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Abstract: The existing classification methods of LiDAR point cloud are almost based on the as-
sumption that each class is balanced, without considering the imbalanced class problem. Moreover,
from the perspective of data volume, the LiDAR point cloud classification should be a typical big data
classification problem. Therefore, by studying the existing deep network structure and imbalanced
sampling methods, this paper proposes an oversampling method based on stack autoencoder. The
method realizes automatic generation of synthetic samples by learning the distribution characteristics
of the positive class, which solves the problem of imbalance training data well. It only takes the geo-
metric coordinates and intensity information of the point clouds as the input layer and does not need
feature construction or fusion, which reduces the computational complexity. This paper also discusses
the influence of sampling number, oversampling method and classifier on the classification results, and
evaluates the performance from three aspects: true positive rate, positive predictive value and accuracy.
The results show that the oversampling method based on stack autoencoder is suitable for imbalanced
LiDAR point cloud classification, and has a good ability to improve the effect of positive class. If it is
combined with optimized classifier, the classification performance of imbalanced point cloud is greatly
improved.

Keywords: LiDAR point cloud; imbalanced classification; deep neural network; stack autoencoder;
oversampling

1. Introduction

LiDAR [1] can obtain the geometric coordinates of the spatial points and the intensity information
of the laser echo signal. It has the advantages of high spatial resolution, accurate spatial positioning,
and objective reality [2], and is widely used in forest ecosystem [3], atmospheric remote sensing [4],
autonomous driving technology [5], and 3D city models [6], etc. The necessary guarantee for the
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realization of these applications is the construction of classification algorithms for LiDAR point clouds
with high precision and real-time performance.

Point cloud classification is to divide the point clouds into various object instances, such as build-
ings, ground and vegetation. The classification methods of LiDAR point clouds mainly fall into two
categories: machine learning-based method and deep learning-based method. In the former method,
feature vectors are extracted, constructed or fusioned, and then machine classification algorithm is used
to classify point clouds. Song et al. [7] extracted geometrical features including volume, density, and
eigenvalues in the three principal directions as a basis for classification to classify objects into five
types by back-prop agation neural network(ANN) model. Li et al. [8] proposed a point cloud clas-
sification algorithm: multilevel features of a single point are constructed by multi-resolution of the
point cloud and multi-neighborhood spaces, and then the points are classified by the support vector
machine(SVM) based on a Gaussian kernel function. Sun et al. [9] selected 20 statistical features and
used the optimized random forest(RF) algorithm to classify the vegetation point cloud. According to
the processing mode of point cloud data, classification methods based on deep learning mainly include
projection-based method [10], point-based method [11] and graph-based method [12].

These methods are almost based on the assumption that each class is balanced, without considering
the imbalanced class problem. Imbalanced data refers to the data with a very small proportion of one or
more classes in the original samples [13]. Usually, the class with fewest samples is called the positive
class, and the class with a relatively large number of samples is called the negative class. If the data set
is imbalanced, the classification algorithm cannot correctly learn the feature of positive sample, and
tends to the negative class, which may lead to the bias of classification results and decision errors.

The classification effect of imbalanced data is mainly improved by optimizing the sampling algo-
rithm [14], which is an improvement at the data level. Because the sampling algorithm can effectively
solve the problem of imbalanced distribution of positive and negative samples, and the optimization
design of the sampling algorithm is relatively easy, the performance of positive sample classification
accuracy can be significantly improved. According to the different ways of adjusting data, the tradi-
tional sampling algorithms can be divided into three categories: undersampling, oversampling, and
hybrid sampling [15]. Undersampling algorithms [16] remove data from the negative class until both
contain an equal number of samples, which may suffer from feature loss due to data deletion. Over-
sampling algorithms [17] generate data in positive class until both contain an equal number of samples,
which may have the problem of overfitting the training data, such as synthetic minority oversampling
technique(SMOTE) [18] and adaptive semi-unsupervised weighted oversampling (ASUWO) [19]. Hy-
brid sampling algorithms [13] balance the datasets by combining undersampling and oversampling
algorithm, thus having the advantages and disadvantages of these two algorithms.

In addition, there are many improved methods of classifier for processing imbalanced data, which is
an improvement at the algorithm level. They can also be divided into three categories [20]: ensemble
based on Bagging, Boosting, and Hybrid, it depends on the ensemble learning algorithm they are based
on.

