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Abstract: Vulnerable road users (VRUs) are usually more susceptible to fatal injuries. Accurate and 
rapid assessment of VRU injury severity at the accident scene can provide timely support for decision-
making in emergency response. However, evaluating VRU injury severity at the accident scene usually 
requires medical knowledge and medical devices. Few studies have explored the possibility of using 
on-site positional relationship to assess injury severity, which could provide a new perspective for on-
site transportation professionals to assess accident severity. This study proposes a data-driven on-site 
injury severity assessment model for car-to-electric-bicycle accidents based on the relationship 
between the final resting positions of the car, electric bicycle and cyclist at the accident scene. Random 
forest is employed to learn the accident features from the at-scene positional relationship among 
accident participants, by which injury severity of the cyclist is assessed. Conditional permutation 
importance, which can account for correlation among predictor variables, is adopted to reflect the 
importance of predictor variables more accurately. The proposed model is demonstrated using 
simulated car-to-electric-bicycle collision data. The results show that the proposed model has good 
performance in terms of overall accuracy and is balanced in recognizing both fatal and non-fatal 
accidents. Model performance under partial information confirms that the position information of the 
electric bicycle is more important than the position information of the cyclist in assessing injury severity. 
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1. Introduction  

Road traffic accidents cause a large number of causalities worldwide every year. According to the 
World Health Organization (WHO), road traffic accidents were ranked the eighth cause of death (2.5%) 
among people of all ages worldwide [1]. Deaths resulting from road traffic accidents reached 1.35 
million in 2016 [1]. More than half of road traffic deaths are among vulnerable road users (VRUs), 
such as pedestrians, bicyclists and motorcyclists [1,2]. The safety issue of VRUs has been recognized 
as one of the critical traffic safety problems [3,4]. In general, VRUs are less protected and more 
vulnerable than car occupants in road traffic accidents [5–7]. As they are at greater risk for being killed 
in a crash than other road users, improving their safety is a top priority [8]. Therefore, there is an urgent 
need to study VRU-involved accidents and improve traffic safety for VRUs. 

VRU-involved accidents have been the focus of much attention in the field of traffic safety 
analysis. Some studies have focused on pedestrian-involved accidents [9–11], while others analyzed 
cyclist-involved accidents [12–14]. In terms of modeling techniques, numerous statistical and machine 
learning methods have been developed and applied to discover injury patterns of VRU-involved 
accidents. Statistical methods are relatively easy to interpret, but they often involve pre-assumed 
relationships among variables [15]. In contrast, machine learning techniques require no a priori 
assumptions but usually work like a black box [2,16–20]. 

Among previous studies, many aim to identify the factors influencing VRU injury severity. For 
example, Sun et al. [21] examined influencing factors contributing to injury severity of VRU-involved 
crashes and investigated the differences across seasons. Islam et al. [22] investigated factors affecting 
injury severity in pedestrian crashes at signalized intersections. Fountas et al. [23] investigated the 
determinants of injury severity in single-bicycle and bicycle-motor vehicle crashes. Behnood et al. [24] 
examined factors influencing the injury severity in bicycle collisions and evaluated the temporal 
instability of factors. These studies contributed greatly to the identification of the relationships between 
VRU injury severity and various factors. 

However, while numerous studies have investigated factors of VRU-involved traffic accidents, 
very few studies have been conducted in terms of on-site assessment of VRU injury severity, especially 
in the field of transportation engineering. Accurate and rapid assessment of VRU injury severity can 
provide timely support for decision-making in emergency response. For transportation professionals, 
emergency response and incident handling can differ between fatal accidents and other types of 
accidents in many ways. 

Evaluating VRU injury severity at the accident scene usually requires medical knowledge and 
medical devices. It is a challenging task for transportation professionals at the accident scene. In 
practice, they often rely on medical first responders to make an initial assessment of VRU injury 
severity whenever possible. However, sometimes medical first responders may leave the accident 
scene before transportation professionals arrive. In this case, transportation professionals have to make 
an initial assessment fully based on personal experience and then make necessary corrections 
according to the final results of hospital examination and diagnosis. Although hospital examination is 
more accurate and reliable, it often takes a period of time and cannot fully meet the timeliness 
requirements of emergency response at the accident scene.  

