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Abstract: Plot text is very valuable supporting information in movie recommendations. It has several 

characteristics: 1) It is rich in content. Each movie often has a document of more than 200 words to 

describe it, which can give the movie a rich semantic meaning. 2) Objectivity. Plot texts are different 

from review information. A movie may have thousands of reviews with mixed and conflicting opinions. 

However, a film has only one plot text, which is fair in tone and does not take a position. Despite its 

appealing properties and potential for accurate movie portrayal, the lack of a building block for 

effectively mining plot semantics has led to the marginalization of plot text in the design of movie 

recommendation algorithms. Therefore, in this paper, we explore the application of the Transformer, 

currently the best natural language processing module, to learning movie plot texts to help achieve 

more accurate rating prediction. We propose the “Plot-Aware Transformer” model (PAT) to model the 

process of “user-movie” rating interaction. We test the PAT model on several movie datasets and 

demonstrated that the model is competitive. In all tasks, PAT achieves state-of-the-art performance 

compared to baseline experiments. 
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1. Introduction 

The explosive growth of information resources has inevitably caused the problem of information 

overload. As an information filtering tool for massive data, a recommender system can effectively 

solve the information overload problem and provide content that meets users’ needs in a personalized 

manner. In addition, as a link between users and information, recommendation systems not only help 

users discover the information they need but also allow information to be presented to users who are 

interested in it, thus achieving a mutual benefit for both information producers and information 

consumers. Currently, recommendation systems have become a hot issue of concern and research in 

industry and academia, with a wide range of application fields, including e-commerce, social networks, 

video and music recommendation, etc. 

Traditional recommendation methods are mainly classified into content-based recommendation 

methods, collaborative filtering recommendation methods, and hybrid recommendation methods. The 

current popular trend in recommendation algorithm design is the hybrid recommendation method that 

incorporates heterogeneous auxiliary information from multiple sources (including knowledge 

graphs, social networks, user behavior, images, text, etc.). Although such a design can alleviate the 

cold-start problem to a certain extent, the auxiliary information often has complex features such as 

multimodal, unstructured, large-scale, sparse data and uneven distribution, and it still faces serious 

challenges in processing. 

In this paper, we use Transformer to extract features for the plot text information in the movie 

dataset to obtain more accurate item (movie) representations to help achieve personalized 

recommendations for specific users. 

1.1. Why use Transformer? 

Using word frequency statistics, previous researchers have proposed classical word embedding 

models, such as Word2Vec. However, such trained word models are often rigid “hard” representations. 

These word embeddings are already fixed vectors and will not be reasonably corrected for the specific 

contextual environment. For example, consider the following two sentences: 

1) “The cake won’t fit in the box because it’s too big.” 

2) “The cake won’t fit in the box because it’s too small.” 

When humans see two sentences like this, they will know that “it” in the first sentence refers to 

“the cake” while “it” refers to the “box” in the second sentence. Therefore, the “it” in each sentence is 

completely different. However, in the traditional word embedding models, only a unique representation 

of “it” has been trained, so this unique representation cannot accurately represent its true meaning in a 

specific context. 

To better understand and express the meaning of each word in a specific context, Transformer 

was proposed in the study [1]. Unlike traditional word embedding models, Transformer computes the 

relationship between each word and all other words within the text sequence using a “self-attentive” 

mechanism in a specific contextual environment. Different words form an aggregated representation 

based on the degree of match between them. This representation is characterized by the fact that a 

particular task that has its textual representation needs to “train itself and use itself” directly on its 

context (text), instead of simply borrowing a generic, fixed representation trained by a traditional model 

in a global corpus. In this way, when learning the above two different sentences, Transformer can 
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represent the “it” in each sentence more accurately and capture its true meaning in the specific context. 

Given Transformer’s excellent performance in natural language processing, in this paper, we 

explore the use of Transformer to learn and extract features from movie plot texts to help build a more 

accurate movie portrait. 

First of all, the plot text is chosen as auxiliary information because there is only one plot text for 

a movie, with no need to consider trade-offs, and this text is large and rich in information. More 

importantly, the plot text tends to be objective, accurate and comprehensive in describing the movie 

without uncertainties such as personal emotions and values. 

Second, we take the plot text of each movie and generate a review text embedding matrix using 

the already trained Glove vector library. This is only an initial representation. 

This embedding matrix is then fed into the Transformer network, which is trained and adjusted in 

the current context using a “self-attentive” mechanism to generate a more optimized representation 

that matches the contextual semantics. As the final representation of the plot, this representation can 

deeply and accurately represent the semantic information of the corresponding movie. 

