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1. Introduction and main result

We consider the following class of 1D non-Newtonian fluids

Pr + (pu)x = 07
oD, + (puZ)x + (ou); — (luxlp_zux)x + P, = —apu, (1.1)
q-2 — 1
(19|, = s~ & o).
where u, p, M = pu and P = Ap”(A > 0,y > 1) denote velocity, the unknown density, momentum
and pressure, respectively, g > 0 is the acceleration of gravity and @ is the gravitational potential. The

constant @ > 0 models friction. Without losing generality, throughout the paper we take @ = 1. The
initial and boundary value conditions of Eq (1.1) are as follows

(o, u, D)|;=0 = (po, o, Vo), for all x € [0, 1],
u(0,1) =u(l,r =0, forall r € [0, T], (1.2)
O0,1) = d(1,1) =0, forallr € [0, T].

Q is considered as a one-dimensional bounded interval here. Furthermore, for simplicity, we only
assume the Q =1 = (0, 1), Qy = I X (0, T). The initial density py > 0, p and g are given constants, and
they are both studied in the case of less than 2, where since the method of study is similar for 1 < p < ‘5‘
and < p < 2, we next study only the case of 3 < p < 2.
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According to classical Newtonian fluid mechanics, in parallel fluids, the shear force is proportional
to shear velocity, and its proportion is the viscosity coefficient, i.e.,

I'=T(,Vu)=uVu, u>0.

Generally, we call a fluid with the above properties a Newtonian fluid. Accordingly, a fluid does not
have this property is called a non-Newtonian fluid. For non-Newton fluids, I" (o, Vi) has a reasonable
choice (see Ladyzhenskaya [1])

L = (,UO + ,U1|E(Vu)|p_2) E;j(Vu),

and 1({0 0
Ui uj
E;j(Vu) = 3 (8_)6, + (9_)6,)

In chemistry, biomechanics, glaciology, geology, and blood rheology, there are many problems in
non-Newtonian fluids, which lead to an interest in studying non-Newtonian fluids [2—4]. There are
many theoretical and experimental studies in non-Newtonian fluid flow.

In this paper, the vacuum condition i.e., the initial density, is zero. Strictly speaking, a vacuum, a
gas state below atmospheric pressure in a given space, is a physical phenomenon. In real life, vacuum
distillation, vacuum drying, and vacuum concentration are typical vacuum cases. The role of vacuum
in vacuum distillation is mainly to reduce the boiling point temperature of substances and reduce the
influence of temperature factors on substances. Vacuum drying and concentration both use a vac-
uum environment to accelerate the volatilization and evaporation of specific substances or enable the
whole process to be completed at lower conditions. In particular, non-Newtonian fluids can expand
in a vacuum. According to the experiment, as the air in the vacuum bottle decreases, tiny bubbles
gradually appear on the surface of the non-Newtonian fluid, and the bubbles expand until they spill the
container out. In any case, the theoretical knowledge of non-Newtonian fluids under vacuum must be
continuously refined. To this end, this article allows for an initial vacuum.

In 1996, J. Mdlek, J. Necas, M. Rokyta, M. RitZicka divided non-Newnewton flows with regard
to p in the monograph [S] : when 1 < p < 2, we call such a fluid a shear thinning fluid, when
p > 2, we call such a fluid a shear thickening fluid. For non-Newtonian fluids, Yuan Hongjun and
Xu Xiaojing [6] studied existence of a solution and whether it is unique of a class of non-Newtonian
fluid solution with singularity and vacuum. Takashi Suzuki and Takayuki Kobayashi [7] proved the
existence of weak solution to the Navier-Stokes-Poisson equation. Meng Qiu and Yuan Hongjun [8]
proved the existence and uniqueness of a class of local solution under conditions where compressible
non-Newtonian fluids with a non-Newtonian bit potential in a one-dimensional bounded interval. Song
Yukun, Yuan Hongjun, and Yang Chen [9] investigated the existence and uniqueness of a class of
local solution in the presence of isentropic compressible non-Newtonian fluids in a one-dimensional
bounded area. Liu Hongzhi, Yuan Hongjun, Qiao Jiezeng and Li Fanpei [10] constructed the global
existence of robust solution of Navier-Stokes equations with non-Newtonian potential. Li Huapeng
and Yuan Hongjun [11] demonstrated the local existence and uniqueness of 1D non-Newtonian fluid
solution with damping.