This study is therefore set out to investigate the possibility of using on-site positional relationship 
to assess injury severity. The motivation of this study is as follows. On the one hand, the positional 
relationship among the accident participants at the accident scene contains a large amount of 
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information of accident characteristics. While this information is commonly used in forensic accident 
reconstruction, the potential to assess injury severity based on positional relationship at the accident 
scene has seldom been explored. On the other hand, the positional relationship among the accident 
participants is easy to measure and is available for transportation professionals at the accident scene. 
In practice, transportation professionals are often responsible for accident scene survey, including 
measuring and diagraming the accident scene. 

The primary objective of this study is to propose a data-driven model for transportation 
professionals to conduct on-site assessment of VRU injury severity from the perspective of the 
positional relationship at the accident scene. Specifically, the study was focused on the assessment of 
the severity of the cyclist’s head injuries in car-to-electric-bicycle accidents. Positional relationship 
among the car, electric bicycle and cyclist at the accident scene was used as model input. The severity 
of the cyclist’s head injuries is then predicted as fatal or non-fatal based on a random forest (RF) model. 
In addition, given that the accident scene may change before the on-site measurement due to various 
reasons (such as secondary accidents, first aid, etc.), the performance of the proposed model under 
scenarios of partial information was also investigated. 

The contributions of this study are twofold. First, a data-driven framework was proposed for on-
site assessment of cyclist injury severity in car-to-electric-bicycle accidents based on the relationship 
among the final resting positions of the car, electric bicycle and cyclist at the accident scene. Using the 
proposed framework, transportation professionals at the accident scene can make a rapid assessment 
of VRU injury severity and adjust emergency response in time. This study might be the first effort to 
demonstrate the viability of assessing VRU injury severity based on positional relationship at the 
accident scene. 

Second, the positional relationships among accident participants at the car-to-electric-bicycle 
accident scene were examined in terms of their associations with VRU injury severity and ranked 
according to their conditional permutation importances within the proposed model. Compared to 
permutation importance, conditional permutation importance can account for correlation among 
predictor variables and is more robust in reflecting the true importance. The results of variable 
importance analysis can provide guidance for the collection of distance information at the accident scene. 

2. Methods 

2.1. Injury severity assessment model for car-to-electric-bicycle accidents 

Random forest is an ensemble learning technique proposed by Breiman [25]. A RF model consists 
of many decision trees as its base learners. Randomness is introduced in the training process of base 
learners using both random sample selection and random attribute selection. On the one hand, each 
tree is constructed from a bootstrap sample from the training dataset. In other words, different decision 
trees are trained using different data sets with the same sample size. On the other hand, when splitting 
each node, a subset is randomly selected from the whole attribute set, and then an optimal attribute is 
chosen for partitioning from that subset. In this way, RF can diversify base learners and thereby 
improve model performance. RF has been widely used in many real-world tasks and has shown 
strong performance [26–29]. 
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Figure 1. Schematic diagram of a car-to-electric-bicycle accident scene. 

In this study, a data-driven injury severity assessment model is established based on random forest. 
Figure 1 presents a scene diagram of a car-to-electric-bicycle accident. As shown in Figure 1, a 
Cartesian coordinate system is established with the center of gravity of the car as the origin and the 
forward direction of the motorway as the positive direction of the X-axis. This coordinate system is 
used in the following analysis in this study.  

To capture the final resting positions and orientations of the cyclist and the electric bicycle at the 
accident scene, both the cyclist and the electric bicycle are seen as made up of multiple components. 
X and Y coordinates of a component can represent the longitudinal and lateral distance between the 
component and the center of gravity of the car. For each component, its X and Y coordinates are obtained 
and used as inputs for the injury severity model. In this way, positional relationships among accident 
participants at the accident scene are incorporated into the proposed injury severity assessment model.  