Finally, user representation and movie representation are subjected to some kind of interactive 

computation, such as dot product or concatenation, and finally fed into a multilayer perceptron network 

to predict the user-movie rating after a collaborative filtering computation of the deep network. 

The main contributions of this work are as follows. 

1. We use Transformer networks and deep feedforward networks to model user and item features 

and design a general framework called PAT to implement collaborative filtering based on deep non-

linear interactions between users and movie plots. 

2. We show that the present framework incorporates the semantic information of the plot text well. 

3. Extensive experiments are done on three real datasets to demonstrate the effectiveness of PAT. 

The paper is organized as follows: Related work is discussed in Section 2; the PAT framework is 

given in Section 3; experimental results are presented in Section 4; Section 5 provides a summary and 

expectations for future work. 

2. Related work 

2.1. Problem definition 

Recommender systems have a variety of tasks and scenarios, mainly including sequence 

recommendation, conversation recommendation [2], session recommendation [3], bundle 

recommendation [4], click-through rate prediction [5], de-bias [6], fair talk recommendation [7], 

explainability [8], Counterfactual learning [9], etc. By recommendation technique, it mainly includes 

contrast learning [4], reinforcement learning [3,10], adversarial learning [7], cross-domain 

recommendation [11], contextual recommendation [12], debiasing techniques [13], confidence 

calibration [14], Federation learning [15], knowledge extraction [16], etc. 

Recommendations based on textual content as auxiliary information aim at extracting features from 

user reviews or product description documents to learn the representation of users and products. Recent 

related works in this area are as follows. Chen et al. [17] proposed the Deformable Convolutional 

Network (DCN). This network adds an offset layer to the traditional convolutional layer to extend the 

capability of the convolutional transform model. On this basis, they further proposed a Deformable 

Convolutional Network Matrix Factorization (DCNMF) recommended model. Guo et al. [18] 
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proposed a Joint Convolutional Matrix Factorization (JCMF) model, which unifies the framework 

considering the reviews of goods, the relationships of goods, the social influence of users, and the 

reviews of users. Gan et al. [19] proposed a Convolutional and Dense layer Matrix Factorization 

(CDMF) model. This approach uses a convolutional neural network to extract hidden features from 

item descriptions as document representations and then fuses them with label information through a 

fully connected layer to generate a comprehensive feature vector. It combines multiple sources of 

information from item descriptions and labels information for context-aware recommendations. Xu et 

al. [20] proposed a Social ConvMF model. This model integrates trust relationships and convolutional 

neural networks into probabilistic matrix factorization. It captures both trust-aware information and 

contextual information in documents for the social recommendation. Chen et al. [21] proposed a Trailer 

Inception probability matrix factorization model called Ti-PMF. This model extracts visual information 

features from movie trailers and combines recurrent convolutional neural network and probability 

matrix factorization to predict user-movie ratings. Wang et al. [22] proposed a visual recurrent 

convolutional matrix factorization recommendation scheme based on probabilistic matrix factorization. 

The scheme extracts movie features from descriptive text and text extracted from movie posters as 

well as multi-level visual features for a movie recommendation, respectively. Nguyen et al. [23] 

proposed an attentional probability matrix factorization model that uses neural attention networks to 

learn the importance of feature interactions and uses Doc2Vec techniques to mine contextual 

information. Liu et al. [24] proposed a supervised convolutional matrix factorization (Super-ConvMF) 

recommendation model that combines rating information, item content information and label 

information into a unified recommendation framework. Zheng et al. [25] proposed an adversarial 

training framework to learn hybrid recommendation models, in which a generator model is constructed 

to learn the distribution of paired ranking pairs, while a discriminator is trained to distinguish between 

generated (fake) and real item pairs. Liu et al. [26] proposed a BiconvMF algorithm based on an 

improved ConvMF. The algorithm uses two parallel convolutional neural networks to extract depth 

features from the user review set and the item review set, respectively, and fuses these features into the 

factorization of the rating matrix to predict user-movie ratings. Cai et al. [27] proposed a constrained 

neural network probability matrix factorization model (CPMF-NN). This model uses convolutional 

neural networks to extract item latent features from corresponding documents. In fusing the potential 

feature vectors, a multilayer perceptron is used to capture the nonlinear structural features of the user-

item interaction. Wang et al. [28] extended CNN by introducing a new module called Deep Latent 

Dirichlet Allocation (DLDA) to capture the counting information of contextual features. The model 

combines DLDA with CNN to obtain word-driven and context-aware comment representations and 

finally combines matrix factorization for the recommendation. Wu et al. [29] proposed the Content 

Embedding Regularization Matrix Factorization (CERMF) model. This model uses convolutional 

neural networks to generate independent embedding representations for users and items simultaneously. 

