6.0148e-05 5.0654

Table 5. Errors of uniform for α1 = α2 = 0.2, dt = 5.

m, n ds = 2 ds = 3 ds = 4
8 4.9495e-04 4.9492e-04 4.9486e-04
10 1.0051e-04 7.1443 1.0053e-04 7.1431 1.0053e-04 7.1426
12 2.7700e-05 7.0690 2.7711e-05 7.0679 2.7714e-05 7.0673
14 9.4272e-06 6.9921 9.4315e-06 6.9917 9.4314e-06 6.9925
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Table 6. Errors of non-uniform partition with α1 = α2 = 0.2, dt = 5.

m, n ds = 2 ds = 3 ds = 4
8 2.8113e-05 2.8110e-05 2.8108e-05
10 2.1197e-05 1.2654 2.1196e-05 1.2652 2.1195e-05 1.2651
12 6.6990e-06 6.3180 6.6989e-06 6.3178 6.6988e-06 6.3176
14 1.6712e-06 9.0069 1.6712e-06 9.0068 1.6712e-06 9.0067

Table 7. Errors of non-uniform partition α1 = α2 = 0.2, ds = 5.

m, n dt = 2 dt = 3 dt = 4 dt = 5
8 3.1539e-02 8.7995e-03 2.1930e-03 3.3004e-04
10 2.4329e-02 1.1632 4.0288e-03 3.5010 2.7133e-04 9.3648 2.2278e-04 1.7613
12 1.5223e-02 2.5716 1.9127e-03 4.0859 9.5194e-05 5.7449 5.1702e-05 8.0116
14 1.1407e-02 1.8721 1.1143e-03 3.5049 3.5772e-05 6.3493 1.1369e-05 9.8255

Table 8. Errors of uniform with α1 = 0.4, α2 = 0.6, dt = 5.

m, n ds = 2 ds = 3 ds = 4
8 4.9427e-04 4.9426e-04 4.9414e-04
10 1.0035e-04 7.1455 1.0041e-04 7.1427 1.0041e-04 7.1413
12 2.7639e-05 7.0720 2.7674e-05 7.0684 2.7684e-05 7.0669
14 9.3984e-06 6.9977 9.4153e-06 6.9942 9.4254e-06 6.9895

Table 9. Errors of uniform with α1 = 0.4, α2 = 0.6, ds = 5.

m, n dt = 1 dt = 2 dt = 3 dt = 4
8 1.3587e-02 6.9513e-03 2.0677e-03 9.8084e-04
10 9.6497e-03 1.5334 3.4314e-03 3.1637 6.9462e-04 4.8884 3.2791e-04 4.9102
12 7.0259e-03 1.7404 1.9389e-03 3.1311 2.9157e-04 4.7613 1.3118e-04 5.0249
14 5.4269e-03 1.6752 1.2005e-03 3.1096 1.4198e-04 4.6682 6.0090e-05 5.0648

In the following table, α1 = 0.4, α2 = 0.6 is chosen to present numerical results. From Tables 8 and
9, error of uniform partition dt = 5 with different ds are given, the convergence rate is O(h7). From
Table 8, with space variable s, ds = 5, the convergence rate is O(hdt) which agrees with our theorem.

For Tables 10 and 11, the errors of Chebyshev partition for non-uniform with α1 = 0.4, α2 = 0.6 are
presented. For dt = 5, the convergence rate is O(h7) in Table 11, while in Table 10, the convergence
rate is O(hdt) which agrees with our theorem.
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Table 10. Errors of non-uniform with α1 = 0.4, α2 = 0.6, ds = 5.

m, n dt = 1 dt = 2 dt = 3 dt = 4
8 3.1481e-02 8.7825e-03 2.1876e-03 3.2930e-04
10 2.4263e-02 1.1671 4.0219e-03 3.5000 2.7124e-04 9.3553 2.2231e-04 1.7606
12 1.5185e-02 2.5704 1.9076e-03 4.0912 9.5106e-05 5.7481 5.1649e-05 8.0057
14 1.1373e-02 1.8751 1.1117e-03 3.5026 3.5733e-05 6.3504 1.1365e-05 9.8211

Table 11. Errors of non-uniform with α1 = 0.4, α2 = 0.6, dt = 5.

m, n ds = 2 ds = 3 ds = 4
8 2.8065e-05 2.8059e-05 2.8056e-05
10 2.1156e-05 1.2665 2.1154e-05 1.2660 2.1153e-05 1.2656
12 6.6875e-06 6.3168 6.6874e-06 6.3164 6.6873e-06 6.3161
14 1.6693e-06 9.0033 1.6693e-06 9.0031 1.6693e-06 9.0030

5. Concluding remarks

In this paper, BRIM was used to solve the (1+1) dimensional FC equation that is presented. For
fractional-order PDEs, the convergence order is seriously affected by the orders of fractional
derivatives. By fractional integration, the singularity of the fractional derivative of the FC equation
can be changed to nonsingular integral, with adding one order to the derivatives of density function.
So there are no effects on the orders of fractional derivatives. The singularity of fractional derivative
is overcome by the integral to density function from the singular kernel. For the arbitrary fractional
derivative, the new Gauss formula is constructed to calculated it simply. For the Diriclet boundary
condition, the FC equation is changed to the discrete FC equation and the matrix equation of it is
given. In the future, the FC equation with Nuemann condition can be solved by BRIM, and high
dimensional FC equation can also be studied by our methods.
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