At present, there are few researches on imbalanced point cloud classification. Table 1 compares the
methods of several research papers in the last three years. From Table 1, we can find some shortcom-
ings of the existing research: 1) The amount of point cloud data is relatively large, but the current data
processing methods are all using the traditional imbalanced data sampling method. 2) Excessive selec-
tion of classification features increases the complexity and difficulty of calculation. 3) The classifiers
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are not been improved or optimized to be more suitable for the classification of imbalanced data.

Table 1. Classification methods for Imbalanced Lidar Point Cloud.

Method [21] [22] [23]
Object Graphical Card Building Roof Sea Scene
Number of Points 32,768 25,695 30,340
Number of Features 6 12 15
Sampling Algorithm Hybrid Sampling Hybrid Sampling SMOTE
Classifier PointNet SVM ANN

Therefore, our research motivation is to find a suitable classification method for imbalanced point
cloud. The research contributions include:

1) Propose an oversampling algorithm suitable for big data by using deep network. Stack au-
toencoder(SAE) [24] is an unsupervised deep neural network with excellent properties of learning data
rules. It is often used in dimensionality reduction [25,26], denoising [27,28], feature extraction [29,30],
outlier detection [31, 32], and so on. In this study, SAE is used for oversampling the class with least
samples [33]. The SAE realizes automatic generation of synthetic samples by learning the distribution
characteristics of the class with least samples, which improves the balance of training data. Com-
pared to SMOTE and ASUWO, it is not affected by negative class and is better suited to imbalanced
multi-class problems.

2) Minimize the dimension of feature vectors used for point cloud classification. As the input layer
of the SAE, geometric coordinates and intensity information of the point clouds do not need feature
construction or fusion. All kinds of point clouds, such as ground, vegetation, vehicles, and buildings
in urban scenes, can be well identified by using only geometric coordinates and intensity information.

3) Select a classification method suitable for imbalanced point cloud by comparing eight classifiers.
Kaur et al. [17] pointed out that the optimization of classifier can also improve the classification per-
formance of imbalanced data to a certain extent. The experimental study in this paper also verified
this point. The improvement and optimization of classifier had a significant effect on the increase of
ACC value. If the oversampling algorithm is combined with classifier optimization, the classification
performance of imbalanced point cloud is greatly improved.

The rest of this paper is organized as follows. Section 2 reviews two oversampling algo-
rithms(SMOTE and ASUWO) for imbalanced data and expounds the oversampling method based on
SAE for imbalanced LiDAR point cloud. Section 3 introduces the source of experimental data and the
evaluation index of classification performance. Section 4 analyzes the influence of classifiers, sampling
number and oversampling algorithms on classification results. In Section 5, the thesis is summarized
and the future research direction is pointed out.

2. Oversampling method

After reviewing the sampling principle of the two algorithms and the network structure of SAE, the
idea and step of oversampling method based on SAE for imbalanced LiDAR point cloud are described.
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2.1. SMOTE

SMOTE is the most representative oversampling method, the basic idea of which is to randomly
generate a new sample between each positive sample and its k nearest neighbors. Since the generated
samples are random values between two samples, SMOTE solves the problem of sample diversity. The
main process of SMOTE algorithm is shown as follows.

Algorithm 1. SMOTE

Input
1) Positive sample set XP = {xP

1 , · · · , x
P
m};

2) Negative sample set XN = {xN
1 , · · · , x

N
t }, m < t;

3) Number of nearest neighbors k;
Output New positive sample set GP = {xP

1 , · · · , x
P
m, x

new
1 , · · · , x

new
t−m}.

Procedure
1. Using Euclidean distance, compute k nearest neighbors T P

i = {x
P
i1, · · · , x

P
ik} for each positive

sample xP
i , i = 1, · · · ,m.

2. Using formula xnew
i j = xP

i +rand(0, 1)×∥xP
i −xP

i j∥, generate the synthetic samples xnew
i j , j = 1, · · · , k;

rand(0, 1) is a random number between 0 and 1.
3. Repeat steps 1 to 2 until generate t − m samples xnew

1 , · · · , x
new
t−m to get GP.