Dual embeddings are then used to regularize the generation of latent features of users and items. Xia et 

al. [30] proposed a joint deep network-based multi-source feature learning (JDNMFL) framework for 

QoS prediction (QoS) forecasting. This model is divided into two parts: multi-source feature extraction 

and feature interaction learning. Zhao et al. [31] proposed a DE-ConvMF model. It has a dual embedding 

layer in ConvMF that focuses more on item-side information. This dual embedding consists of two parts: 

a generic embedding layer and a domain embedding layer, which are combined as an embedding layer. 

Latest research hotspots in the field of recommendation algorithms include conversation-based 

recommendations and causal recommendations. Traditional recommendation algorithms lack interaction 
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with users, and it is difficult to grasp users’ real-time interests in a timely and effective manner. 

Conversational Recommender System (CRS) is a new research hotspot in the field of recommendation 

systems because it can understand users’ interests through in-depth interaction with them. The core of 

the Conversational Recommender System is the online interaction between users and the recommender 

system, which is to obtain the user’s feedback through the dialogue interaction process between the user 

and the recommender system and integrate the user’s feedback into the recommendation model to better 

understand the user’s current interests and improve the accuracy of the recommendation. 

Causal learning is the study of how to discover and use causal relationships between variables to 

make predictions, rather than merely rely on correlations between variables. Causal relationships 

reveal the nature of events, and changing the “cause” behind an event will often affect the “effect” of 

the event. In contrast, correlations are often not the essential laws of events, and changing one event 

may not affect the other. For example, through association mining, we can find a strong correlation 

between yellow fingers and lung cancer, but there is no clear causal relationship between the two, i.e., 

painting the fingers of ordinary people yellow does not increase their probability of getting lung cancer. 

The true “cause” of the yellow finger and lung cancer is smoking, i.e., there is a causal relationship 

between smoking and lung cancer. Therefore, if non-smokers are allowed to smoke, they are 

significantly more likely to get lung cancer. The lack of causality analysis in a recommender system 

may lead to a decrease in the effectiveness of the recommendation or bias of the model. 

3. The proposed method 

We model recommendation task as a rating prediction problem. This problem is defined as follows: 

Given a user 𝑢  and a movie 𝑖  with the corresponding plot text 𝑇(𝑖) = {𝑤1, 𝑤2, . . . 𝑤|𝑃|} , our task 

essentially entails learning a function 𝑟̂𝑢𝑖 = 𝛷(𝑢, 𝑇(𝑖)) to predict the rating of user 𝑢 on item 𝑖. 

To better describe our model in later sections, here, we first list the symbols used in the model and 

their meanings in Table 1. 

Table 1. Summary of terminology used. 

Notations Description 

𝑢 user representation 

𝑖 item (movie) representation 

𝑇(𝑖) = {𝑤1, 𝑤2, . . . 𝑤|𝑃|} 
The text sequence of the plot of the movie 𝑖 . 𝑤𝑛 is 

the 𝑛th word. 

|𝑃| 
Plot length (word count) after Padding, 

experimentally|𝑃| = 300 

𝑑 Length of each word vector in the plot 

𝐸 ∈ 𝑅|𝑃|×𝑑 

The embedding matrix composed of all word vectors 

in the plot sequence, as the initial representation of 

the corresponding movie 

𝑟̂𝑢𝑖 
The model output, which is the predicted rating of 𝑢 

on 𝑖 
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3.1. Model architecture 

The general architecture of PAT is shown in Figure 1. In Figure 1, we can see that it follows the 

popular two-tower embedding and MLP interaction paradigm for recommendation systems, i.e., the 

relevant features are embedded in a low-dimensional vector before calculating the user’s predicted 

rating for the item and then fed into the MLP. The key of PAT is the addition of the Transformer layer 

to better learn the item representation by capturing the rich and complex plot sequence signals of the 

underlying layer. In the next section, we present the key components of PAT in a bottom-up fashion: 

the embedding layer, the Transformer layer and the MLP interaction layer. 

Embedding layer

0 0 0 1 0     

  A          little        boy       named                   play      voilin  

Embedding layer with Glove

Transformer layer

...

+

...

.