The output of the proposed model is cyclist injury severity. When performing an on-site 
assessment of injury severity, the primary concern is whether the cyclist has been fatally injured. For 
real-world traffic accidents, injury severity can be obtained from crash records. For simulated traffic 
accidents, injury severity can be evaluated using the head injury criterion (HIC). The higher the HIC 
score is, the greater the likelihood of a head injury. The reason for using HIC to represent overall injury 
severity for the cyclist is that head injuries have been confirmed as the primary and most fatal type of 
injury for cyclists [30]. HIC value can be derived from the acceleration measurements of the test 
dummy's head during the collision. Consistent with the Federal Motor Vehicle Safety Standards 
(FMVSS), the tolerable limit for HIC value is set to 700 in this study [31,32]. Cyclists with HIC values 
more than 700 are considered fatally injured in the accident simulation.  

Based on the training data set, the proposed injury severity assessment model attempts to learn 
the accident features from the at-scene positional relationship among accident participants, by which 
injury severity of the cyclist is evaluated. 
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2.2. Variable importance measure 

Variable importance is a measure to rank variables in the predictor set based on their importance 
in producing accurate predictions [33,34]. RFs have been widely used in many applications for 
identifying and ranking relevant predictor variables. 

2.2.1. Permutation importance 

Traditionally, a RF model evaluates the importance of each predictor variable by permuting its 
values randomly [25,34]. Prediction accuracy before and after permutation is then obtained and 
compared. The difference in prediction accuracy before and after permuting the predictor variable, 
averaged over all trees, is used as an importance measure. It can be formalized as follows. 

Let Ω௞  be the out-of-bag sample for tree k in a random forest model. Then, the variable 
importance of variable 𝑋௝ in tree k is 

𝑃𝐼௞൫𝑋௝൯ ൌ
∑ ூቀఊ೔ୀఊෝ೔

ሺೖሻቁ೔∈೾ೖ

|ఆೖ|
െ

∑ ூ൬ఊ೔ୀఊෝ೔,ഏೕ

ሺೖሻ ൰೔∈೾ೖ

|ఆೖ|
                        (1) 

where 𝑃𝐼௞൫𝑋௝൯ is permutation importance for predictor variable 𝑋௝ in tree k, 𝛾పෝሺ௞ሻ is the predicted 

class for observation i before permuting 𝑋௝ , 𝛾ො௜,గೕ

ሺ௞ሻ  is the predicted class for observation i after 

permuting 𝑋௝, I represents the indicator function, and |𝛺௞| denotes the number of elements in Ω௞. 
Let K be the number of trees in the RF model, and variable importance for each predictor variable 

is then computed as the mean importance for all trees. 

𝑃𝐼൫𝑋௝൯ ൌ
∑ ௉ூೖ൫௑ೕ൯ೖ

௄
                                   (2) 

where 𝑃𝐼൫𝑋௝൯ is permutation importance for predictor variable 𝑋௝ averaged over all trees. 

2.2.2. Conditional permutation importance for correlated predictor variables 

While permutation importance has been extensively used to identify and rank relevant predictor 
variables based on RF models, it tends to overestimate the importance of correlated predictor 
variables [35–37]. A predictor variable that is weakly or not associated with the response variable but 
highly correlated with another predictor variable can still be misjudged as an important variable [35]. 
In this study, the issue of correlated predictor variables is prominent and unignorable. For example, 
positioning data of body parts of the same vehicle or the same victim are highly correlated. Under such 
circumstances, permutation importance is not suitable for ranking variable importance. 

In this study, the conditional permutation importance proposed by Strobl et al. [35] is therefore 
employed to account for the correlation among predictor variables, thus reflecting true impact of the 
predictor variables. The key difference between permutation importance and conditional permutation 
importance is the last term in Eq (1). A permutation grid is defined within which the values of 𝑋௝ are 
permuted for each tree based on the partition of the feature space induced by that tree. For all variables 
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𝑍 to be conditioned on, the cut points that split 𝑋௝ in the current tree are extracted and used to create 
the permutation grid. The out-of-bag prediction accuracy after conditional permutation is then 
computed based on conditionally permuting the values of 𝑋௝  within groups of 𝑍 . Conditional 
permutation importance can be formalized as follows. 

