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Abstract: This paper studies the problem of scheduling n jobs on a single machine to minimize
total completion time and maximum cost, simultaneously. Each job is associated with a positional
deadline that indicates the largest ordinal number of this job in any feasible schedule. The jobs have
agreeable release and processing times, meaning that jobs with larger release times also have larger
processing times. The agreeability assumption is reasonable since both the single-criterion problems
(without positional deadline constraints) of minimizing total completion time and maximum lateness
on a single machine with arbitrary release and processing times are strongly NP-hard. An O(n3)-time
Pareto optimal algorithm is presented. The previously known algorithms only solve two special cases
of the agreeability assumption: either the case of equal release times in O(n4) time, or the case of equal
processing times (without positional deadline constraints) in O(n3) time.
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1. Introduction

Today, people usually want their needs to be met as quickly as possible, e.g., in make-to-order
production systems or in hospitals. In a production system, such as an automobile or semiconductor
manufacturing industry, the orders arrive dynamically. It is reasonable to assume that orders that arrive
later may have larger processing times (because they need more preparation), i.e., the orders have
agreeable release and processing times. A processing sequence of the orders may be naturally formed
by the positional requirements from customers. In general, the more advanced in position an order is,
the sooner it will be completed. However, a bad arrangement of the orders may lead to events that
the producers suffer a high inventory cost (which can be measured by total completion time of the
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orders) or some important orders delay (which can be measured by maximum cost of the orders). In
a hospital, when emergency patients arrive, they always have expectations for the positions by which
their requirements are served or processed. Making reasonable arrangements for the operating rooms
can reduce operating expenses and improve patients’ satisfaction.

In this paper, we study the following scheduling problem. There are n jobs J1, J2, . . . , Jn to be
processed non-preemptively on a machine that can process at most one job at a time. Denote by J
the set of the jobs. Each job, J j ∈ J , has a positional deadline k̄ j which indicates the largest ordinal
number of J j in any feasible schedule (i.e., if J j is scheduled at the x-th position in the schedule,
then x ≤ k̄ j.), a positive processing time p j and a non-negative release time r j before which it cannot
be processed. We assume that the release and processing times of the jobs are agreeable, denoted by
(r j, p j)−agreeable, i.e., r j1 ≤ r j2 implies p j1 ≤ p j2 . In addition, job J j is associated with a cost function
f j(t) which denotes the scheduling cost incurred if J j is completed at time t. The cost function f j(t) is
assumed to be regular, i.e., it is non-decreasing in the job completion times.

A schedule specified for each job when it is executed on the machine. For a given schedule σ, let
S j(σ) and C j(σ) denote the start time and completion time of J j, respectively. Let f j(C j(σ)) denote
the scheduling cost of J j. Let fmax(σ) = max j f j(C j(σ)) denote the maximum cost of σ. Two important
special cases of fmax are the makespan Cmax(σ) = max j{C j(σ)} and the maximum lateness Lmax(σ) =
max j{C j(σ)−d j}, where d j denotes the due date of J j. Let

∑n
j=1 C j(σ) denote the total completion time

of the jobs in σ. When there is no confusion, we can omit the argument σ for the above notations.
We care about the two objective functions: total completion time

∑n
j=1 C j and maximum cost fmax.

The total completion time measures the total work-in-process inventory cost in a manufacturing system,
while the maximum cost measures how close the system is to meeting the customer requirements.
Thus, the two objectives represent the usually competing concerns of manufacturing efficiency and
customer service.

A feasible schedule σ is Pareto optimal for
∑n

j=1 C j and fmax, if there is no feasible schedule σ′,
such that (

∑n
j=1 C j(σ′), fmax(σ′)) ≤ (

∑n
j=1 C j(σ), fmax(σ)) and at least one of the two strict inequalities∑n

j=1 C j(σ′) <
∑n

j=1 C j(σ) and fmax(σ′) < fmax(σ) holds. A feasible schedule σ is weak Pareto opti-
mal for

∑n
j=1 C j and fmax if there is no feasible schedule σ′, such that

∑n
j=1 C j(σ′) <

∑n
j=1 C j(σ) and

fmax(σ′) < fmax(σ). The objective vector (
∑n

j=1 C j(σ), fmax(σ)) of a (weak) Pareto optimal schedule σ
is called a (weak) Pareto optimal point [1].

Our goal is to find Pareto optimal schedules that simultaneously optimize
∑n

j=1 C j and fmax. Follow-
ing the notation schemes of [2, 3], the problem is denoted as 1|k̄ j, (r j, p j) − agreeable|(

∑n
j=1 C j, fmax).

Since both problems 1|r j|
∑n

j=1 C j (minimizing total completion time with release times on a single
machine) and 1|r j|Lmax (minimizing maximum lateness with release times on a single machine) are
strongly NP-hard [4], it is reasonable to focus our attention on the case where the jobs have agreeable
release and processing times. This would also appear to be a relatively mild restriction in applica-
tions. Equal release times or equal processing times are its two important special cases. Moreover,
since 1|prec|

∑n
j=1 C j (jobs have precedence constraints) is strongly NP-hard [5], we will not consider

precedence constraints in this paper.
We obtain an O(n3)-time algorithm for problem 1|k̄ j, (r j, p j)−agreeable|(

∑n
j=1 C j, fmax), which gen-

eralizes and improves the two O(n4)-time algorithms presented in [6] for problem 1|k̄ j|(
∑n

j=1 C j, fmax)
(all jobs have equal release times), and extends the O(n3)-time algorithm presented in [7] for problem
1|r j, p j = p|(

∑n
j=1 C j, fmax) (all jobs have equal processing times and no positional deadlines).
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The notations used in this paper are described in Table 1. The notations not listed below can be
understood naturally.