ReLU (1024)

ReLU (512)

ReLU (256)

 
uir

Loss

User (one-hot)

Item (Movie plot text)

V

Attention Matrix

softmax...

...

mul+add

N*D

j i,j ii
y = a v

K Q

 

Figure 1. The general architecture of the proposed PAT. 

PAT takes a sequence of user and item (movie) episodes text as input. It first embeds these input 

features as low-dimensional vectors. To better capture the interesting relationship between users and 

items, a Transformer layer is used to learn a deeper representation of each word in the episode sequence. 

User embeddings are then connected to the output of the Transformer layer to learn the interaction of 

hidden features using a three-layer MLP, and a sigmoid function is used to generate the final output. 

Note that the “location features” are merged into the “sequence item features.” 

3.2. Embedding layer 

The first component is the embedding layer, which embeds all the input features into low-

dimensional vector representations. In our scenario, there are two kinds of features: user features and 
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movie plot features. We explain the embedding process of both in turn below. 

User embedding. User features are represented as one-hot vectors, where the “1” corresponds to 

the user’s ID. We use 𝑜𝑢 to represent the one-hot vector of the user as the input layer on the user side. 

In the embedding layer, it is directly mapped to a low-dimensional vector by a fully connected network. 

This process is essentially multiplying a sparse high-dimensional vector 𝑜𝑢 by a weight matrix 𝑊 

and converting it to a low-dimensional dense embedding vector, i.e., 

 𝑢 = 𝑊𝑇 ⋅ 𝑜𝑢 (1) 

𝑢 is the potential vector used to describe the user. 

Item embedding. The embedding of movies is a bit more complicated. The original plot texts of 

different movies have different lengths, and for the convenience of model learning, we remove the 

deactivated words and then unify the plot texts of all movies into 300 words by padding. The movies 

are also embedded differently from the users. We obtain the Glove vector model by querying the 

trained Glove vector library. The Glove word vector model is derived from [32]. In contrast to another 

word vector model, Word2Vector [33], Glove successfully exploits the global information of the 

corpus and is a word characterization tool based on global word frequency statistics. The publicly 

available Glove model provides 50-, 100-, 200- and 300-dimensional vectors of about 400,000 words. 

If we query 300 words in a movie text sequence from the 50-dimensional Glove, the output of the 

embedding layer is an embedding matrix 𝐸𝑠 ∈ 𝑅300×50. 

In addition to the above word features of the plot text, we also added the positional features of 

each word. In this way, we use two types of features to represent a movie, “sequence word features” 

and “positional features”, where “sequence word features” is matrix 𝐸𝑠. Then, for each word in the 

plot text, we concatenate the sequence word features and positional features to create an embedding 

matrix 𝐸 ∈ 𝑅|𝑃|×𝑑 , where 𝑑 is the dimension of the embedding and |𝑃| is the length of the plot 

text, i.e., the number of words in the plot sequence. We use 𝑒𝑘 ∈ 𝑅𝑑 to denote the embedding of the 

𝑘th item in the given movie plot sequence. 

Position embedding. In [1], the authors propose a positional embedding method to capture the 

order information in sentences. Similarly, the order is also present in plot text sequences. Therefore, 

we add “position” as an input feature for each item of the underlying layer and project it as a low-

dimensional vector. 

3.3. Transformer layer 

The 𝐸 ∈ 𝑅|𝑃|×𝑑  obtained in subsection 3.2 initially represents the plot features of the movie 

(there are |𝑃| words in the plot text and 𝑑 features for each word). 

To apply the self-attentive mechanism to better learn the plot text context, we transform the initial 

plot matrix 𝐸 into three auxiliary matrices through a cubic linear mapping, as shown in Eqs 2–4. 

 𝑄 = 𝐸𝑊𝑄 (2) 

 𝐾 = 𝐸𝑊𝐾 (3) 

 𝑉 = 𝐸𝑊𝑉 (4) 

where the mapping matrices are 𝑊𝑄, 𝑊𝐾 and 𝑊𝑉 ∈ 𝑅𝑑×𝑑. 𝐸is the embedding matrix of all words 

in the plot sequence. These three auxiliary matrices represent the three elements in the attention 
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calculation: 𝑄 for queries, 𝐾 for keys and 𝑉 for values. Then, we feed 𝑄, 𝐾 and 𝑉 into the self-

attention layer, as shown in Eq 5. 

 Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑
)𝑉 (5) 

Following [1], we then extend the single self-attention to multi-headed attention. 