The damping item comes from resistance to fluid motion. Model (1.1) describes more natural
phenomena. For example, porous media flow. We can refer to [12—15] contents of the damp item.
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However, for non-Newtonian fluid, there is no degradation result with non-Newtonian potential and
damp item. We construct a system (1.1)—(1.2) with local existence and uniqueness of the strong so-
lution of non-Newtonian fluids with the non-Newtonian potentials and friction damping. The result is
the following theorem:

Theorem 1. Assume that
4
3<P< 2,1 <q<2,0<pye H(Q),up € Hy(I) N H*(I), Dy € Hi(I) N H(I)
and that there is a function g € L*(I), makes the following equation true almost everywhere on I:

1
~(luocl”uox) _+ Py (po) = pi g, (1.3)

then there exists a small time T, € (0, +o0) and a unique strong solution (p, u, ®) to the initial boundary
value problem (1.1)—(1.2) such that:

peC([0.T.1:H'(D). pre C(10, 71 L),

® € L~ (0, T.; H(D)), ®, € L™ (0, T.; H'(D)), (14
ueC ([0 , T.1; HY(D) N L=(0, T*;Hz(l)), u, € L2 (o, T*;H(l)(l)), '
Vb, € L= (0, T.; LX(D)) . (17 uy) € (10, T.1; L2(D)).

For the above theorem, we will be divided it into four parts to prove. In the first part, we use
the iterative method to get the approximate solution system of problems (1.1)—(1.2) and then make a
consistent estimate of its approximate solution. In the second part, the convergence of the approximate
solution is proved by the weak convergence method. In the third and fourth parts, we demonstrated
that a locally strong solution to problems (1.1)—(1.2) exists uniquely.

2. Uniform estimates

Lemma 1. (Embedding inequality). Assume that f = 0 on 0Q, here Q € R' is bounded and open,
f € C*(Q). Then

1f o) < d%(Q) 1|12
where d(Q) denotes the length of .

See the literature [4] for proof.

The system of Egs (1.1) we studied contains more unknowns, and (1.1), and (1.1)3 are non-linear,
so we cannot get a direct solution (from Abelian theorem, the fifth and higher order algebraic equations
have no analytical solution). Therefore, we are inspired to seek approximate solutions to the system of
equations.

Therefore, we apply an iterative approach to problems (1.1)—(1.2), which yields its approximate
solution system.

pr +u ol u ot =0, 1)
oy + ptu "l + pt O+ R + P = —ptul, (2.2)
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(|04 k) = drg (o* - mo), (2.3)
Qﬁquﬂ = (pb.u5, @g), x€[0,1], 0
ﬂog—uﬂlnzo te0,T], '

we take the initial mass mg = fol po(x)dx > 0, Pk = P(p") = A(p")y, A>0,y>1,p =6+po*Js,
0>0,

2-p
2

Lsuk - _ X l/lk
’ @y+e | |

S(Mk)2 +1

For problem (2.5), uf € H*(I) N H,(I) is a smooth solution to it

kﬁjwyzW

UE0) = ug(1) = 0

+P(0d) = ())&,

(2.5)

Then, we will conduct a consistent estimation of the approximate solution and prove that the limit
of the approximate solution is just the solution of the Eqs (1.1)—(1.2).

In order to do this, we will first get the uniform estimate on uj. The uf is known from the smooth
solution of the boundary value problem

N CCARSY N R )( )~ 61) o

e (ugx)z +e (g(uox ( o 4 8) 2-p(1-¢?) (”gx)2

: (2.6)

then
( . )2 + 1_%
& Hox & s 5\2
Oxx22(p) < 8(’[’3 )2 N 1} Py (pO) - (po) 4 20
Ox (D)
(e 1) + P, (o8 2.7
- ( e ) ( e)'s poy 1T (e6) L2<1>) 7
1-2 1
e |? : 5\2 s
< (|u0xx L2(]) + 1) ( (po) 8 2 +|Px (po) LZ(I))'
Using Young’s inequality, we have
oxxlpzy < € (2.8)
with the help of the Lemma 1, we get
= ¥ et 2 S C, (2.9)
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where C > 0 is a constant that depends only on M,, which may not necessarily be fixed. Next, we
denote
Moy =1+ ool + | uo |H(§(1)QH§(1) +gl2a)-

For any fixed integer K, define

— k k ko k
Tx(t) = max Os;[;(l #Jor O+ [y + [P, )- (2.10)

then we will prove that Jx(7) is locally bounded for ‘3—‘ < p < 2. We estimate each term in Jg(f) in the
following sections.