In order to improve the quality of synthetic samples, researchers proposed a series of improved
algorithms based on smote. Han et al. [34] put forward the Borderline SMOTE to solve the problem that
samples in the boundary area are easy to be misclassified by the classifier. Bunkhumpornpat et al. [35]
came up with Safe-level SMOTE to generate positive samples by calculating the weight of k nearest
neighbors, which avoided the problem of synthetic data crossing the boundary of positive samples.
Douzas et al. [36] presented an oversampling method based on k-means clustering and SMOTE, which
avoids the generation of noise and effectively overcomes imbalances between and within classes.

2.2. ASUWO

ASUWO clusters the positive samples using a semi-unsupervised hierarchical clustering approach
and adaptively determines the size to oversample each subcluster using its classification complexity
and cross validation. Then, the positive samples are oversampled depending on their Euclidean dis-
tance to the negative class. ASUWO address the problem of over-generalization by identifying positive
boundary samples and assigning them different weights, which also mitigate the between-class imbal-
ances and within-class imbalances by combining with clustering algorithms [15]. The main process of
ASUWO algorithm is shown as follows.

Algorithm 2. ASUWO

Input
1) Positive sample set XP = {xP

1 , · · · , x
P
m};

2) Negative sample set XN = {xN
1 , · · · , x

N
t }, m < t;

Electronic Research Archive Volume 31, Issue 6, 3453–3470.



3457

3) Number of nearest neighbors k;
Output New positive sample set GP = {xP

1 , · · · , x
P
m, x

new
1 , · · · , x

new
l }.

Procedure
1. Cluster XP using the improved hierarchical clustering method, and determine the sizes S i for all

subclusters CP
i , i = 1, .., n.

2. For ∀xP
ih ∈ CP

i , find k nearest neighbors {xN
ih1
, · · · , xN

ihk
} ∈ XN according to Euclidean distance.

3. Determine the weights W(xP
ih) and probability distribution P(xP

ih).
4. Select a positive sample α ∈ CP

i by sampling from P(xP
ih), and randomly one of its k nearest

neighbors β ∈ CP
i .

5. Generate a new synthetic sample xnew between α and β using the formula xnew = rand(0, 1)×α+
(1 − rand(0, 1)) × β.

6. Repeat steps 2 to 5 until the subcluster size reaches S i and generate l samples xnew
1 , · · · , x

new
l .

2.3. SAE-based oversampling method

The above-mentioned oversampling methods are almost based on the imbalanced two-classification
problem, and the generation of synthetic samples is greatly affected by the neighborhood and boundary
problems.

An autoencoder(AE) [37] is a self-supervised network whose output is equal to its input under
ideal conditions. By establishing a reasonable loss term, the hidden layer features can be extracted
under unsupervised learning. Especially when the input features are correlated with each other, the
autocoding learning algorithm can extract the correlation in the input data. Furthermore, the extracted
features are taken as the new input, and the corresponding encoding features can be obtained through
parameter learning. The AE structure is shown in Figure 1(a).

Figure 1. The network structure.

The AE consists of the input layer, the encoding layer, and the decoding layer. Suppose X =
{X(1), · · · , X(m)} is the input data and f (x) = 1/(1+e−x) represents the activation function, the encoding
layer is defined as:

Z(2) = W (1)X + b(1), a(2) = f (Z(2)), (2.1)

where Z(2), W (1), b(1) and a(2) denote the input data, the weight matrix, the bias vector, and the output
data of encoding layer, respectively.
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In a similar way, the decoding layer is defined as:

Z(3) = W (2)a(2) + b(2), a(3) = f (Z(3)), (2.2)

where Z(3), W (2), b(2) and a(3) denote the input data, the weight matrix, the bias vector, and the output
data of decoding layer, respectively.

The multiple AEs are connected in succession to obtain a stacked autoencoder(SAE) model [24].
The network structure of the SAE with three hidden layers is shown in Figure 1(b).

SAE is typically trained using a layer-by-layer greedy approach. The outputs of encoding layer of
an AE are fed to the next AE as their inputs. Each AE learns in the same way as a single AE and the
first AE uses the original input from the data as inputs. The network calculation formula of SAE is as
follows:

a(1) = X,Z(K) = W (K−1)a(K−1) + b(K−1), a(K) = f (Z(K)), k ≧ 2. (2.3)

The training process of SAE is to find a set of parameters(W (k), b(k), k = 1, · · · ,K) to solve the
following optimization problems [37]:

arg min
θ

1
2

m∑
i=1

∥X(i) − a(K)(i)∥2 +
λ

2
∥W∥2. (2.4)

The first term is the reconstruction error between the input X and output a(K). The second term
aims to reduce the magnitude of weight and prevent overfitting. λ is the regularization parameter, W
is a matrix consisting of the weight matrices (W (k), k = 1, · · · ,K). Usually, the parameters of SAE are
optimized using the back-propagation method.