𝐶𝑃𝐼௞൫𝑋௝൯ ൌ
∑ ூቀఊ೔ୀఊෝ೔

ሺೖሻቁ೔∈೾ೖ

|ఆೖ|
െ

∑ ூ൬ఊ೔ୀఊෝ೔,ഏೕ|ೋ
ሺೖሻ ൰೔∈೾ೖ

|ఆೖ|
                       (3) 
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௄
                                 (4) 

where 𝐶𝑃𝐼௞൫𝑋௝൯ is conditional permutation importance for predictor variable 𝑋௝ in tree k, 𝐶𝑃𝐼൫𝑋௝൯ 

is conditional permutation importance for predictor variable 𝑋௝ averaged over all trees, and 𝛾ො௜,గೕ|௓
ሺ௞ሻ  is 

the predicted classes for observation i after permuting 𝑋௝ within the grid defined by the variables Z. 
For details on computing conditional permutation importance, see Strobl et al. [35]. 

2.3. Model performance evaluation 

In this study, traffic accidents were classified into fatal and non-fatal accidents according to injury 
severity. It is a two-class classification task. Fatal accidents were designated as the positive class, with 
the other as the negative class. Obviously, the positive class is the class of focus. To evaluate the 
performance of the proposed data-driven injury severity assessment model, the following three indexes 
were used: namely, accuracy, sensitivity and specificity. The latter two indexes are more focused on 
each class. These indexes were also utilized to compare the performances of multiple models. 

The classification performance of a classifier f with respect to test data D can be summarized 
using a confusion matrix [38]. As shown in Table 1, the four cells of the confusion matrix are 
designated as true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). 
In this context, the performance measures used in this study can be defined as follows. 

Table 1. Confusion matrix for a two-class classification task. 

Reference class 
Predicted class 

Positive Negative 
Positive TP FN 
Negative FP TN 

Accuracy is defined as the ratio of the number of correct predictions to the total number of 
predictions. It is an intuitive performance measure for a classification problem and can reflect the 
overall classification performance. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦ሺ𝑓; 𝐷ሻ ൌ ்௉ା்ே

்௉ାி௉ାிேା்ே
                           (5) 
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Sensitivity is the probability of a positive test result, conditioned on the individual truly being 
positive. It can measure the fraction of traffic accidents with fatal injuries (i.e., positive examples) which 
have a positive test result. In this study, it can reflect how well a classifier can identify fatal accidents. 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦ሺ𝑓; 𝐷ሻ ൌ ்௉

்௉ାிே
                               (6) 

Specificity is the probability of a negative test result, conditioned on the individual truly being 
negative. It can reflect a classifier’s ability to identify non-fatal accidents. 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦ሺ𝑓; 𝐷ሻ ൌ ்ே

ி௉ା்ே
                               (7) 

3. Data description 

The proposed method is demonstrated using car-to-electric-bicycle collision data simulated by 
well-known accident reconstruction software, namely, PC-Crash. It can simulate vehicle collisions and 
generate highly accurate reconstructions of various accident scenarios. Specifically, traffic collisions 
between cars and electric bicycles crossing the road in front of them are simulated. For simplicity, 
electric bicycles always cross the road from the right side of the cars in the simulation experiments. 
The situations of crossing the road from the left side are exactly the mirror-image scenarios and not 
simulated in this study. As a result, cars always hit the left side of the electric bicycles first in the 
simulation experiments in this study. 

To increase the coverage of car-to-electric-bicycle collision scenarios, the speeds of cars, the 
speeds of electric bicycles, the collision angles and the contact positions when collisions happen are 
adjusted in a given range. The speeds of the car and electric bicycle before collision vary in the 
ranges of 30–70 km/h and 15–35 km/h, respectively. The collision angle varies within 45 to 135 
degrees, and the collision position varies from the left front corner to the right front corner of the car. 
In this way, a total of 315 collision scenarios were simulated.  