2.1. Estimate for |uk(t)| Lo

Multiplying (2.2) by u*, Integrating over (0, 1) concerning x and integrating over (0, 7) to s gives,
we can get

=
ux
ffp |uk| dxds+ff ub |ut, dxds
u") +&

1 1 t 1
- f Pku];(O)dx + f Pku';(t)dx - f f (P];ufc + pk(D];uk + pkukuk + pkuk T k) dxds. (2.11)
0 0 0 Jo

We firstly compute the second term of (2.11), we obtain

ds]dx, (2.12)

and

()" es+1\7 ()’ p=2 2 s

fo (Hg) dszfo (s+1)7 ds:;(((ui) +1)° - 1). (2.13)
Substituting (2.12), (2.13) into (2.11), by (2.9) and Young’s inequality, we have

f k@) dx

PN 1

<C+f |Pkuk(t)|dx ff |P |dxds—ffpk|uk||uf|dxds—ftfpk|uk_l||u§||uf|dxds
0 Jo 0 Jo

—ffpk|®§||uf|dxds. (2.14)

0o Jo

By (2.1), we get

Pf = —}/Pkuk_1 — Pyt

X
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Then the above inequality can be expressed as
t
J
¢l 1
Sf f (|pkukuf| + |pkuk_1u];uf| + |pk(D’;uf| dxds + f
0o Jo 0
t 1
+ f f |P];uk71ul;| +y |Pu];1u];|) dxds +C
0o Jo

! 4
<G, fo '\/ﬁuk 2oy 3+ G f lo* (s)ILm(,)I uy ‘(s)|w)|uxx(s)|L2(1)ds+C|P"(t)|11(1)

t
* ‘ﬂ (Ay |'D |L°°(1) |px|L2(1) |M -1 /;C )ds

okuk ds + |u (t)|

Lo (D)

! 2
+ Cnf |pk|H1 xx|r2(n ds + > f “/—k : (S)dS + LP(I) (2.15)
0
where 0 < < 1. To estimate the right part of the (2.14), we have the following estimates
O iy + [Py < CTROD. (2.16)
Using (2.1), we have
f [P ()| dx = f |PA(0)| 7 dx + f ( f (Pi(s))"" dx) ds
2y+1
SC(I + f J¢ (s)ds). (2.17)
0
By virtue of (2.2), we have
5 2p
s(u’;) +1)°
— ufc = pkult‘ + pkd)]; +pkuk_lul; + P’; + pruk,
Wy +e
then we have
P ) 2
" (i) +1) () +2
@) +& | ((t)’ +1)((h)* + )= 2= p) (1 — &) ()
: |p U + " Uk 4 pf o+ PR pkuk|
1 -
< p— (|ul;|2 Py 1) |pkuf + ok + pfdk 4+ PR+ pkuk| , (2.18)
p —

taking the above inequality by L? norm, using Young’s inequality, we obtain

p-1

|uxx L2 )
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<C [1 T |pkuf|L2(1) + |pkuk_lu§|L2(1) + |pkq)§|L2(1) + |Pi|L2(1) + |pkuk|L2(l)]

-1
1
<C|[1+ |,0k|zoo(1) ‘ \//?uf 720)) |u |LP(1)) |,0 | H(D) |(D”
Ly

+ |pkuk|L2(1)] + 5 U,

k1|

L2(]) + |Pi|L2(1)

o F (e

p-1
INON

We deal with |d>xx by (2.3) we have

L2y

1

|(1)];x < 1 |(D];|2_q '47rg (pk - mo) ,

taking it by L?>-norm, using Young’s inequality and Lemma 1, we get

|(Dxx|L2(1) CJF(I)’ (219)

then

@G+p)y

_6y
|5 ()| oy < CTT () < CIZ (1), (2.20)

L —

Using (2.14) and the above inequality, we get

1

! 24y
(M+pmbmscb+f w%ma (2.21)

forallk,1 <k < K.