In order to overcome the influence of negative samples and mine the depth features of positive
samples in big data, to generate better synthetic samples for solving unbalanced multi-classification
problems, we propose a SAE-based oversampling method, the main steps of which are as follows: 1)
Construct the network structure of SAE; 2) Take the samples with least samples as the input data of the
input layer; 3) Extract features in the hidden layer; 4) Generate synthetic samples in the output layer.
The main process of SAE-based oversampling is shown Algorithm 3.

Algorithm 3. SAE-based oversampling method

Input
1) Smallest class sample set XP = {xP

1 , · · · , x
P
m};

2) Number of hidden layers K.
3) Number of hidden layer neurons sK .
4) Maximum number of iterations T .
Output New positive sample set GP = {xP

1 , · · · , x
P
m, x

new
1 , · · · , x

new
m }.

Procedure
1. Construct the structure of SAE. The nodes of input layer are determined by the dimension of xP

i .
The output layer is the regression layer.

2. Take XP as the input of SAE, train the parameters W (1) and b(1) of the first hidden layer with the
greedy method, and use the trained parameters to calculate the output a(2) of the first hidden layer.
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3. Take the output a(k) of the k − 1 layer as the input of k layer, and train the parameters W (k) and
b(k) of k layers.

4. Repeat step 3 until the last hidden layer is trained.

5. Use the optimization algorithm to iteratively find the parameter values near the minimum value
of the cost function, and take them as the final optimal parameter values of the whole network.

6. When the training time is T and the network is stable, {xnew
1 , · · · , x

new
m } is the generated synthetic

data to get GP.

The process of proposed method for classification of imbalanced LiDAR point cloud is as follows:

Step 1. Preprocess the point cloud data, and extract the geometric coordinates and intensity infor-
mation (x, y, z, i) of each point. The training set and the testing set are randomly generated in a certain
ratio, such as 3:1.

Figure 2. Flowchart of proposed method for classification.

Step 2. Oversample the class with least samples in the training set using the proposed method.
Network structure of SAE includes: 1 input layer, K hidden layers, 1 output layer. Both the input
layer and the output layer have 4 neurons corresponding to four features (x, y, z, i). The neurons of
each hidden layer are respectively: s1, s2, · · · , sK . s1, s2, · · · , sK and K need to be obtained through
experimental debugging.

Step 3. Train the relative balanced samples after oversampling with the classifier to get the classifi-
cation model.

Step 4. Obtain the classification results of the test samples using the model.

The operation process of this method is shown in Figure 2.
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3. Experimental study

In order to test the effectiveness and excellence of the proposed method, we perform classification
for point clouds in Pandaset-LidarData dataset, and compare the performance of three oversampling
methods, eight classifiers and their combinations.

3.1. Data source

PandaSet contains 2560 frame preprocessed organized point clouds of various urban scenes cap-
tured using the Pandar64 sensor. Each point cloud contains 13 classes of semantic segmentation labels.
Several frame point clouds are randomly selected for this research. Figure 3 shows the first frame point
cloud.

The initial 13 classes include unlabelled, vegetation, ground, road, road markings, sidewalk, car,
truck, other vehicle, pedestrian, road barriers, signs, buildings. Because some classes have fewer
points, the 13 classes are adjusted to 5 classes: ground, vegetation, vehicle, building, and other.
Ground, road and sidewalk all fall into the class ”ground”. Car, truck and other vehicle are all included
in the class ”vehicle”. Unlabelled, road markings, pedestrian, road barriers and signs are classified
into the class ”other”. Figure 4 shows the scatter diagram of the first frame point cloud after class
adjustment. Table 2 shows the distribution of each class in some frames.

It can be clearly seen from Table 2 that the classification of each frame is an imbalanced problem.
Such as the first frame, the ground class is far lower than other classes and the difference is up to 20
times, which means ”ground” is the positive class. We should generate a fair amount of ”ground” data
to balance the training set, then build a classification model to get the results on test set.