Table 1. The list of the notations.

J = {J1, J2, . . . , Jn} The set of n jobs to be scheduled on a single machine
k̄ j The positional deadline of job J j, where j ∈ {1, 2, . . . , n}
p j The processing time of J j

r j The release time of J j

d j The due date of J j

d̄ j The deadline of J j

S j(σ) The start time of job J j in schedule σ
C j(σ) The completion time of job J j in σ
w jC j(σ) The weighted completion time of job J j in σ
f j(C j(σ)) The scheduling cost of job J j in σ∑n

j=1 C j(σ) The total completion time of the jobs in σ∑n
j=1 w jC j The total weighted completion time of the jobs in σ

fmax(σ) = max j f j(C j(σ)) The maximum cost of σ
Cmax(σ) = max j{C j(σ)} The makespan of σ
Lmax(σ) = max j{C j(σ) − d j} The maximum lateness of σ
(r j, p j) − agreeable The release and processing times of the jobs are agreeable

The paper is organized as follows: In Section 2, we review the literature. In Section 3, an O(n3)-time
algorithm for 1|k̄ j|(

∑n
j=1 C j, fmax) is presented. In Section 4, an O(n3)-time algorithm for 1|k̄ j, (r j, p j) −

agreeable|(
∑n

j=1 C j, fmax) is presented. Finally, some concluding remarks are drawn in Section 5.

2. Literature review

Pareto scheduling has been studied widely in the literature. The methodology and development in
this topic can be found in [1, 3, 8, 9]. Here, we only review the results on the combination of total
completion time and maximum cost (or maximum lateness) criteria, or/and scheduling with positional
deadlines. Table 2 summarizes the time complexities of the directly related problems.
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Table 2. Summary of complexity results.

Scheduling problems Time complexity References
1|r j|
∑n

j=1 C j strongly NP-hard [4]
1|r j|Lmax strongly NP-hard [4]
1|prec|

∑n
j=1 C j strongly NP-hard [5]

1|d̄ j|
∑n

j=1 w jC j strongly NP-hard [4]
1||(
∑n

j=1 C j, Lmax) O(n3 log n) [12]
1||(
∑n

j=1 w jC j, Lmax) strongly NP-hard [4]
1||(
∑n

j=1 C j, fmax) O(n3) [7]
1|p j = p|(

∑n
j=1 w jC j, fmax) O(n3) [7]

1|r j, p j = p|(
∑n

j=1 C j, fmax) O(n3) [7]
1|k̄ j|
∑n

j=1 C j O(n log n) [16]
1|k̄ j, prec| fmax O(n2) [17]
1|k̄ j|Lmax O(n log n) [17]
1|k̄ j, precB|(

∑n
j=1 CA

j , f B
max) O(nnAnB

2 + nA
2nB log nA) [18]

1|k̄ j, prec|( fmax, gmax) O(n4) [18]
1|k̄ j, prec|( f A

max, g
B
max) O(nA

3nB + nB
3nA) [18]

1|k̄ j|(
∑n

j=1 C j, fmax) O(n3) Theorem 3.7
1|k̄ j, (r j, p j) − agreeable|(

∑n
j=1 C j, fmax) O(n3) Theorem 4.2

Wassenhove and Gelders [10] presented an algorithm for 1||(
∑n

j=1 C j, Lmax) (Pareto scheduling for
minimizing total completion time and maximum lateness), which finds each Pareto optimal point
in O(n log n) time. John [11] extended the idea to solve 1||(

∑n
j=1 C j, fmax) and obtained an algo-

rithm that finds each Pareto optimal point in O(n2) time. Hoogeveen and van de Velde [12] proved
that, for 1||(

∑n
j=1 C j, fmax), there are at most n(n − 1)/2 + 1 Pareto optimal points. Hence, prob-

lems 1||(
∑n

j=1 C j, Lmax) and 1||(
∑n

j=1 C j, fmax) can be solved in O(n3 log n) and O(n4) time, respec-
tively. Steiner and Stephenson [13] studied 1||(

∑n
j=1 w jC j, Lmax) (Pareto scheduling for minimizing

total weighted completion time and maximum lateness). For this strongly NP-hard problem (since
1|d̄ j|
∑n

j=1 w jC j is strongly NP-hard [4], where d̄ j denotes the deadline of job J j by which J j must be
completed), they described several characterizations for the set of Pareto optimal schedules for this
problem, and incorporated these results into a branch-and-bound algorithm, which can enumerate all
Pareto optimal schedules for the instances with hundreds of Pareto optimal schedules in reasonable
time and space. Gao and Yuan [14] gave an O(n3 log

∑
j p j)-time algorithm for 1||(

∑n
j=1 C j, fmax). He et

al. [15] presented an O(n3 log n)-time algorithm for 1|p j = p|(
∑n

j=1 w jC j, fmax) (Pareto scheduling jobs
with equal processing times to minimize total weighted completion time and maximum cost). Liu and
Li [7] obtained O(n3)-time algorithms for problems 1||(

∑n
j=1 C j, fmax), 1|r j, p j = p|(

∑n
j=1 C j, fmax) and

1|p j = p|(
∑n

j=1 w jC j, fmax).
There are also many results on scheduling problems with positional deadlines. Zhao et al. [16]

presented an O(n log n)-time algorithm for 1|k̄ j|
∑n

j=1 C j. Zhao and Yuan [17] presented an O(n2)-
time algorithms for 1|k̄ j, prec| fmax (jobs have positional deadlines and precedence constraints) and
an O(n log n)-time algorithm for 1|k̄ j|Lmax. Gao and Yuan [6] presented two O(n4)-time algorithms
for 1|k̄ j|(