 ℎ𝑒𝑎𝑑𝑖 = Attention(𝐸𝑊𝑖
𝑄, 𝐸𝑊𝑖

𝐾 , 𝐸𝑊𝑖
𝑉) (6) 

 𝑖=MH(𝐸) = [ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ]𝑊𝐻 (7) 

ℎ represents the number of heads, and all the head matrices are stitched together and then linearly 

mapped through 𝑊𝐻 to form the final representation of the movie at 𝑖. 

3.4. User-Item interaction layer and output 

To model the users’ predicted rating process for movies, we concatenate the above generated 

user representation 𝑢 and item representation 𝑖 (𝑢 ⊕ 𝑖), where ⊕ represents the concatenation 

operation of the two vectors, and feed them together into a multilayer perceptron network (MLP). In 

order to better fit the complex user-item interaction process, we set deeper nonlinear neural layers 

in the MLP. As shown in Eq 8, 

ℎ0 = 𝑢 ⊕ 𝑖 

ℎ1 = 𝑅𝑒𝑙𝑢(𝑊1
𝑇ℎ0 + 𝑏1) 

 ℎ𝐿−1 = 𝑅𝑒𝑙𝑢(𝑊𝐿−1
𝑇ℎ𝐿−2 + 𝑏𝐿−1) (8) 

𝑟̂𝑢𝑖 = 𝑅𝑒𝑙𝑢(𝑊𝐿
𝑇ℎ𝐿−1 + 𝑏𝐿) 

where 𝑊𝑘, 𝑏𝑘 and 𝑎𝑘 denote the weight matrix, bias vector and activation function of the𝑘 layer 

of the MLP, respectively. Relu is the activation function. 𝑟̂𝑢𝑖 is the rating of the movie 𝑖 by the user 

𝑢 as predicted by our method. 

3.5. Loss function 

Predicting users’ ratings of items is a regression problem, and under the prior condition that the 

prediction error satisfies a Gaussian distribution, we use the following mean squared error (MSE) 

function. 

 𝐿𝑂𝑆𝑆 =
1

|𝑅|
∑ (𝑟𝑢𝑖 − 𝑟̂𝑢𝑖)(𝑢,𝑖,𝑟𝑢𝑖)∈𝑅

2
+ 𝜆‖𝑊‖2 (9) 

𝑅 denotes the set of all rating entries observed in the dataset, the label 𝑟𝑢𝑖 is the real rating of the 

movie 𝑖  by the user 𝑢 , and 𝑟̂𝑢𝑖  is the rating predicted by our PAT model. Equation 9 is the objective 

function to be minimized, and in our experiments we use Adam’s algorithm for training optimization. 

  



3177 

Electronic Research Archive  Volume 31, Issue 6, 3169–3186. 

4. Experiments 

In this section, we evaluate the experimental performance of PAT on two real-world datasets. Our 

experimental results demonstrate that PAT greatly improves recommendation accuracy compared to 

other text-based recommendation algorithms. 

4.1.  Experiment settings 

4.1.1. Datasets and evaluation metrics 

We adopted two datasets that are widely used in the field of recommendation algorithms: 

MovieLens 1M (ML-1M) and MovieLens 10M (ML-10M), which include explicit ratings of movies 

by users (from 1 to 5). We used a web crawler to collect the plot files corresponding to all movies in 

MovieLens from the IMDB website. Similar to [34], we did the following preprocessing on all movie 

plot files: 1) Removing deactivated words, 2) Calculating the TF-IDF value for each word, 3) 

Selecting the top 8000 words of TF-IDF to form a vocabulary list, 4) Removing words that are not in 

the glossary, 5) Padding each movie text into 300 words. After pre-processing, the statistical results 

and features of these datasets are summarized in Table 2: 

Table 2. Statistics of the datasets (# represents “The number of”). 

Dataset #users #items #plots #ratings density 

ML-1M 6,040 3,706 3,706 1,000,209 4.65% 

ML-10M 69,878 10,073 10,073 9,945,875 1.41% 

We used the root mean square error (RMSE), commonly used in rank prediction, to evaluate the 

results of our experiments. The RMSE is used to measure the deviation between the observed value 

and the true value. For a user 𝑢 and item 𝑖 in the test set T, let 𝑟𝑢𝑖 be the actual rating of the item 𝑖 

by the user 𝑢  and 𝑟̂𝑢𝑖  be the rating given by the recommendation algorithm. Then the RMSE is 

defined as 

 𝑅𝑀𝑆𝐸 =
√∑ 𝑢,𝑖∈𝑇(𝑟𝑢𝑖−𝑟̂𝑢𝑖)

2

|𝑇|
 (10) 

The smaller the value of RMSE is, the better the experimental result, indicating that the predicted 

rating is closer to the real rating. 