2.2. Estimate for ‘ \okuk ()

We differentiate (2.2) with respect to ¢, and multiply it by u*, and integrating it over (0, 1) with
respect to x, we obtain

L2(D)

2-p
2 =
1d e u’; +1
k |uf|2 (Hdx + f # ui uit(t)dx
2dr o [| W) +e

1
:f [(—uk—uf—uk u —(Dk)p — puf Mk - pk(l)];t—pkuf] ufdx+f Pdkdx. (222
0

0
Since
s(u’;)z +1 * y
W)’ + & ;
() + 1) () +1)(@) +e)- - (- )
(k) + & (T 3)2 ()
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> (p-D(() +1) 7 () (2.23)

let

2 Sy
(bl 1) <l 1 <0
L>(I)

by (2.20), we have
2-p

B ey = () 1)

Then (2.22) can be rewritten as

-2

li lpk |uk|2 dx+(p-1) fl ((uk>2 + 1)[72 (uk )2 dx
2dt 0 X xt
1 1
f 20 o | [ dx + f o | + f 0¥ [ | dx
0
1 1
+f o i 7ol (778 dX+f ol | 74 17 dX+f | Pl ol doe
0 0 0
1 1 1
+f yPH el (o) dX+f e Za [N 17 dX+f P11 1%l d e
0 0 0
1 1 1
4 f P L) o ] e+ f o || ol dx + f o
0 0 0
Using Sobolev embedding theorem and Young’s inequality, we obtain
1
I :f 20 |uk_l||uf u,
0
! 2
B [ 1ek el
0

1
I = f o[ [ o dx < €T (1) +
0

k
P |u

12
O[] dx = Z I (2.24)
=1

p—1 2
I,Bku];t(t)|L2(1) >
0p -1
- p 2
W dx < CIZ™ (1) + Bt ()] )
p—1 2
|18k”];t(t)|L2(1) ’

| |
o= [ ot o o e < o,
0

1
Iszf k|, k-1
0
1

16y
3p—4
K O+

24y

<CJr @),

Vb

e g o W

L2(D)

4y
Cldx<cId o+

-1
I=| [P e Bt 0]
1
17 = f ’)/Pk |dX < CJ3] (t) + |ﬂkuxt L2
ls = f |p§| |”k 1”(Dk| |”k| dx < CJ3P 40) lﬂk”xt 2y’
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k| | k—1|

k
<o o]

1
f()

34y
<ci7 @+

LP P=I(I) Le(n) 1 XL L=(D

m%mw
o= [ ol |ui| |u§‘| sz, |u¢—1|m) ) [
I’B" o+ 5 - — But v
= WMmM<wmA¢7k

In order to estimate /,,, we need to deal with ®* . Differentiating (2.3) with respect to ¢, multiplying
it by @ and integrating over (0, 1), we have

LD

e
<CJ{ (t)+

3
|t .., < CIZ@.

LZ(I) |L2(I)

2-q
H(e(@) +1)° |
f — | oF dx = —47rgf (pk k= 1) ¥ dx.
o [l (DX +e& 0
t
By (2.23), we have
s 2
He(@k) +1 ’ 1 =
f (—Z ot Q)’;tdxz(q—l)f[(dbi)2+l]2 ot
o [| (P¥) +e 0
t
Let
, e
ﬁZ:[(CD’;) +1] ,
then .
(6) | . = [(@) +1 Tl <o E 1) <o
Ko eay IV =) xelpgy * )= G D,
we have

=)’

-1
f B/ |* dx = f (o) 0, dx < C ¥y [ oy VOS2 (B2

Using Young’s inequality, combining the above estimate we obtain

1
ha = fo P10 o] dx < o ‘ Vol L2(1) i@ '('BZ)

Substituting /;(j = 1,2,...,12) into (2.24), integrating over (7, t) on time variable, we have

‘ \/ﬁuf(t) LZ(I))

(s)ds, (2.25)

N o<ere
ey~ KNS

2 ! 5
k 31) 4
2 +(p - 1)]; Lgkuxz|Lz(1) (s)ds SCf (s)ds + sup (1 + ‘ \/_u (1)

0<k<K

p-1

L2(1)
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then, from the above recursive relation, for 1 < k < K, we obtain

! 2 1 1 1 2
(p—l)f LBkuf“|L2(1)(s)dss(l+§+Z+...+2—K)C[f T (s)ds + sup (1+‘\/Eu’;(1)

0<k<K
T 34y 2

fJf(’"“(s)dH sup (1+‘\/ﬁuf(r) )]
T 0<k<K LX(I)

2
L2(1))

<2C

Thus, we deduce from (2.25) that

| Vokul(s)

2 ! 5 .
e T fT llgkul;t|Lz(1)(S)dSSC fT J 7 (s)ds + sup (1+‘\/ﬁuf(r)

0<k<K

2
Lzm), (2.26)

where C is a positive constant, depending only on M.