∑n
j=1 C j, fmax). Gao and Yuan [18] presented an O(nnAnB

2 + nA
2nB log nA)-time algorithm for
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1|k̄ j, precB|(
∑n

j=1 CA
j , f B

max) (two-agent scheduling with positional deadlines and B-jobs have precedence
constraints), where nA and nB denote the numbers of jobs from agents A and B respectively, and an
O(n4)-time algorithm for 1|k̄ j, prec|( fmax, gmax). The latter result also implies an O(nA

3nB + nB
3nA)-

algorithm for 1|k̄ j, prec|( f A
max, g

B
max). Chen and Yuan [19] studied the scheduling of proportional-linearly

deteriorating jobs with deadlines, positional deadlines, release times, and precedence constraints on a
single machine. For various single-criterion problems, they proposed polynomial time algorithms or
established the NP-hardness results (when processing times of the jobs have no deterioration). Chen et
al. [20] studied single machine scheduling problems with due dates, positional due indices, deadlines
and positional deadlines (positional due index means a soft restriction, while positional deadline means
a hard restriction). For some single-criterion or bicriteria related scheduling problems, they presented
polynomial time algorithms or NP-hardness proofs. They also listed several practical applications
related to positional due index or positional deadline constraints. Chen et al. [21] studied the ND (Non-
Disjoint)-agent scheduling of linear-deteriorating jobs on a single machine with positional deadlines.
They presented an O(n2)-time algorithm for the constrained optimization problem of minimizing total
completion time of the jobs from one agent, subject to the maximum cost of the jobs from the other
agent does not exceed a threshold value. They also presented an O(n4)-time algorithm for the Pareto
scheduling problem to minimize total completion time of the jobs from one agent and the maximum
cost of the jobs from the other agent simultaneously. If the maximum cost of the agent is a lateness-
like criterion and the jobs have no positional deadline constraints, then the time complexity of the two
algorithms can be improved to O(n log n) and O(n3 log n), respectively. Gao et al. [22] studied the two-
agent Pareto scheduling on a single machine where each job has a deadline and a positional deadline.
Moreover, the jobs from one agent have equal processing times, and the jobs from the other agent are
restricted by their precedence constraints. They presented an O(n5)-time algorithm for minimizing a
general min-sum objective function of the jobs from one agent and the maximum cost of the jobs from
the other agent simultaneously.

There are also many results on Pareto scheduling or/and scheduling with positional deadlines com-
bined with batch scheduling (serial-batch or parallel-batch) or/and multi-agent scheduling. Please refer
to [23–26] for the recent results on batch scheduling and multi-agent scheduling.

3. Equal release times

In this section, we will present an O(n3)-time algorithm for 1|k̄ j|(
∑n

j=1 C j, fmax).
Let σ = (σ(1), σ(2), · · · , σ(n)) denote a feasible schedule, in which σ(i) is the index of the job

scheduled at the i-th position in σ, i = 1, 2, . . . , n. Since
∑n

j=1 C j and fmax are both regular, we can
focus our attention on the schedules without idle times. Therefore, we have:

Lemma 3.1. Let σ = (σ(1), σ(2), · · · , σ(n)) be a feasible schedule for 1|k̄ j|(
∑n

j=1 C j, fmax). Then,
S σ(1) = 0, S σ(i) = S σ(i−1) + pσ(i−1), i = 2, . . . , n.

Recall that the well-known SPT (Shortest Processing Time First) rule solves 1||
∑n

j=1 C j opti-
mally [27]. To coincide with the following discussion, we apply an adapted version of the SPT rule,
called the BRLPT (Backward Restricted Largest Processing Time) rule, to solve 1|k̄ j|

∑n
j=1 C j optimally

in O(n2) time [6]: In each iteration, let U be the set containing unscheduled jobs. A job J j ∈ U, which
is chosen such that k̄ j ≥ |U | and p j is as large as possible, is scheduled at the |U |-th position in the
schedule, where |U | denotes the cardinality of U(i.e., the number of the elements in U).
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Let Ω(J) denote the Pareto set, which consists of all Pareto optimal points together with the cor-
responding schedules. Below, in the algorithm for 1|k̄ j|(

∑n
j=1 C j, fmax), we will construct Ω(J) by

repeatedly applying the standard ε-constrained approach for multicriteria scheduling [1, 3].

Lemma 3.2. ( [1, 3]) Let y be the optimal value of problem α| f ≤ x̂|g (minimizing g subject to the
constraint f ≤ x̂), and let x be the optimal value of problem α|g ≤ y| f (minimizing f subject to the
constraint g ≤ y). Then, the standard ε-constraint approach tells us that (x, y) is a Pareto optimal point
for problem α||( f , g).

Specifically, we will use the following framework in this section. Suppose that solving the general
problem α| f < x|g gives a Pareto optimal schedule (which is true in this section, as shown in Lemma 3.6
below). Then, let (x(1), y(1)) be the first Pareto optimal point obtained by solving α| f ≤ x̂|g, where x̂
is an upper bound on f and (x(1), y(1)) is the objective vector of the generated Pareto optimal schedule.
Continue to solve α| f < x(i)|g and obtain the next Pareto optimal schedule whose objective vector gives
the next Pareto optimal point (x(i+1), y(i+1)) until problem α| f < x(i)|g is infeasible.