 

Figure 2. The components of the cyclist model. 
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Table 2. Description of position variables for the cyclist. 

Component Position Mean Standard deviation Median Min Max 

Head 
longitudinal 1.14  9.91  3.27  -29.54  20.00  
lateral 6.98  4.07  6.42  -3.85  18.63  

Hip 
longitudinal 1.19  9.79  3.11  -29.29  20.20  
lateral 7.02  4.03  6.40  -3.58  18.02  

Left femur  
longitudinal 1.20  9.78  3.20  -28.95  20.24  
lateral 7.00  4.04  6.36  -3.50  17.85  

Left foot 
longitudinal 1.27  9.74  3.42  -28.49  20.48  
lateral 7.00  4.06  6.25  -3.55  17.80  

Left knee 
longitudinal 1.22  9.78  3.26  -28.74  20.20  
lateral 6.99  4.04  6.29  -3.51  17.72  

Left lower arm 
longitudinal 1.14  9.87  3.24  -29.00  19.99  
lateral 6.91  4.09  6.39  -3.84  18.57  

Left lower leg  
longitudinal 1.24  9.76  3.36  -28.64  20.33  
lateral 7.00  4.05  6.32  -3.52  17.65  

Left upper arm 
longitudinal 1.14  9.87  3.14  -29.16  20.16  
lateral 6.94  4.08  6.44  -3.70  18.46  

Neck 
longitudinal 1.15  9.88  3.15  -29.48  20.04  
lateral 6.99  4.06  6.49  -3.78  18.48  

Right femur 
longitudinal 1.22  9.75  3.23  -29.34  20.08  
lateral 7.04  4.02  6.49  -3.67  17.79  

Right foot 
longitudinal 1.30  9.71  3.42  -29.08  20.22  
lateral 7.07  4.06  6.41  -3.70  18.08  

Right knee 
longitudinal 1.25  9.73  3.37  -29.31  19.99  
lateral 7.05  4.02  6.42  -3.71  17.64  

Right lower arm 
longitudinal 1.22  9.96  3.45  -29.40  19.92  
lateral 7.01  4.07  6.45  -4.30  18.71  

Right lower leg 
longitudinal 1.27  9.72  3.36  -29.16  20.11  
lateral 7.06  4.04  6.44  -3.66  17.84  

Right upper arm 
longitudinal 1.19  9.91  3.38  -29.59  19.81  
lateral 7.02  4.06  6.47  -4.07  18.52  

Torso 
longitudinal 1.17  9.84  3.26  -29.39  20.12  
lateral 7.00  4.04  6.39  -3.68  18.26  

Note that both the cyclist and the electric bicycle are modeled as multibody systems consisting of 
multiple components in the simulation experiments. Figures 2 and 3 depict the components of the 
cyclist model and the e-bike model, respectively. In Figure 2, for the components that exist on both the 
left and right sides of the human body, only one side is marked for simplicity. The final resting positions 
of cars, electric bicycles and cyclists were extracted and saved as a TXT file. The positions of the 
electric bicycle and the cyclist were obtained at the component level. Tables 2 and 3 describe the 
position variables for the cyclist and the electric bicycle, respectively.  
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Figure 3. The components of the electric bicycle model. 

In reality, injury severity of the cyclist can only be evaluated after a detailed medical examination. 
Sometimes, the injured may die after a period of hospitalization. However, in the simulation 
experiments, the injury severity of the cyclists can be determined directly based on dynamic responses 
of their heads during the collision in terms of HIC. As mentioned above, cyclists with HIC value more 
than 700 are judged as fatally injured. In the dataset generated by simulation, there are 67 fatal 
examples and 248 non-fatal examples. Therefore, it is an unbalanced dataset. 

Table 3. Description of position variables for the electric bicycle. 