2
To obtain the estimate of | \/pkuf(t)‘y([), we need to estimate

2
L2(1>) ’

lim sup (1 + | Nk

™0 0<k<k
Using (2.2), we get

1

1 1
f pk |1/lf|2 (Hdx < 2f (pk |uk—1|2 |I/t];|2 +,Dkq)l; +pk |uk|2 + (pk)_
0 0

ESuk + P§|2)dx,

2-p
2 2
s(uk) +1
Eeuk = || 2L
P ( k)2+
uk)" + ¢

Since (pk, uk, CI)") is a smooth solution, we obtain

1
tim [ (o [ o (o)
0

t—0

e k k
Lpu + P

2
)(x, fHdx
2 k k 2
S |p0|L°°(I) |u8|Loo(1) |MSX|L2(1) + |p0|L°°([) |M |L2(l) + |p0|L°°(I) |(I)x|L2(l) + |g|L2(1)'
Thus, using (2.9), we deduce
1
) 2
11rr6 supf p" |uf| (n)dx < C.
T— 0

Taking a limit on 7 for inequality (2.26), we obtain, as 7 — O,

| okuk (0

2 P e
. fo Bt [, (s)dsSC(1+ fo T (s)ds). (2.27)
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2.3. Estimate |pk(s)|H1(1)

We differentiate (2.1) concerning x, multiply it by o, integrating it over (0, 1) for x, and using

Sobolev embedding theorem, we obtain

d '3
dt |pl;|i2(1) dx = _L (Eul;c_l (pfc)z +pkp§u];1) (ndx
3/ _
= ) (|u/; 1 L(D) |P§|iz(,) + |pk|L°°(1) |M§x1 L2(1))

k—1
XX LZ(I) >

<3 |P];|iz(1) u

applying Gronwall’s inequality, it follows that

!
2 -
sup |0 (0,1, < ol exp (c f i )] g ds).
0

0<t<T

Substituting (2.20) into the above inequality, we get
2 A
"],y < ClbOE xP ( f J,z"'4<s>ds).
0
Using (2.29) and (2.1), we have

8y
O 117 O gy + 15O 5Oy, < T 0

|pf(t)|L2(1) S

By virtue of (2.20), (2.27), (2.29) and (2.30), we conclude that

k p k k
O], + ity + [0 O] + [NFED

a4y
<C exp(sz J;{"‘(s)ds),
0

(2.28)

(2.29)

(2.30)

t
ko ke | k¢
L2(I) +f(; (| p ut(s)|L2(1) + |uxt(s)|L2(1))dS

(2.31)

where Cy, C, are two positive constants, depending only on M. By the definition of Jx(#), we obtain

a4y
Jx() < Cexp (sz J;(p“(s)ds).
0

T asy
f.l;(”(s)dsél,
0

then we take T; = T. On the other hand, if

a8y
f T (s)ds > 1,
0

10 48y
f J;{’H‘(s)ds = 1.
0

If

we can find ¢y € (0, T), such that

(2.32)
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So we have

sup Jk(t) < Cie®?,

0<t<ty
and

10 % 0 4, 48yc 48y 48yc
JKP (S) ds=1< C3r-% 34 dS<C3p4e3p 10,
0 0

SO

—48y -48yC
= 3434
T, = c3r4e 7,

then we have

sup Jg(s) < Ce® <C.

0<t<T

Given this inequality, we can acquire a short-time 7'; > 0 such that:

€ss sup (|pk(s)|H|(1) +| kl lﬂ(l)nH2(1) ‘\/_k k( )

0<t<T

3. Convergence of approximate solution

(2.33)

T
2
L2(1) |pf|L2([)) f(; |uxt|L2(1) dt S C (234)

It is demonstrated that the approximate solution (pk ,uk, (Dk) strongly converge to the solution of the

Eqgs (1.1)—(1.2) with positive density. We give the following definition

ﬁk+1 — pk+1 _pk, ﬁk+1 — uk+1 _ uk, (Dk+1 — (Dk+1 _ ch,

then we verify that (,5’“”, 7R d_)k”) satisfy the system of equations

pltm (pk+1uk) _I_(pkﬁk) =0,

pk+1 —k+1 +pk+1 k= k+1 +(La k+1 Lg k) (Pk+1 _Pk)
pH
pk+1 ( ko gkl _ Mltc —u “x _ (Dk) pkuk+1 pk+1 ( kot (Dk+1)

emk+1 emk _ —k+1
£,0" —L @ =4ngp
the initial boundary value conditions are given as follows

=0, ®"'=0 on 0Qx(0,T),
A (x,00=0, @'(x,00=0 xeQ.