Let Π (J) denote the set of all feasible schedules for 1|k j|(
∑n

j=1 C j, fmax). Let Π (J , y) ⊆ Π (J)
denote the set of the schedules with maximum costs (i.e., fmax-values) less than y, where y is a given
threshold value. We have Π (J ,+∞) = Π (J).

The algorithm maintains a position index k(h)
j dynamically for each job J j when σ(h) is adjusted,

h = 0, 1, . . .. Initially, the position indices of all the jobs are equal to their positional deadlines, i.e.,
k(0)

j = k̄ j, j = 1, 2, . . . , n. When σ(h) is adjusted, the position index of any job will never increase, i.e.,
it can only decrease or keep unchanged. The ordinal number of J j in (adjusted) σ(h) cannot be larger
than k(h)

j . In fact, the BRLPT-SC (BRLPT-Smallest Cost) rule is used throughout the algorithm: To
assign a job to the currently last position i, always select the unscheduled job whose position index
is not less than i and processing time is as large as possible, ties broken in favor of the job with the
smallest cost. The BRLPT-SC rule is applicable only for the case of equal release times, because the
completion time of the currently last position can be pre-computed and, thus, the job with the smallest
cost can be determined. In the next section, we have to apply BRLPT (without SC) rule to deal with
unequal release times.

NOREALEASE-TCTFMAX:

Step 1. Initially, set h = 0, y(h) = +∞. Set k(h)
j = k̄ j, j = 1, 2, . . . , n. Let σ(h) =

(σ(h)(1), σ(h)(2), · · · , σ(h)(n)) be the schedule which is obtained by the BRLPT-SC rule: For i =
n, n− 1, . . . , 1, assign the i-th position to the job whose position index is not less than i and pro-
cessing time is as large as possible in J\{Jσ(h)(n), Jσ(h)(n−1), . . . , Jσ(h)(i+1)}; Ties are broken in favor
of the job with the smallest cost when completed at time Cσ(h)(i) =

∑n
j=1 p j −

∑l=n
l=i+1 pσ(h)(l). Com-

pute the start and completion times of the jobs as well as the objective values by Lemma 3.1.
Let Ω(J) = {(

∑n
j=1 C j(σ(h)), fmax(σ(h)), σ(h))}.

Step 2. The (h + 1)-th iteration:

Set y(h+1) = fmax(σ(h)). Invoke Procedure PNORELEAS E−TCT FMAX(J , y(h+1)) to adjust σ(h) (by de-
creasing its cost) to construct σ(h+1) ∈ Π

(
J , y(h+1)

)
.

Step 3. If σ(h+1) , ∅, then include (
∑n

j=1 C j(σ(h+1)), fmax(σ(h+1)), σ(h+1)) into Ω(J). Set h = h + 1 and
go to Step 2. If σ(h+1) = ∅, then return Ω(J).
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Procedure PNORELEAS E−TCT FMAX(J , y(h+1)):

Step 1. For i = n, n−1, . . . , 1, check the inequality fσ(h)(i)(Cσ(h)(i)) < y(h+1). If there is a job Jσ(h)(i), such
that fσ(h)(i)(Cσ(h)(i)) ≥ y(h+1), if i = 1 then simply return σ(h+1) = ∅, otherwise remove Jσ(h)(i) from
its position in σ(h) and update its position index k(h)

σ(h)(i) to be i − 1. Then, adjust σ(h) as follows:

Let E(i) = {l|1 ≤ l ≤ i−1∧k(h)
σ(h)(l) ≥ i∧ fσ(h)(l)(Cσ(h)(i)) < y(h+1)} denote the set of candidate jobs at

time Cσ(h)(i). If E(i) = ∅, then return σ(h+1) = ∅. Otherwise, find the job with largest processing
time in E(i), say Jσ(h)(e) (ties broken in favor of the job with the smallest cost when completed
at time Cσ(h)(i)). Let Jσ(h)(e) be scheduled at the i-th position instead of Jσ(h)(i). Move backward
over consecutive positions, starting from i−1 and ending by e, to find suitable positions for jobs
Jσ(h)(i), Jσ(h)(i−1), . . . , Jσ(h)(e+1). Let c denote the current position. Let Jx denote the job in hand,
initially Jσ(h)(i). When c > e, if pσ(h)(c) > px, or pσ(h)(c) = px and fσ(h)(c)(Cσ(h)(c)) ≤ fx(Cσ(h)(c)), then
Jσ(h)(c) and Jx keep unchanged and we continue with position c − 1 and job Jx. Otherwise, let Jx

be scheduled at the c-position, and continue with position c − 1 and job Jσ(h)(c) (i.e., update the
job in hand Jx to be Jσ(h)(c)). When c = e, simply let Jx be scheduled at the c-position.

Step 2. Update the completion times of the jobs by Lemma 3.1. Update the costs accordingly.

Step 3. Repeat Steps 1 and 2 until all inequalities fσ(h)(i)(Cσ(h)(i)) < y(h+1) hold for i = n, n − 1, . . . , 1
after Step 1. Let σ(h+1) be the final σ(h).