3.2. Evaluation indicator

In order to better quantitatively analyze the results, we introduce the confusion matrix [38] and
several evaluation indicators including true positive rate(TPR), positive predictive value(PPV), and
accuracy(ACC). The confusion matrix is shown in Figure 5. The calculation formulas are as follows:

T PR =
T P

T P + FN
× 100%, (3.1)

PPV =
T P

T P + FP
× 100%, (3.2)

ACC =
T P + T N

T P + FN + FP + T N
× 100%, (3.3)

where TP is to predict the original positive class as the positive class, FN is to predict the original
positive class as the negative class, FP is to predict the original negative class as the positive class, TN
is to predict the original negative class as the negative class. Higher values of ACC, TPR and PPV
indicate better classification effect.
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Figure 3. The first frame point cloud.

Figure 4. Scatter plot of the pre-processed point cloud.

Table 2. Class distribution of some frames.

Frame Class Ground Vegetation Vehicle Building Other Total
0001 Number 1631 9560 15,422 21,929 33,881 82,423

Percentage 2.0% 11.6% 18.7% 26.6% 41.1% 100%
0100 Number 1665 13,709 16,995 24,521 20,740 77,630

Percentage 2.1% 17.7% 21.9% 31.6% 26.7% 100%
1500 Number 6045 11,102 11,138 51,220 2730 82,235

Percentage 7.4% 13.5% 13.5% 62.3% 3.3% 100%
2000 Number 18,525 22,097 4365 28,050 10,899 83,936

Percentage 22.1% 26.3% 5.2% 33.4% 13.0% 100%
2500 Number 11,289 8754 10,396 2032 44,264 76,735

Percentage 14.7% 11.4% 13.5% 2.7% 57.7% 100%
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Figure 5. Confusion matrix.

4. Results and analysis

All algorithmic programs covered in this work were implemented using Matlab R2022a. Further-
more, Cross-validation was used for classification. The number of folds in the cross-validation tech-
nique was five. After debugging, parameters set for each algorithm in this section are as follows:
K = 50 in both SMOTE and ASUWO algorithms. There are 3 hidden layers, and the number of
neurons is respectively 15, 5, 15 in SAE algorithm. T = 1000.

4.1. Influence of Sampling number

SAE-based oversampling method can fully excavate the features of positive samples and randomly
generate synthetic data. To verify the effectiveness of SAE-based Oversampling method and discuss
the relationship between number of synthetic samples and classification results, the first frame was
chosen as the experimental object.

75% of the 82, 423 points, namely, 61, 818 are randomly selected as the training set and the rest
as test set. The training set contains points for each class: 1225, 7195, 11,551, 16,512 and 25,335.
We took 1225 ground points as the basis to generate 1, 2, up to 20 times of ground data, conducted
separately classification training using RUS-ODT, and got results on the test set. As the number of
samples gets larger, the value of ACC is stable around 0.978 without big fluctuation, and the values of
TPR and PPV of each class have different changes. Figure 6 presents the variation charts of TPR and
PPV with respect to number of synthetic samples, where the abscissa represents a multiple of 1225.

It is easy to see from Figure 6 that: 1) Buildings and vehicles may have obvious classification char-
acteristics, so the values of TPR and PPV are relatively high. Ground and vegetation, especially ground
and dwarf vegetation, are not easy to distinguish, so both TPR and PPV values are low. Therefore, other
features can be introduced to better realize the classification of ground and vegetation.

2) As the value of abscissa increases, that is, the number of synthetic samples enlarges, TPR and
PPV of the ground class show an obvious increase, while indicators of other classes do not change
significantly. This indicates that the oversampling method based on SAE can significantly improve the
classification effect of the positive class without affecting the other classes. Therefore, in the follow-up
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discussion, we only focused on ACC and indicators of positive class.
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Figure 6. Line charts of TPR and PPV.

3) When the multiple approaches 6,13 and 20, the number of ground points is similar to the vege-
tation points, buildings and vehicles, respectively. But there is little difference between TPR and PPV.
Therefore, which class is taken as the negative class in the oversampling has little influence on the
classification effect. Therefore, the proposed method is not affected by negative class, so it can be
applied to both imbalanced two-classification and multi-classification problems.

4) When the multiple is equal to 1, the indicators of ground class are greatly improved, and those
of other classes reach the maximum. In order to reduce the amount of computation, we can generate
twice as much data as the positive class for oversampling.