Multiplying (3.1) by p**!, integrating over I with respect to x, we deduce that

L2(]) |'5 k+1(t )|L2(1)

| 5 0] 2y < C O] o) 17 Ol 2y + 1O |

< BE g 05 + 0[Oy -

where B}, = C |u |L2(1) + Cylp*%, . forall t < Ty and k > 1.

H'()

3.1

(3.2)
(3.3)

(3.4)
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Multiplying (3.2) by #**!, integrating over I with respect to x, using (3.1), Holder inequality and
Lemma 1, we obtain

1d (! 2 !
- pk+1 |b—tk+1| dx + (L;Mkﬂ _ L;uk) 7 dx
2 dt 0
1
_ f (pk+1 (_uk K — Uy (Dk) —k+1 pk+1 ((T)k+1 + ﬁkuk) —k+l (Pk+1 Pk) k+1)dx
- t x x
0
k+1 k+1 k+1 k+1 —k-1 k+1
|p |L2(1) |” |L2<’> |” |L2(I) |p |L2(1) |”xt LZ(I) L2(I) + |p |L2(1) Uy |L2(1) |”xx L2(I)| |L2(I)
k+1 k+1 k+1
|p |L2(1)| xx L2(1) L2(1) |p |H1(1) L2(]) |u |L2(1)
k+1 f k+1 —k+1 k+1 _ pk —k+1
| |H'(I) |u LZ(I) Uy LZ(I) ' 12(D) + |P P |L2(1) | |L2(1) ’ (3'5)
Let X -y v
2 —
W (s) = 8s2+1 )4 12 ’
sot+e (s2 +e)?2 =
SO

f 1 [ f ' (0" + (1-0) lk )]de(—"“) dx>C f 1 (—"“)de, (3.6)
0 0 0

using (3.4) and (3.5), we have

fo | (Eeu! —Eouf)at*'dx > € fo | (@) dx, (3.7)

Using (2.34), (3.7) and Young’s inequality, (3.5) could be rewritten as

i lpk+1 |ﬁk+1|2dx+f

where E’,;(t) =C (1 + |u’;,(t)|iz(1)), forall t < Ty and k > 1. Using (2.31), we derive

50 [ O] gy + MR (3.8)

! !
f El(s)ds < C +Ct, f Bj(s)ds < C + Ct.
0 0
According to Eq (2.3)
[|(Dk+1|‘1_2 (Dk+1] 3 [|(Dk|q—2 (I)k] _ 4rgptt!

let’s multiply both sides of this equation by ®**!, about x in (0, 1) integral, available

1
[ (o] |

2-p

ss2+1) 2

x(I—Z (Di:l )(i)k+ldx — 4_ﬂ_g fl q_)k+lpk+ldx’
X 0
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then

7’

[ lfoor] -] joa

0 X X

_ T ke Y ] = kr1)\? fl =kt 1)2
_fo UO 2 (0051 + (1 - 0)0%) | do (B51) dx > € 0 (@) dx.

By combining the above formula, Holder inequality and Lemma 1 are obtained

|(Dk+1|L2(1) = Clpk+1|L2(1) (3.9)
Collecting (3.4), (3.8) and (3.9), we deduce that
d (11,02 e o n|? - 2 Tk (2
_(| 0] +‘ o 1))+ i Of g+ 19 g,
k+1 k+1 NG
<C (1O, + |V 0| o)+ 1B (3.10)

Using Gronwall’s inequality, we have
| k+1(t)|L2(I) |\/ﬁ k+1(t) o f(|”k+1(s)|L2(1) + |(Dk+1|L2(1)) ds
<Cexp C t f('\/_ LZ(I))ds.
Then, we choose 7 > 0 and then 7. > 0 so small that 7, < T and C exp (C,,T*) < 1/2, we get
P O+ [V, + [ | (Iﬁl(s)liz(,) +IBIE,)ds < 5 f (Rzely
POl + N7, N * fo (1 B )ds < 2 f (R