Example:
We give an example illustrating Algorithm NOREALEASE-TCTFMAX. We have five jobs

J1, J2, . . . , J5 defined as follows: r j = 0 ( j = 1, 2, . . . , 5); p j = j ( j = 1, 2, . . . , 5); d j = 6 − j
( j = 1, 2, . . . , 5); k̄1 = 2, k̄2 = k̄3 = 5, k̄4 = 4, k̄5 = 5. Algorithm NOREALEASE-TCTFMAX
works as follows:

1) σ(0) = {J1, J2, J3, J4, J5} with
∑

C j = 35 and Lmax = 14. We get: Ω(J) =

{(
∑n

j=1 C j(σ(0)), fmax(σ(0)), σ(0))}.
2) Run Procedure PNORELEAS E−TCT FMAX(J , y(1)) to adjust σ(0) = {J1, J2, J3, J4, J5}, where y(1) = 14.
The job violating the inequality in σ(0) is J5. The set of the candidate jobs at time C5 is E(5) =

{J1, J2, J3}. Since J3 has the largest release date among the jobs in E(5), it is scheduled at the fifth
position instead of J5. Job J5 becomes the job in hand. We compare J5 and J4. Since p5 > p4, J5

is scheduled at the fourth position instead of J4. Job J4 becomes the job in hand. We continue to
consider the third position. The third position is not occupied because J3 has been moved from this
position to the fifth position. Therefore, J4 is scheduled at the third position. We get the adjusted
σ(0) = {J1, J2, J4, J5, J3} with

∑
C j = 38 and Lmax = 12. Hence, σ(1) = {J1, J2, J4, J5, J3}. We get:

Ω(J) = {(
∑n

j=1 C j(σ(h)), fmax(σ(h)), σ(h))|h = 0, 1}.
3) Run Procedure PNORELEAS E−TCT FMAX(J , y(2)) to adjust σ(1) = {J1, J2, J4, J5, J3}, where y(2) = 12.
(i) The job violating the inequality is J3. The set of the candidate jobs at time C3 is E(5) = {J1, J2}.

Since J2 has the largest release date among the jobs in E(5), it is scheduled at the fifth position instead
of J3. Job J3 becomes the job in hand. We compare J3 and J5 for the fourth position. Then, compare
J3 and J4 for the third position, and finally decide to schedule J3 at the second position. We get the
adjusted σ(1) = {J1, J3, J4, J5, J2} with

∑
C j = 41 and Lmax = 12.

(ii) Now, the job violating the inequality is J5. Let J5 be the job in hand and we continue to adjust
σ(1) = {J1, J3, J4, J5, J2}. We get the adjusted σ(1) = {J1, J3, J5, J4, J2} with

∑
C j = 42 and Lmax = 11.
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Hence, σ(2) = {J1, J3, J5, J4, J2}. We get: Ω(J) = {(
∑n

j=1 C j(σ(h)), fmax(σ(h)), σ(h))|h = 0, 1, 2}.
4) Run Procedure PNORELEAS E−TCT FMAX(J , y(3)) to adjust σ(2) = {J1, J3, J5, J4, J2}, where y(3) = 11.
The jobs violating the inequalities are J2, J4. We select J2 as the job in hand and adjust σ(2) =

{J1, J3, J5, J4, J2}. Since E(5) = ∅, Procedure PNORELEAS E−TCT FMAX(J , y(3)) returns σ(3) = ∅.
Finally, Algorithm NOREALEASE-TCTFMAX returns the Pareto set Ω(J) =

{(
∑n

j=1 C j(σ(h)), fmax(σ(h)), σ(h))|h = 0, 1, 2}.

Procedure PNORELEAS E−TCT FMAX(J , y(h+1)) adjusts σ(h) to construct σ(h+1). During the adjustment
of σ(h), a series of tentative schedules (all denoted by σ(h) except for the last one which is denoted
by σ(h+1)) are obtained. A tentative schedule is obtained from the current schedule by moving a job
violating its inequality to the left and adjusting the positions of some earlier jobs in the schedule,
accordingly. If σ(h+1) = ∅, then it is not a tentative schedule. If σ(h+1) , ∅, then σ(h+1) ∈ Π

(
J , y(h+1)

)
,

since there is no job violating its inequality in σ(h+1), implying that fmax(σ(h+1)) < y(h+1).

Lemma 3.3. Let σ(h−1) = (σ(h−1)(1), σ(h−1)(2), · · · , σ(h−1)(n)) denote any tentative schedule (the last one
is denoted byσ(h)) during the implementation of Procedure PNORELEAS E−TCT FMAX(J , y(h)) (h = 0, 1. . . .).
Let σ = (σ(1), σ(2), · · · , σ(n)) be any feasible schedule in Π

(
J , y(h)

)
. Then, the following properties

hold:
1) S σ(h−1)(i) ≤ S σ(i), i = 1, 2, . . . , n;
2) Cσ(h−1)(i) ≤ Cσ(i), i = 1, 2, . . . , n.

Proof. We prove the lemma by induction on h.
Consider PNORELEAS E−TCT FMAX(J , y(0)). The initial schedule σ(0) (described in Step 1 of Algorithm

NORELEASE-TCTFMAX) is constructed by the BRLPT rule (in fact, BRLPT-SC rule). Let σ be any
schedule in Π

(
J , y(0)

)
= Π (J). We will provide a transformation of σ into σ(0), without increasing

the start or completion time of any job.
Compare σ(0) and σ backwardly (right-to-left), looking for a difference between the jobs. Suppose

that the first difference occurs at the k-th position, which is occupied by jobs Ji and J j in σ(0) and
σ, respectively. By the BRLPT rule, we know that pi ≥ p j. Moreover, both Ji and J j come from
J\{Jσ(0)(n), Jσ(0)(n−1), . . . , Jσ(0)(k+1)}, implying that Ji is processed earlier than J j in σ. We can safely
interchange Ji and J j inσ, obeying their positional deadlines, without increasing the start or completion
time of any job.

Repetition of this argument shows that σ can be safely transformed into σ(0). Properties (1) and (2)
follow naturally, thus proving the base case.