Component Position Mean Standard deviation Median Min Max 

Base 
longitudinal 12.18 18.38 11.22 -29.15 70.47 
lateral 2.30 7.83 3.70 -17.85 17.89 

Engine block 
longitudinal 12.13 18.34 11.22 -28.95 70.16 
lateral 2.29 7.77 3.68 -17.49 17.51 

Front 
longitudinal 12.24 18.41 11.47 -28.93 70.82 
lateral 2.31 7.91 3.68 -17.92 18.00 

Front forks 
longitudinal 12.25 18.41 11.61 -28.67 70.89 
lateral 2.32 7.93 3.77 -18.14 17.87 

Front wheel 
longitudinal 12.25 18.40 11.72 -29.10 71.02 
lateral 2.29 7.91 3.72 -18.22 18.35 

Handlebar 
longitudinal 12.25 18.42 11.50 -28.53 70.69 
lateral 2.34 7.94 3.57 -18.13 17.55 

Rear wheel 
longitudinal 12.08 18.32 11.32 -29.14 69.87 
lateral 2.28 7.72 3.87 -17.48 17.57 

Seat 
longitudinal 12.13 18.34 11.48 -28.67 70.23 
lateral 2.30 7.79 3.58 -17.65 17.54 
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4. Results 

4.1. Model performance 

The whole dataset generated by collision simulations was partitioned into a training set and a 
testing set randomly. Stratified sampling was utilized, ensuring that the ratio of fatal and non-fatal 
accidents in both the training and testing datasets remains proportional to the overall dataset. Among 
them, 75% of the original data entered the training set. Based on the training set, 10-fold cross-
validation was employed to avoid overfitting. During each iteration, 10% of the training set was left 
out for model performance validation. The other 90% of the training set was used to train the proposed 
model. When training the proposed model, downsampling was employed to get a balanced dataset for 
both majority and minority classes (namely, non-fatal accidents and fatal accidents). Unbalanced 
datasets can bias classification models toward the majority class. Down sampling ensures that the 
model is trained on a balanced dataset, which can improve its ability to correctly predict the minority 
class. The model achieving the highest accuracy with the optimal parameters was obtained through 
validation. The optimal model was then employed and further tested against the testing set. For 
comparison, three models were established in the same way using decision tree (DT), neural network 
(NN) and support vector machine (SVM). 

Table 4 presents the performances of these four models based on out-of-bag evaluation. In other 
words, the proposed model was evaluated using the data which it has never seen during the whole 
training process. As shown in Table 4, the proposed RF model achieves an overall accuracy of 83.33% 
with a sensitivity of 87.50% and a specificity of 82.26%. It outperforms all the other models in terms 
of overall accuracy. Comparing to decision tree, using random forest improves model performance in 
all of accuracy, sensitivity and specificity, just as expected. While the neural network achieves a higher 
sensitivity (93.75%) than the random forest model, its specificity (75.81%) is much lower than that of 
the random forest model (82.26%).  

Accuracy measures how well a test can correctly classify all test results, both positive and 
negative. Sensitivity measures a test's ability to correctly identify true positives, while specificity 
measures its ability to correctly identify true negatives. Sensitivity and specificity are inversely related. 
As sensitivity increases, specificity typically decreases, and vice versa. However, in many cases, a 
balance between sensitivity and specificity is necessary. The model’s performance in this study will 
be primarily evaluated based on its accuracy while also taking into account the balance between 
sensitivity and specificity. In general, the proposed RF model outperforms all other models and is more 
balanced in recognizing both fatal and non-fatal accidents, indicating that it is a promising method for 
on-site injury severity assessment. 

Table 4. Model performance based on out-of-bag evaluation. 