5) When the sampling multiple is greater than or equal to 5, TPR and PPV of vegetation class
become the smallest, which means that the classification effect of vegetation class is the worst. This
may be because the number of ground class exceeds that of vegetation, so vegetation class becomes
the minimum class.

4.2. Comparison for classifiers

In order to select a classifier suitable for imbalanced LiDAR point cloud, we discussed the in-
fluence of SAE-based oversampling algorithm on different classifiers, and carried out the following
experiments. 1) Taking the vegetation class as the negative class, the proposed method was used to
generate the same amount of ground data to obtain the training set. 2) Experimental data was trained
with different classifiers to establish the classification model. 3) The models are applied to the test set,
and the classification results are obtained.

With the help of Matlab(2022a) Classification Learner App, eight classifiers were selected for com-
parison, including ANN, SVM, decision tree(DT), RUS-Boost [39], multilayer perception artificial
neural network (MPL-ANN) [40], fine Gaussian support vector machine(FG-SVM) [41], Optimal ran-
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domized classification trees(OR-CT) [42] and optimizable RUS-Boosted decision tree ensemble(RUS-
ODT) [43]. The first four are traditional classifiers, and the last four are improvements of the first four
using Bayesian optimizer. Table 3 shows the parameter settings of four optimized classifiers, which are
obtained through experimental debugging. Table 4 lists the classification indexes of eight classifiers on
the test set.

Table 3. Configurations for four optimized classifiers.

Classifier Specifications
MPL-ANN Fully connected layer: 3 layers. The size of each layer: 10.

Activation function: ReLU. Iteration limit: 1000.
Regularization intensity: 0. Standaridize data: true.

FG-SVM Kernel fuction: Gaussian. Kernel scale: 0.5. Box constraint level: 1.
Multiclass method: One-vs-One. Standaridize data: true.

OR-CT Learner type: Decision tree. Maximum number of splits: 1.
Splitting criterion: Gini diversity index.

RUS-ODT Preset: RUSBoosted Trees. Ensemble method: RUSBoost.
Learner type: Decision tree. Learning rate: 0.1.
Maximum number of splits:20. Number of learners: 30.

Table 4. Classification results based on different classifiers.

Classifier Sampling ACC TPR(Groud) PPV(Groud) Time(s)
ANN Unsampled 0.856 0.379 0.576 589

SAE 0.864 0.891 0.837 442
MPL-ANN Unsampled 0.924 0.610 0.727 660

SAE 0.935 0.937 0.886 738
SVM Unsampled 0.914 0.840 0.882 6531

SAE 0.924 0.937 0.926 6744
FG-SVM Unsampled 0.957 0.713 0.827 6515

SAE 0.958 0.964 0.918 6486
DT Unsampled 0.869 0.306 0.487 9

SAE 0.882 0.872 0.759 5
OR-CT Unsampled 0.976 0.842 0.850 70

SAE 0.976 0.961 0.961 104
RUS-Boost Unsampled 0.799 0.835 0.262 3482

SAE 0.811 0.873 0.722 3501
RUS-ODT Unsampled 0.990 0.908 0.943 3579

SAE 0.991 0.983 0.980 3749

As can be seen from Table 4, 1) SAE-based oversampling method can improve the performance of
each classifier, because all the indexes of sampling are higher than those of Unsampled.

2) Compared with the improvement of sampling method, the optimization of classifier has more
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obvious effect on the increase of ACC value. Therefore, for imbalanced classification problems, the
optimization of classifier and the improvement of sampling method can be combined to obtain better
classification results.

3) The training time of each classifier in the unsampled state and the oversampling state does not
increase or decrease significantly, so there is no need to worry about the problem of sampling affecting
the training time.

4) RUS-ODT is the classifier with highest index value, while OR-CT is the one with relatively
high index value and less time consuming. In imbalanced point cloud classification, RUS-ODT can be
selected if accuracy is pursued, and OR-CT can be selected if efficiency is pursued.

4.3. Comparison for oversampling methods

To compare the performance of three oversampling methods, we first randomly selected several
frames for research, and then carried out experiments on 7 UCI datasets. The smallest class is regarded
as the positive class, which is oversampled by the three methods respectively, and then the classification
result of the test set is obtained by RUS-ODT. Tables 5 and 6 show the classification results with
different oversampling methods of point cloud and UCI data sets respectively. Figure 7 shows the
scatter diagram of the positive class of the first frame point cloud before and after oversampling.