Assume that the lemma holds for PNORELEAS E−TCT FMAX(J , y(0)), PNORELEAS E−TCT FMAX(J , y(1)), . . .,
PNORELEAS E−TCT FMAX(J , y(h)). We now consider PNORELEAS E−TCT FMAX(J , y(h+1)).

Since y(h+1) < y(h), we have: Π
(
J , y(h+1)

)
⊆ Π
(
J , y(h)

)
. Letσ be any schedule inΠ

(
J , y(h+1)

)
. Then,

σ is also in Π
(
J , y(h)

)
. Since the first tentative schedule for PNORELEAS E−TCT FMAX(J , y(h+1)) is just the

last one for PNORELEAS E−TCT FMAX(J , y(h)), this tentative schedule and σ satisfy the two properties of the
lemma. Let σ(h) denote the current (not the last) tentative schedule for PNORELEAS E−TCT FMAX(J , y(h+1)).
By the inductive assumption, σ(h) and σ satisfy the properties of the lemma. But since fmax(σ(h)) ≥
y(h+1), we have to adjust σ(h) as described in Step 1 of PNORELEAS E−TCT FMAX(J , y(h+1)). In σ(h), there is
a job Jσ(h)(i) such that fσ(h)(i)(Cσ(h)(i)) ≥ y(h+1). We update its position index k(h)

σ(h)(i) to be i − 1, ensuring
that Jσ(h)(i) cannot be scheduled later than the (i − 1)-th position. By the inductive assumption, we
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have: Cσ(h)(i) ≤ Cσ(i). It follows that fσ(h)(i)(Cσ(i)) ≥ fσ(h)(i)(Cσ(h)(i)) ≥ y(h+1), implying that Jσ(h)(i) cannot
be scheduled later than the (i − 1)-th position in σ. Generally speaking, a crucial observation is: the
position index of any job maintained dynamically in the (h+1)-th iteration in Algorithm NORELEASE-
TCTFMAX indicates its rightmost position in any schedule in Π

(
J , y(h+1)

)
.

Let σ̄(h) denote the adjusted σ(h). We will provide a transformation of σ into σ̄(h), without increasing
the start or completion time of any job.

Compare σ̄(h) and σ backwardly, looking for a difference between the jobs. Suppose that the first
difference occurs at the k-th position, which is occupied by jobs Ji and J j in σ̄(h) and σ, respectively.
By the BRLPT rule, we know that pi ≥ p j (since J j is scheduled at the k-th position in σ, by the above
discussion we know that its position index is not less than k. Hence J j is also an eligible candidate
when we select Ji. It must be true that pi ≥ p j.) Moreover, Ji is processed earlier than J j in σ. We
can safely interchange Ji and J j in σ, obeying their position indices, without increasing the start or
completion time of any job.

Repetition of this argument shows that σ can be safely transformed into σ̄(h). Properties (1) and (2)
follow naturally, thus completing the proof for PNORELEAS E−TCT FMAX(J , y(h+1)).

By the principle of induction, we complete the proof of the lemma.

Lemma 3.4. Let σ(h) denote the last schedule upon the completion of Procedure
PNORELEAS E−TCT FMAX(J , y(h)) (h = 0, 1. . . .). If σ(h) = ∅, then Π

(
J , y(h)

)
= ∅; Otherwise, σ(h)

has minimum total completion time among all schedules in Π
(
J , y(h)

)
.

Proof. Suppose that in implementing PNORELEAS E−TCT FMAX(J , y(h)), we find a job Jσ(h)(i) violating its
inequality. If i = 1 or E(i) = ∅, then we conclude that Π

(
J , y(h)

)
= ∅, since Jσ(h)(i) cannot be scheduled

with its cost less than y(h). Therefore, we simply return σ(h) = ∅.
On the other hand, if σ(h) , ∅, then by property (2) of Lemma 3.3, σ(h) has minimum total comple-

tion time among all schedules in Π
(
J , y(h)

)
.

Lemma 3.5. Let σl = (σl(1), σl(2), · · · , σl(n)) and σl+1 = (σl+1(1), σl+1(2), · · · , σl+1(n)) denote two
adjacent tentative schedules (either in the same iteration or adjacent iterations) during the imple-
mentation of Algorithm NORELEASE-TCTFMAX. Then, Cσl(i) ≤ Cσl+1(i), i = 1, 2, . . . , n. That is, the
completion times of all the positions never decrease during the entire implementation of the algorithm.

Proof. The proof comes from the BRLPT rule.
Suppose that σl+1 is obtained by adjusting σl in an iteration. Let Jσl(i) be the job violating its

inequality in this adjustment. As described in Procedure PNORELEAS E−TCT FMAX, we find a job Jσl(e) ∈

E(i) with largest processing time. Job Jσl(e) is scheduled at the i-th position instead of Jσl(i). By the
BRLPT rule, for e + 1 ≤ q ≤ i, we have pσl(q) ≥ pσl(e). After assigning jobs Jσl(i), Jσl(i−1), . . . , Jσl(e) to
the suitable positions, the completion time of the i-th position keeps unchanged. Only the processing
time at the i-th position may decrease. The processing times at all the other positions keep unchanged
or increase. Therefore, during the adjustment of σl, none of Cσl(1),Cσl(2), · · · ,Cσl(n) can decrease.

The proof of the following lemma is very similar to that in [12] and so we slide it to Appendix.

Lemma 3.6. Let σ(h) denote the last schedule upon the completion of Procedure
PNORELEAS E−TCT FMAX(J , y(h)) (h = 0, 1. . . .). If σ(h) , ∅, then it is a Pareto optimal schedule
for 1|k̄ j|(

∑n
j=1 C j, fmax).
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We get the following theorem.