Model Accuracy Sensitivity Specificity 
Random forest (RF) 83.33% 87.50% 82.26% 
Decision tree (DT) 74.36% 68.75% 75.81% 
Neural network (NN) 79.49% 93.75% 75.81% 
Support vector machine (SVM) 70.51% 87.50% 66.13% 
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4.2. Variable importance analysis 

Another advantage of using the RF model is its ability to evaluate the importance of multiple 
predictor variables. As mentioned above, conditional permutation importance is employed to account 
for correlation among predictor variables in this study. To eliminate the effect of the random seed on 
the results, a group of random forest models was established using 10 different random seeds. The 48 
predictor variables were ranked according to their conditional permutation importances. For each 
variable, the average rank across the 10 models was used as the final importance ranking. Table 5 
provides the top 10 most important predictor variables. 

Table 5. The top 10 most important predictor variables. 

Rank Multibody system Component Position 
1 cyclist left foot longitudinal 
2 electric bicycle handlebar longitudinal 
3 electric bicycle handlebar lateral 
4 cyclist right lower arm longitudinal 
5 electric bicycle rear wheel longitudinal 
6 electric bicycle seat lateral 
7 cyclist left lower leg longitudinal 
8 cyclist left knee longitudinal 
9 electric bicycle seat longitudinal 
10 electric bicycle rear wheel lateral 

Among the top 10 most important predictor variables, four of them are variables describing the 
final resting position of the cyclist, namely, the longitudinal positions of the cyclist’s left foot, right 
lower arm, left lower leg and left knee. It should be noted that, in the simulation experiments in this 
study, the electric bicycle always crosses the road from the right side of the car. Therefore, the cyclist 
was always hit first on the left side. Left foot, left lower leg and left knee of the cyclist are the lower 
extremities on the impact side. It appears that the longitudinal distance between the car's final resting 
position and the lower extremity on the impact side of the cyclist plays a crucial role in assessing the 
severity of head injuries. 

Interestingly, the longitudinal position of the right lower arm is also included in the top 10 most 
important predictor variables in Table 5. The reason for this phenomenon may be that, as the human 
body stretches after being hit, the posture of cyclist can be better positioned by combining the position 
of the left lower extremity and right upper extremity. Figure 4 depicts the relationship between the 
position of right lower arm of the cyclist and injury severity. As shown in Figure 4, the marginal 
distribution of the longitudinal position of the right lower arm differs substantially in the two accident 
categories. Therefore, the longitudinal position of the right lower arm can provide information for 
assessing accident injury severity. However, the marginal distribution of the lateral position of the right 
lower arm is very similar in the two accident categories. As a result, the lateral position of the right 
lower arm is not included in the top 10 most important predictor variables. 
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Figure 4. The position of right lower arm and the injury severity. 

 

Figure 5. The position of handlebar and the injury severity. 
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Figure 6. The position of rear wheel and the injury severity. 

 

Figure 7. The position of seat and the injury severity. 
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The other 6 variables in Table 5 are variables that characterize the final resting position of the 
electric bicycle. Interestingly, these 6 variables can be grouped into 3 pairs. Each pair can describe the 
longitudinal and lateral position of a component of the electric bicycle. The three components of the 
electric bicycle are the handlebar, seat and rear wheel. Both longitudinal and lateral positions were 
considered important for the 3 components of the electric bicycle, while only longitudinal position was 
identified to be important for the 4 components of the cyclist in Table 5. 

Figures 5–7 depict the longitudinal and lateral positions of the handlebar, seat and rear wheel, 
respectively. The corresponding marginal distributions are also provided. The distributions of each of 
the 6 predictor variables differ noticeably between fatal and non-fatal accidents, which is why these 
predictors have been ranked among the top 10 most important variables. Additionally, unlike the results 
for rider variables, the differences in lateral variables are more noticeable for electric bicycle variables. 
Nevertheless, assessing injury severity based on only one or two of the top 10 most important variables 
remains very challenging. 

4.3. Model performance under partial information 

In practice, the final resting position of a cyclist or electric bicycle after a traffic accident may 
become unmeasurable due to the accident scene being changed prior to the site survey. For example, 
the cyclist may be moved by first-aiders. In addition, the position of the cyclist or the position of the 
electric bicycle may be impacted by a secondary accident. Under such circumstances, the position of 
the cyclist or the position of the electric bicycle may become unmeasurable at the accident scene. 