In order to ensure the stability of the evaluation model and truly compare the performances of all 

methods fairly, we adopted cross-validation to avoid the limitations and particularities of fixed 

partition data sets. In the experiment, we carried out 5-fold cross-validation on the data set and 

calculated the average value of all folds to obtain cross-validation error. 

4.1.2 Baseline experiments 

We chose the following baseline approach for comparison with PAT. 
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NCF [35]. NCF is a classic deep learning recommendation algorithm that trains embedding 

representations of users and items through neural networks and further predicts users’ ratings on items 

through MLP. Note, the original paper predicts whether the user likes or dislikes the item; we rewrote 

the code and changed the task to predict the user’s rating on the item. 

U-AutoRec / I-AutoRec [36]. AutoRec is a self-encoder based collaborative filtering model that 

learns user and item representations by reconstructing known user-item scores. These representations 

are incidentally used to calculate additional unknown user-item scores. 

ConvMF [34]. ConvMF learns the textual content of the movie using convolutional networks and 

feeds the extracted features, along with the user representation, into a probabilistic matrix factorization 

model to predict the rating. 

U-CFN/ U-CFN++/ V-CFN/ V-CFN [37]. CFN is an upgrade and expansion of AutoRec, adding 

edge information and denoising techniques to the self-encoder, which has solved the sparse and cold 

start problems of pure scoring math. 

DPGMF [38]. DPGMF feeds the movie file into a convolutional neural network to extract 

abstract features, which are the representations of the item. Then, they and the embedding 

representation of the user’s one-hot vector are fed into the multi-layer perceptron network to model 

the prediction score of the user on the item. 

Table 3 summarizes the information used by all the baseline methods. Among them, NCF and 

AutoRec series (including U-AutoRec and I-AutoRec) only use ratings information, and do not use 

other auxiliary information. Among CFN series (including: U-CFN, U-CFN++, I-CFN, I-CFN++), U-

CFN and I-CFN only use ratings, U-CFN++ and I-CFN++ use both ratings and side information, side 

information includes the user’s age, gender, genre and movie category (action, thriller, etc.). ConvMF+ 

and DPGMF use ratings and plot text information in exactly the same way we do. Therefore, ConvMF+ 

and DPGMF are major baselines for comparison with our method. 

Table 3. Information used by baseline methods. 

4.1.3 Parameter setting 

Our model is implemented with Python 3.9.12 and Keras 2.7.0 on GeForce GTX1080 GPU. We 

Method 
MovieLens 1M MovieLens 10M 

Ratings Plot Side Ratings Plot Side 

NCF       

U-AutoRec       

I-AutoRec       

ConvMF+       

U-CFN       

U-CFN++       

I-CFN       

I-CFN++       

DPGMF       

PAT (Ours)       
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used mini-batch Adam as the optimization algorithm. The configuration of various hyperparameters 

of the model is listed in Table 4. 

Table 4. PAT hyperparameters configuration. 

Configuration of PAT 

Glove embedding size [50,100,200,300] Batch size 256 

head number 4 Batch-Normalization default 

sequence length 300 epochs 1 

transformer block 1 queue capacity 1024 

MLP Shape 1024*512*256 learning rate 0.01 

4.2. Performance comparison 

The experimental results are shown in Table 5. From this we can observe the advantages of PAT 

compared to baseline. 

We will now compare the performance of PAT with other recommended methods. For embedding-

based methods (e.g. ConvMF+, DPGMF etc.), the size of the embedding determines the capability, so 

we set the size of embedding to 200 in all methods to make a fair comparison. In the following Section 

4.3, we will change the size of the embedding for each method in order to compare. Table 5 shows the 

comparison of rating prediction performance between PAT and other competitors on different datasets. 

We obtain the following key observations: 

1) Overall, our PAT model achieves the best performance. Specifically, on both datasets, our 

model achieved the lowest RMSE values. On MovieLens1M, compared to the best method in 

the baseline, our experiment showed a 6.75% decrease in RMSE. On MovieLens 10M, this is 

a decrease of 5.37%. From this, we believe that Transformer can effectively extract useful 

information from movie documents to achieve more accurate rating prediction than other 

models. 