Theorem 3.7. Algorithm NORELEASE-TCTFMAX solves 1|k̄ j|(
∑n

j=1 C j, fmax) in O(n3) time.

Proof. The correctness of the algorithm follows from Lemmas 3.2 and 3.6.
Step 1 of Algorithm NORELEASE-TCTFMAX can be implemented in O(n2) time. In Step 1 of

Procedure PNORELEAS E−TCT FMAX(J , y(h+1)), it takes O(n) time to generate a tentative schedule (to find a
job violating its inequality, to move it to the left, and to adjust the positions of some earlier jobs in the
schedule accordingly). Since each job violating its inequality at a position can only be moved to the left
and never comes back to this position (by Lemma 3.5), it goes through at most n − 1 positions. There-
fore, the total number of tentative schedules is O(n2). Step 2 of Algorithm NORELEASE-TCTFMAX
requires O(n3) time for all iterations. Step 3 of Algorithm NORELEASE-TCTFMAX can be imple-
mented in O(n2) time, since the total number of tentative schedules is O(n2). Hence, the overall running
time of Algorithm NORELEASE-TCTFMAX is O(n3).

4. Agreeable release and processing times

In this section, we will present an O(n3)-time algorithm for 1|k̄ j, (r j, p j)− agreeable|(
∑n

j=1 C j, fmax).
We will re-sue the notations developed in the preceding section, such as σ = (σ(1), σ(2), · · · , σ(n)),

Ω(J), Π (J , y), k(h)
j , to name a few. We apply BRLPT rule in this section, meaning that Backward

Restricted Largest Processing Time and Release Time (ties broken arbitrarily).

Lemma 4.1. Let σ = (σ(1), σ(2), · · · , σ(n)) be a feasible schedule for 1|k̄ j, (r j, p j) −
agreeable|(

∑n
j=1 C j, fmax). Then, S σ(1) = rσ(1), S σ(i) = max{rσ(i), S σ(i−1) + pσ(i−1)}, i = 2, . . . , n.

Specifically, we will use the following framework in this section. Suppose that the general problem
α| f < x|g is efficiently solvable (which is true in this section, as shown in Lemma 3.4 with a slight
modification). Then, let (x(1), y(1)) be the first weak Pareto optimal point obtained by solving α| f ≤ x̂|g,
where x̂ is an upper bound on f and (x(1), y(1)) is the objective vector of the generated weak Pareto
optimal schedule. Continue to solve α| f < x(i)|g and obtain the next weak Pareto optimal schedule
whose objective vector gives the next weak Pareto optimal point (x(i+1), y(i+1)) until problem α| f < x(i)|g
is infeasible. Select the Pareto optimal points from among the obtained weak Pareto optimal points.

REALEASE-TCTFMAX:

Step 1. Initially, set Ω(J) = ∅, z = 0. Set h = 0, y(h) = +∞. Set k(h)
j = k̄ j, j = 1, 2, . . . , n. Let

σ(h) = (σ(h)(1), σ(h)(2), · · · , σ(h)(n)) be the schedule that is obtained by the BRLPT rule: For i =
n, n− 1, . . . , 1, assign the i-th position to the job whose position index is not less than i and pro-
cessing time (as well as release time) is as large as possible inJ\{Jσ(h)(n), Jσ(h)(n−1), . . . , Jσ(h)(i+1)},
ties broken arbitrarily. Compute the start and completion times of the jobs, as well as the objec-
tive values by Lemma 4.1.

Step 2. The (h + 1)-th iteration:

Set y(h+1) = fmax(σ(h)). Invoke Procedure PRELEAS E−TCT FMAX(J , y(h+1)) to adjust σ(h) (by de-
creasing its cost) to construct σ(h+1) ∈ Π

(
J , y(h+1)

)
.

Electronic Research Archive Volume 31, Issue 5, 3050–3063.



3060

Step 3. If σ(h+1) = ∅, then set π∗ = σ(h). Let Ω(J) = Ω(J) ∪ {(
∑n

j=1 C j(π∗), fmax(π∗), π∗)} and
return Ω(J). Otherwise, if

∑n
j=1 C j(σ(h+1)) >

∑n
j=1 C j(σ(h)), then set z = z + 1 and πz = σ

(h), let
Ω(J) = Ω(J) ∪ {(

∑n
j=1 C j(πz), fmax(πz), πz)}.

Step 4. Set h = h + 1 and go to Step 2.

Procedure PRELEAS E−TCT FMAX(J , y(h+1)):

Step 1. The same as Step 1 of Procedure PNORELEAS E−TCT FMAX(J , y(h+1)) except that: Replace
“ties broken in favor of the job with the smallest cost when completed at time Cσ(h)(i)” by “ties
broken arbitrarily”. Replace “When c > e, if pσ(h)(c) > px, or pσ(h)(c) = px and fσ(h)(c)(Cσ(h)(c)) ≤
fx(Cσ(h)(c))” by “When c > e, if pσ(h)(c) ≥ px”.

Step 2. Update the completion times of the jobs by Lemma 4.1. Update the costs accordingly.

Step 3. The same as Step 3 of Procedure PNORELEAS E−TCT FMAX(J , y(h+1)).

Lemma 3.2 certainly holds in this section. Lemmas 3.3–3.5 still hold if “NOREALEASE-
TCTFMAX” is replaced by “REALEASE-TCTFMAX”. The proofs are almost the same as their coun-
terparts in the preceding section, and, thus, are omitted for brevity. Note that we elaborately use the
BRLPT (rather than BRLPT-SC) rule in the proofs. Lemma 3.6 relies on BRLPT-SC rule and, thus,
does not hold in this section.