Therefore, this study also investigated the performance of the proposed RF model under partial 
information. Model 1A was established using the proposed method without the final resting position 
of the cyclist after traffic accidents. It should be noted that the position information of the cyclist was 
neither used for model training nor used for testing for Model 1A. Similarly, Model 1B was developed 
without the final resting position of the electric bicycle. As shown in Table 6, the performances of 
Model 1A, Model 1B and Model 1 were compared using out-of-bag samples.  

Table 6. Model performance under partial information. 

Model Accuracy Sensitivity Specificity 
Random forest (Model 1) 83.33% 87.50% 82.26% 
Random forest without the cyclist position (Model 1A) 82.05% 93.75% 79.03% 
Random forest without the e-bike position (Model 1B) 76.92% 81.25% 75.81% 

It was found that, in comparison to Model 1, the accuracy of Model 1A drops slightly from 83.33% 
to 82.05%. It appears that the lack of the information about the final resting position of the cyclist does 
not substantially affect the prediction performance. This is not surprising as the majority of the top 10 
most important predictor variables in Model 1 are variables for the final resting position of the electric 
bike. Although the sensitivity of Model 1A increases to some extent, the specificity decreases from 82.26% 
to 79.03%. In terms of overall accuracy, Model 1A performs slightly worse than Model 1. 

In terms of Model 1B, its accuracy, sensitivity and specificity all drop substantially compared 
to Model 1. This phenomenon further confirms that the position information of the electric bicycle 
is more important than the position information of the cyclist in assessing injury severity. Therefore, 
when evaluating injury severity of car-to-electric-bicycle accidents based on positional relationship 
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at the accident scene, attention needs to be paid to the accuracy of the position information of the 
electric bicycle. 

5. Conclusions 

This study proposes a data-driven on-site injury severity assessment model for car-to-electric-
bicycle accidents based on the relationship between the final resting positions of the car, electric 
bicycle and cyclist at the accident scene. Random forest was employed to learn the accident features 
from the at-scene positional relationship among the accident participants, by which injury severity of 
the cyclist is assessed. Conditional permutation importance, which can account for correlation among 
predictor variables, was adopted to reflect the importance of predictor variables more accurately. The 
proposed model can be used by on-site transportation professionals to assess injury severity in traffic 
accidents as no medical knowledge or medical device is required. For example, when first responders 
are not on the scene, traffic police officers can still assess the severity of injuries to victims by 
measuring the accident site. However, it should be noted that the model proposed in this study needs 
to be calibrated with local accident data when applied specifically. Whenever possible, it is advisable 
that qualified medical personnel conduct a thorough examination of the injured individual. 

The proposed model was demonstrated using simulated car-to-electric-bicycle collision data. The 
results show that the proposed model can achieve good classification accuracy and is balanced in 
recognizing both fatal and non-fatal accidents. In terms of variable importance, it was found that the 
longitudinal distance between the car's final resting position and the lower extremity on the impact 
side of the cyclist plays a crucial role in assessing injury severity. However, six of the top 10 most 
important variables are the ones describing the final resting position of the electric bicycle. Model 
performance under partial information also confirms that, overall, the position information of the 
electric bicycle is more important than the position information of the cyclist in assessing injury 
severity. This may be because the final resting position of the electric bicycle can provide more 
information about accidents. 

There are several potential enhancements that could be considered in future works. First, further 
research may validate the proposed method using real world traffic accident data and perform an in-
depth comparison between the predicted injury severity and that judged by medical examination. Apart 
from categorizing accidents into fatal and non-fatal, it is also feasible to further classify them based on 
the severity of the injury (such as minor, serious or fatal). Second, researchers may incorporate other 
measurable factors at the accident scene (such as heading of the car and angle of steering wheel) into 
the data-driven model to achieve better performance. Third, although this study was mainly focused 
on car-to-electric-bicycle collisions, further research may extend to other types of traffic accidents, 
especially those related to vulnerable road users. 
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