—k+1 ]2 okt k+l k+12
|p (t)|L2(I) + ' p u + |u (S)lLZ([) + |(D |L2(1) N

1 (7 2
Sif(;( LZ(I))dS'

Hence, we combine the above inequalities, in view of Gronwall’s inequality, we deduce that

K
Z[ sup (|pk+l(t)|L2(1) ' / k+1 —k+1 ) f (|uk+1(s)|L2(1) + |(Dk+]|L2([))dt:| < C. (311)

t=1 LO=<t<T.

L2(1) | 0( )|L2(1))

+ |L_‘ch(s)|i2(1)) ds

kﬁk

Therefore, we conclude that the full sequence (pk, uk, CD") converges to a limit (p, u, @) in the fol-
lowing strong sense:

pf = p inL*(0,T.; LX), (3.12)
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W' —>uin L (0, T LX(D) 0 L2 (0, T.; Hy(D)). (3.13)
Combining (3.3) and the convergence of (3.12), we can get
o 5 @ inL(0,T.; HX(D)). (3.14)

From the lower semi-continuity of the norm, we get:

0<1<T,

T*
ess sup (|p(t)|H1(1) + Iu(t)lwé,pmHz(]) + | \/;_)u,(t)|L2(1) + |p,(t)|L2(,)) + f qut(t)liz(,) dr < C. (3.15)
0
4. Existence

The proof of existence should be completed in three steps, namely, taking limits on k — oo, & — 0F
and 6 — 0*. Since the method is similar, we will only describe the process of taking limits on 6 — 0
below. The first two steps can be found in the literature [4].

We take 6 to be a very small positive number, let pg = Js * po + 0, Js is a mollifier on 1, ug €
Hé (I) N H*(I) is the unique smooth solution of the boundary value problem:

() = -Pleg) + (68)" &
u(0) = (1) = 0,

there exists g° € Cy°() satisfies

l

. B _
|g 2 < I8l élggl 8 — g|L2(1) =0.

For pf) = Js * po + 6, there is a subsequence {(pgj, ugj)} of {(pg, ug)}, as 6; — 0% satisfing

J] S\? s, 1 .
-P, (poj) + (poj)z gé, — —P,(po) +p(§g in LZ(I),
6; P72 s b2 —
T \|Hox]  Hox) T (|M0x| uo")x in L°(1).

Therefore, (o, up) satisfies the following problem

1
= (luo" uox) = =Py (o) +pyg  aexel.

There exists a T, € (0, +00), the initial-boundary value problem
pt + (pu)x = 09 (x9 t) € QT*
(o), + (pu?) +p®, = (ool uos) +Py=—pu, (x,0)€Qr,

K92 pk| = k_ 1 k
[|(I>X| (DXL =4ng (p - @({p dx) ,
P=Pp)=Apy, A>0,y>1,

(o, u, D],y = (pg, ug,d)g), x€[0,1]
ulx:O = ulx:l =0, te[0,T.]
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admits a unique solution (p‘s, ul, ®5). Moreover, (p‘5, ul, (D‘S) satisfies the uniform estimate

T,
(3
Lz(l) + |pt(t)|L2(1)) + ‘fo‘

According to the above uniform estimate, by the lower semi-continuity of norm, as 6; — 0, we deduce
the following uniform estimate:

5 5 5 5 cnl?
ess sup (|p (t)|H](1) + |u (t)|W$,p(1)nH2(1) + ' Vpou (1) ux,(t)|L2(1) dr < C.

0<t<T)

T
2
€ss sup (|P(l)|H'(1) + |M(l)|W(;’P(1)mHz(1) + | \/ﬁut(t)|Lz(1) + |pt(t)|L2(1)) + f |uxt(t)|L2(1) dt < C.
0

0<t<T

5. Uniqueness

Suppose (o1, uy, @) is a strong solution to the problem (1.1)—(1.2), (0,2, u,, @) is also a strong
solution to the problem (1.1)—(1.2), then we have

1 1 t 1
3 f o1 (uy — u2)2 dx + f f (Lpul - Lpuz) (41 — up) dxds
0 o Jo

t 1
= f f (o1 = p2) (h = ®2,) (s = 12) + 1 (ur = ) e = py (= ) + (Py = Po) (uy = up),) dxds
0 0