Table 5. Classification results based on the point clouds.

Frame Positive Sampling Training ACC TPR PPV
class method points (Positive) (Positive)

0001 Ground Unsampled 61,818 0.982 0.837 0.876
SMOTE 67,788 0.983 0.879 0.840
ASUWO 67,749 0.979 0.826 0.873
SAE 67,943 0.980 0.928 0.926

0100 Ground Unsampled 58,223 0.991 0.878 0.873
SMOTE 67,256 0.992 0.886 0.869
ASUWO 68,301 0.991 0.885 0.871
SAE 69,461 0.990 0.942 0.948

1500 Other Unsampled 61,676 0.991 0.843 0.859
SMOTE 64,163 0.992 0.864 0.869
ASUWO 64,073 0.991 0.897 0.868
SAE 65,771 0.990 0.959 0.956

2000 Vehicle Unsampled 62,952 0.989 0.885 0.880
SMOTE 67,853 0.990 0.886 0.889
ASUWO 68,156 0.988 0.910 0.926
SAE 72,773 0.990 0.983 0.980

2560 Building Unsampled 57,551 0.993 0.852 0.856
SMOTE 62,593 0.994 0.899 0.892
ASUWO 63,285 0.992 0.875 0.893
SAE 63,647 0.993 0.990 0.991
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The following points can be seen from Table 5: 1) The proposed method can solve the imbalanced
point cloud classification problem well.

2) Three oversampling methods have improved the values of TPR and PPV, which shows that over-
sampling is useful to improve the classification effect of positive class. SAE has the most significant
improvement effect, as it obtained higher TPR and PPV values than the other two methods.

3) Three methods have little effect on ACC value. Because ACC has become less important in
imbalanced classification. If the positive samples are less than 1.0%, the accuracy can still reach 99%
even if all positive samples are divided into negative class, but such classification has no practical
significance.

4) Both SMOTE and ASUWO need negative class as references to generate samples of positive
class, but SAE does not. So the synthetic samples of SAE are generated only by the features of positive
class, and will not be affected by negative class samples.

Table 6. Classification results based on 7 UCI datasets.

Datasets Size of classes Positive ACC
class Unsampled SMOTE ASUWO SAE

Balancescale 49,288,288 “1” 0.921 0.894 0.930 0.935
Blood 570,178 “2” 0.738 0.751 0.855 0.859
CMC 629,333,511 “2” 0.751 0.791 0.805 0.868
Ecoli 143,77,2,2,35,20,5,52 “8” 0.922 0.940 0.963 0.966
Vehicle 199,217,218,212 “1” 0.930 0.952 0.954 0.971
Vowel 72,89,172,151,207,180 “1” 0.948 0.962 0.970 0.975
Wine 59,71,48 “3” 0.938 0.988 0.992 0.994

In Table 6, positive classes of each data set are listed, while other classes are taken as negative
classes. Therefore, the classification of each data set is an imbalanced binary classification problem.
As can be seen from Table 6, the proposed method is also effective on other imbalanced data sets and
can obtain better ACC values than the other two methods. So he proposed method performs better
than the other two methods for both imbalanced multiclassification (Table 5) and binary classification
problems (Table 6).

5. Conclusions

Through the research on classification of LiDAR point cloud in urban scenes, we find that the phe-
nomenon of imbalanced class is quite common. However, existing classification methods are almost
based on the assumption that each class is balanced, and rarely directly use the geometric coordinates
and intensity information of point clouds as classification features. In order to make up for the lack
of existing research, we propose an oversampling method based on SAE for imbalanced point cloud
classification. Only 4 features (three-dimensional coordinates and intensity information) are selected
to participate in the classification, which ensures the accuracy of classification and reduces the com-
plexity of calculation. And combined with the optimization of classifier, the classification performance
of imbalanced point cloud is improved.
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Our research also has some shortcomings. 1) It focuses on the improvement effect of positive
class, and the improvement of ACC value is not significant enough. 2) The proposed method is an
improvement of machine learning-based method for point cloud classification, but does not involve the
optimization of deep learning-based method. That is also the direction of our further research in the
future.

Figure 7. Ground points before and after oversampling.
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