2) Compared to NCF and AutoRec, our PAT showed the most significant improvement in RMSE: 

Compared with NCF, PAT decreased by 19.76 and 20.88% at ML-1M and ML-10M, 

respectively. Compared with U-AutoRec, PAT decreased by 9.37 and 8.98% at ML-1M and 

ML-10M, respectively. Also these two types of baseline methods are the least effective among 

all comparison models. We believe that the main reason for this is that NCF and AutoRec 

don’t use any other information than scoring data. The sparsity of rating data causes the 

semantic representation of users and items trained by the model to be rough and inaccurate, 

affecting the effectiveness of predicted ratings. 

3) Compared to ConvMF+ and CFN series, PAT also achieves an average 10% relative decline 

in RMSE on both datasets (Please refer to Table 5 for the specific percentages). We believe 

that the depth and refinement of the model are the primary reason for PAT’s advantage in this 

comparison. Although there are deep learning models, ConvMF+ and the CFN series are 

simple in structure and only have three to four layers in depth, which are not enough to mine 

the semantics of auxiliary information well. 

4) Finally, when compared to the DPGMF method, which also uses the plot text to design the 

recommendation algorithm, PAT achieves an error decrease of about 6% on both datasets. We 

believe that the method of learning the plot text is the main reason for this gap. DPGMF uses 



3180 

Electronic Research Archive  Volume 31, Issue 6, 3169–3186. 

a traditional convolutional network to learn the textual content of items, while PAT uses a 

more complex Transformer network. The computerized mechanism of CNN can only learn 

local features and cannot learn long-term dependencies. However, Transformer uses the 

attention mechanism to capture global information. In addition, CNN are naturally suited to 

image processing and are not well suited to information from serial data such as sound, text, 

time, and so on. While Transformer was designed for natural language processing, in 

Transformer’s multi-headed attention structure, the model can learn relevant information in 

different representation subspaces for different tasks. 

Table 5. Overall comparison of RMSE. 

Method 
MovieLens 1M MovieLens 10M 

RMSE↓ PAT impr. RMSE ↓ PAT impr. 

NCF 0.9381 19.76% 0.8997 20.88% 

U-AutoRec 0.8740 13.88% 0.8670 17.90% 

I-AutoRec 0.8305 9.37% 0.7820 8.98% 

ConvMF+ 0.8549 11.95% 0.7930 10.24% 

U-CFN 0.8574 12.21% 0.7954 10.51% 

U-CFN++ 0.8572 12.19% 0.7880 9.67% 

I-CFN 0.8321 9.54% 0.7767 8.36% 

I-CFN++ 0.8316 9.49% 0.7754 8.20% 

DPGMF 0.8072 6.75% 0.7522 5.37% 

PAT (Ours) 0.7527 − 0.7118 − 

The best results are shown in bold, and the second best results are underlined. 

In order to test whether there is a significant difference in the RMSE between our PAT model and 

DPGMF, the most competitive baseline model, we conducted a t-test in the experiment. Algorithm 1 

shows the detailed procedures for performing a paired sample t-test when the population variance is 

unknown and absolute errors (sample means and variances) are used: 

Algorithm 1: T-test for determining the level of significance of the difference between PAT and baseline 

on RMSE indicator. 

Input：The null hypothesis 
0
H ，the alternative hypothesis 

1
H  

Output：Accept or reject the null hypothesis 
0
H  

  1: Define the null and alternative hypotheses. The null hypothesis 
0
H  states that there is no difference 

between the means of the two paired samples, while the alternative hypothesis 
1
H  states that there is a 

difference between the means. 

  2: Calculate the differences 
1 2
( )x x−  between each pair of observations, and calculate the mean (

1
μ  and 

 
2
μ ) and standard deviation (

1
s  and 

2
s ) of the differences. 

 3: Calculate the t-statistic using the formula: 
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1 2 1 2

1 2

( ) ( )

1 1
p

x x
t

s
n n

μ μ− − −
=

+

 

where 

2 2

1 1 2 2

1 2

( 1) ( 1)

2p

s n s n
s

n n

− + −
=

+ −

 

where 
1
n  and 

2
n  are the numbers of pairs, and the hypothesized difference is typically set to zero for a two-

tailed test. 

 4: Determine the degrees of freedom (df ) for the t-distribution using the formula: 

1 2
2df n n= + −  

5: Determine the critical value of t  for the desired level of significance ( = .0 05 ) and degrees of freedom 

( 26df = ) using a t-distribution table or calculator. 