¢l

+f f P1l(@) — Dy)|luy — up|dxds
0 Jo

5

= Z 1, (5.1)

=

J

where h = —uy — Uy, — Uplty, € L? (O, T.; L2(I)).
Then using Holder inequality together with Lemma 1, we have

!
I < f o1 — palyago I = Doz s — il gy (D
0
! !
2 2 2
< ng; o1 = P2l I = Porlp gy ds + 8]; 1 = vl A,
t 1 ! )
2
I, = f f o1 luy — us|” uydxds < f |\/p_1(u1 - M2)|Lz(,) |tt2x| o1y ds,
0 0 0
! 1 !
2 2
L= [ [ v -l asds < [ VBTG -y ds
0 0 0
! 1 !
I, = f f |Py — Ps||up, — up, | dxds < f [Py = Palpogy lurx — o2y ds
0 0 0
f A
2 2
< Csfo |P1 - P2|L2(1) ds + S‘f(; |u1x - u2x|L2(1) dS,

! 1 f
Is = f f P1l(@ — ©y),|lu; — us|dxds < f lo1(e1 — p)l2plur — uali2pds.
o Jo 0
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By (3.7), we have
t 1 =2 !
j(; f(; (Eu = E2u) (uy — up) dixds > g f(; 1 = w2ilpzg ds.
1

_ 2-p
(qu(f)| £2(0.6:9° (1) it (Dl oo (0,:;L°°(1)))

where g =

Then, following from (5.1), by choosing & = (,uo)p%2 /8, we derive

t
0

1 2 3 r=2 2
2 | Vior (1 — M2)|L2(,) *1 (o) 2 |1y = il ) ds

!
2
< f (c o1 = P2l I = Paillsy + [ Vo1 a1 = )2, (1 + lslgon) + C 1Py = Pzﬁz(,)) ds,
0

where 0 < A(f) = C (1 +1h = Do, ) + luailie) € L' (O, T0).
As is known from the definition of a strong solution, we take ¢ = p; — p,, then

1 1 ! 1
Ef o1 — pal’ dx Zf f (p1uy — pauz) (1 — p2), dxds
0 0 Jo
t ol
:f f (o1 (w1 — uz) + (o1 — p2) U2) (P1 — p2) dxds
0 Jo
t ol
:f f (P12 (U1 — w2) (p1 = p2) + p1 (U1 — Ua2) . (01 — P2)
0 Jo
!
Sf (lplleZ(I) lur — 2|y lo1 = P2l + |pI|L<>°(1) |1 — Uy
0
1 2
+§ |u2x|L2(1) |p1 _p2|L2([) dS
[ B : Lo 4o ld
= 0 (S) |P1 _P2|Lz(1) + g (/JO) Iulx - u2x|L2(1) S,
where 0 < B(t) = C (o111 + ltaslioy) € L' 0,T.). Similarly, we have

t 1d 1 s t 5 1 2 5
[ 55 [ m-rians< | (D(S)|P1—P2|Lz(,)+§(ﬂo)2 |u1x—u2x|L2(,))ds,

where 0 < B(t) = C (|p1 ly + |u2x|Lm(,)) € L' (0,T,). Similarly, we have
Combining (5.2), (5.3) and (5.4), we obtain

1 p=2 ! 1 2
E (/’l()) : ‘f(; |u1x - u2x|i2(1) ds + E [| \/p_](ul - u2)|L2(1) + |Pl —Pzﬁz(,) + |P1 - P2|22(1):|

!
2
< f H(r) (| Vor (uy — u2)|L2(1) + o1 —Pzﬁz(,) + Py — P2|iz(1))d3,
0

where H(t) = A(f) + B(t) + D(¢) € L' (0, T,). Using Gronwall’s inequality, we can get
p

1
) (o)

5 e = 1020 (0,

(5.2)

(5.3)

(5.4)

Electronic Research Archive Volume 31, Issue 5, 2940-2958.



2957

1 2
+5ess sup (| V1@ = 1) Oy + 101 = p2) O, + 1Py = P2 D) <O,

0<t<T,
then
p1=p2, Npi(u—u) =0, up = uy,,
we can get
1

fo (q)lx - q)Zx)z dx < Clpl _p2|%2(1)~
Therefore

P1=p2 Uy = Uy, D, = O,.
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