Similarly to the preceding section, we can analyze the time complexity of Algorithm REALEASE-
TCTFMAX. Step 1 of Algorithm RELEASE-TCTFMAX can be implemented in O(n2) time. In Step
1 of Procedure PRELEAS E−TCT FMAX(J , y(h+1)), it takes O(n) time to generate a tentative schedule. Since
each job violating its inequality at a position can only be moved to the left, it goes through at most n−1
positions. Therefore, the total number of tentative schedules is O(n2). Step 2 of Algorithm RELEASE-
TCTFMAX requires O(n3) time for all iterations. Step 3 of Algorithm RELEASE-TCTFMAX can be
implemented in O(n2) time, since the total number of tentative schedules is O(n2). Hence, Algorithm
REALEASE-TCTFMAX runs in O(n3) time, too.

Algorithm REALEASE-TCTFMAX works in a different way from Algorithm NOREALEASE-
TCTFMAX. As shown in Lemma 3.6, the convenience of Algorithm NOREALEASE-TCTFMAX is
that each iteration (one call for Procedure PNORELEAS E−TCT FMAX) determines a Pareto optimal schedule.
Consequently, there are exactly |Ω(J)| + 1 iterations in Algorithm NOREALEASE-TCTFMAX. It
finds only Pareto optimal schedules. On the other hand, during the implementation of Algorithm
REALEASE-TCTFMAX, several schedules belonging to different iterations may have different fmax-
values but the same

∑n
j=1 C j-value. Therefore, Algorithm REALEASE-TCTFMAX may perform more

iterations than |Ω(J)| + 1, but the total number of iterations is still bounded by O(n2). It finds all weak
Pareto optimal schedules, and, therefore, will not miss any Pareto optimal schedule.

Based on Lemmas 3.2 and 3.4 with slight modifications, we get the following main result. The
proof is omitted, since it is standard and can be found, e.g., [1].

Theorem 4.2. Algorithm RELEASE-TCTFMAX solves 1|k̄ j, (r j, p j)−agreeable|(
∑n

j=1 C j, fmax) in O(n3)
time.
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5. Conclusions

In this paper, we studied the bicriteria problem of scheduling jobs with positional deadlines and
agreeable release and processing times on a single machine to minimize total completion time and
maximum cost simultaneously. We presented an O(n3)-time Pareto optimal algorithm for this prob-
lem, which generalizes and improves the previously known two O(n4)-time algorithms for the case of
equal release times and an O(n3)-time algorithm for the case of equal processing times (without posi-
tional deadline constraints). For future research, it is interesting to design algorithms with better time
complexity for the problem. The extensions to batch scheduling (serial-batch or parallel-batch), multi-
agent scheduling, or to the case of arbitrary release and processing times for optimal or approximation
algorithms, is encouraged. We can also consider more general min-sum objective functions instead of
total completion time, in combination with a min-max or min-sum objective function.
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Appendix

Proof of Lemma 3.6:

Proof. By Lemma 3.4, σ(h) is optimal for 1|k̄ j, fmax < y(h)|
∑n

j=1 C j. By Lemma 3.2, to prove that σ(h)

is Pareto optimal for 1|k̄ j|(
∑n

j=1 C j, fmax), we only need to show that it is optimal for 1|k̄ j,
∑n

j=1 C j ≤∑n
j=1 C j(σ(h))| fmax.
Suppose that π , σ(h) is optimal for 1|k̄ j,

∑n
j=1 C j ≤

∑n
j=1 C j(σ(h))| fmax. We have:

∑n
j=1 C j(π) ≤∑n

j=1 C j(σ(h)) and fmax(π) ≤ fmax(σ(h)) < y(h). Therefore, π is a feasible schedule for 1|k̄ j, fmax <

y(h)|
∑n

j=1 C j. We get
∑n

j=1 C j(π) ≥
∑n

j=1 C j(σ(h)). It follows that
∑n

j=1 C j(π) =
∑n

j=1 C j(σ(h)).
We compare σ(h) and π backwardly looking for a difference between the jobs. Suppose that the first

difference occurs at the k-th position, which is occupied by jobs Ji and J j in σ(h) and π, respectively.
From the proof of Lemma 3.3, we do not worry about the position indices of the jobs, since they do
not affect the feasibility of any schedule in Π

(
J , y(h)

)
. Hence, by the BRLPT-SC rule, we get pi ≥ p j.

We claim that pi = p j must hold. (Otherwise, we interchange Ji and J j in π to get π′, which is
feasible for 1|k̄ j, fmax < y(h)|

∑n
j=1 C j and

∑n
j=1 C j(π′) <

∑n
j=1 C j(π) =

∑n
j=1 C j(σ(h)), contradicting the

fact that σ(h) is optimal for 1|k̄ j, fmax < y(h)|
∑n

j=1 C j. ) Moreover, by the BRLPT-SC rule, fi(Ci(σ(h))) ≤
f j(C j(π)). Thus, we can safely interchange Ji and J j in π without affecting the cost of the schedule.

Repetition of this argument shows that π can be safely transformed into σ(h), without affecting the
cost of the schedule. Therefore, σ(h) is also optimal for 1|k̄ j,

∑n
j=1 C j ≤

∑n
j=1 C j(σ(h))| fmax.

Hence, σ(h) is Pareto optimal for 1|k̄ j|(
∑n

j=1 C j, fmax).
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