6: Compare the calculated t-value with the critical t-value. If the calculated t-value is greater than the 

critical t-value, reject the null hypothesis and conclude that there is a significant difference between the means 

of the two paired samples. If the calculated t-value is less than the critical t-value, fail to reject the null 

hypothesis and conclude that there is no significant difference between the means. 

7: Report the results of the test, including the calculated t-value, degrees of freedom, critical t-value, and 

conclusion. 

In the experiment, we set the significance level to 0.05 and the degrees of freedom to 26. After 

querying “critical values of t for two-tailed tests”, the critical value of t is 2.0555, and the t-value 

calculated by our experimental results is 2.1062. The calculation results show that the final t-value is 

greater than the critical value of t (2.1062 > 2.0555). This proves that our model is significantly 

different from the baseline model in terms of RMSE indicators. Therefore, the performance 

improvement of our model is effective. 

4.3. Impact of embedding vector size (RQ2) 

Feature representation enters the embedding era thanks to machine learning. Researchers are 

accustomed to embedding the representation of everything in artificial intelligence. Although the 

embedding vector is still difficult to explain theoretically, there is no doubt that each dimension of 

embedding is trying to express some features of things. In this paper, we query the Glove word model 

to obtain the embedding representation of each word in the movie scenario. Based on the Glove 

embedding, the three fully connected networks further generate query vector, key vector and value 

vector, which is used as the input layer of Transformer. Glove embedding, as the input to the whole 

model, undoubtedly has a key impact on the final performance of the model. How many dimensions 

is the best representation? We performed ablation experiments on the length of embedding in this 

subsection. The glove word model offers four dimensions: 50, 100, 200 and 300. In turn, we feed the 

vector of these dimensions to the model as input. Figure 2 shows the trend of RMSE generated by 

different dimensions and the comparison with several major competitor models. 
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Figure 2. Impact of different embedding sizes on RMSE on ML-1M and ML-10M. 

As observed in Figure 2, compared to the baseline model, PAT achieves smaller error and better 

effect at the embedding of all sizes. On MovieLens 1M, the minimum error can be obtained by using 200 

dimensional embeddings. On MovieLens 10M, the better effect can be obtained by using 300 

dimensional embeddings. From the overall trend, the longer the embedding length is, the better the 

performance of the model. When the length increases, the performance of model remains constant even 

if the error cannot keep decreasing. This demonstrates that our model is able to robustly extract valid 

semantic information from the noisy representation. 

4.4. Impact of sequence length N 

Additionally, we studied the effect of the text’s maximum sequence length N on the 

recommendation performance and efficiency of the model. The recommendation performance of 

various maximum lengths N on MovieLens 1M and MovieLens 10M is shown in Table 6. On the two 

datasets, when the text was padded to 100 and 200 dimensions, we observed that the error was 

relatively large and the trend was still downward. When the text was padded to 300 dimensions, the 

error started to converge and stabilize. Namely, when we continue to increase the length of the text 

sequence to 400 and 500 dimensions, the error does not drop significantly. We consider that the selection 

of N depends on the average length of the plot texts in the dataset. If N is too large, it will result in a 

large number of zeros in the text representation, which will in turn affect the performance of the model. 

This is because these zeros are only to fill the blank positions and do not contain semantic information. 

Table 6. Performance with different text sequence lengths N. 

 100 200 300 400 500 100 200 300 400 500 

MovieLe

ns 1M 
0.8253 0.7846 0.7527 0.7520 0.7609 0.8004 0.7588 0.7118 0.7133 0.7125 

5. Conclusions and future work 

In order to effectively mine rich semantics information in plot text, to help overcome the weak 

recommendation problem caused by sparse ratings, we propose a Transformer-based plot-aware deep 

recommendation framework, called PAT. Its feature is that the framework uses Transformer to learn 

rich semantic text content from the input layer. Experiments have demonstrated that our approach 

achieves good results in rating prediction task. Experimental results show that our proposed PAT 



3183 

Electronic Research Archive  Volume 31, Issue 6, 3169–3186. 

method has a great improvement in performance compared with all baseline experiments. On 

MovieLens-1M, PAT RMSE decreased by 6.75% compared to the best baseline DPGMF. On 

MovieLens-10M, PAT’s RMSE dropped 5.37%. 

There are several directions to explore for the next step of this paper. The current user-side 

representation process is still too simple, and we will add graph neural networks on the user side to 

generate more accurate user representations. In addition, to identify and eliminate the prevalence bias 

in the dataset, causal inference can be integrated into our model. We can overcome the negative impact 

of the “Matthew” effect on recommendations by utilizing it. 
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