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Abstract: With the rapid development of meteorology, there requires a great need to better forecast 
dew point temperatures contributing to mild building surface and rational chemical control, while 
researches on time series forecasting barely catch the attention of meteorology. This paper would 
employ the seasonal-trend decomposition-based simplified dendritic neuron model (STLDNM*) to 
predict the dew point temperature. We utilize the seasonal-trend decomposition based on LOESS 
(STL) to extract three subseries from the original sequence, among which the residual part is 
considered as an input of an improved dendritic neuron model (DNM*). Then the back-propagation 
algorithm (BP) is used for training DNM* and the output is added to another two series disposed. Four 
datasets, which record dew points of four cities, along with eight algorithms are put into the 
experiments for comparison. Consequently, the combination of STL and simplified DNM achieves the 
best speed and accuracy.  

Keywords: weather forecasting; time series prediction; dendritic neuron model; seasonal-trend 
decomposition; machine learning  
 

1. Introduction  

Weather forecasting is of great importance to human beings [1,2]. It means to analyze various 
atmospheric data, including air pressure, surrounding temperature, wind intensity and direction, rainfall, 
and so on. This study impacts multiple fields such as industry, agriculture [3], disaster protection [4] and 
energy management [5]. For instance, weather forecasting can be used to ensure storage as well as 
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transportation in order to increase quantity and improve quality in agricultural planting and production. 
Moreover, by accurate prediction of local wind power, hydropower, and solar energy, we can make a 
better use of these renewable resources under sustainable strategy [6]. Certainly, the most important 
purpose is to reduce unnecessary losses of properties and lives as much as possible [7].  

Among various parameters of weather is there an important parameter called dew point. The dew 
point temperature reflects the humidity of the air and is widely used in industrial production and 
weather forecasting. Additionally, in the pneumatic system, researches on dew point are beneficial to 
improvement of equipment reliability and service life [8]. As current dew point studies mainly rely on 
instrumental measurement in specific areas, equation solving remains the first choice. Most of these 
expressions are differential equations, whose results are almost determined by initial conditions. The 
prediction quality is greatly influenced even if there are few deviations from true values.  

Traditional method for weather forecasting is the numerical weather prediction (NWP) [9]. Its 
core idea is to construct a general circulation model following the physical principles and perform 
numerical analysis using computers. Therefore, weather forecasting has often been troubled due to its 
complicated computation, large amounts of changeable parameters and latent continuity among data. 
As is discussed in [10], although better improving measures are undertaken, these problems still exist 
and call the appearance of machine learning.  

Machine learning (ML), along with the subsequent deep learning (DL) as a great idea has multiple 
contributions to weather forecasting. Compared with classical NWP methods which take various 
complex equations and complicated computation into account, all that machine learning needs are 
almost the input data, a transmitting model and a modification step [11]. Accompanied by the huge 
improvement of computing power and increasingly big-data processing technology, machine learning 
is playing a significant role in weather forecasting, especially for one-dimension time series, since 
these series are more suitable for data with certain regularity and duplicate procedures [12,13].  

As for time series, there are a good many forecasting models. Time series are a series of values 
observed in a sequence. They are characteristic of nonlinearity, correlation, and volatility [14–16]. 
Researchers have been devoted to its prediction for a long time. At the beginning, they choose linear 
fitting methods such as the autoregressive moving average (ARIMA) [17,18], the exponential 
smoothing model [19] and the naive method [20]. But most of them suffer from their trouble of solving 
nonlinear problems. Nowadays, with the development of ML and DL, nonlinearity is well resolved. 
Meanwhile, researchers can obtain better forecasting results benefiting from them. These methods 
include support vector machine (SVM) [21], fuzzy-series analysis [22], artificial neural networks 
(ANN) [23–26] and their variants. But when predicting dew point temperatures using SVM and 
random forest alike [27], they are still troubled by complex mathematical models.  

ANN is a representative researching framework among all the methods due to its data-driven and 
big-data mining features [28]. By putting existing data into the ANN model to train, the hidden 
connection among data can be found, thus obtaining appropriate results. Its another advantage is 
adaptability [29]. The ANN can be adaptive based on settings of some updating parameters, whose 
modification can significantly improve forecasting results. Although the ANN reveals a good many 
advantages, the model performs not so well in the time series prediction due to their changeable 
features and unstable volatility under the circumstance of weather.  

Multilayer Perceptron (MLP) [30] develops on the basis of perceptron, which is a one-layer 
classifier for the linear separable case. Given enough hidden layers, it can achieve high-level results. 
Nevertheless, it lacks flexibility when addressing problems about time series.  
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Elman [31] is a kind of ANN adding a context unit to basic neural networks, which makes it a 
BP-like forward mechanism. The context unit receives previous state output as the input of hidden 
units. The Elman network boasts nonlinearity and time-memory feature, which is sensitive to 
historical data and help construct required models. However, it is troubled by computational costs 
and overfitting problems.  

Support Vector Regression (SVR) [32] is an application to series prediction based on SVM, which 
utilizes kernel functions, sparse solution to decide the number of support vectors. Although the 
dimension of the input data has no impact on the computing complexity, the absence of preprocessing 
leads to biased forecasts. 

AR is the abbreviation of Autoregressive Recurrent Network. DeepAR [33], which is involved in 
the study, creatively combines conceptions of time-variability, continuity, and dynamicity. Moreover, 
it introduces the probability distribution and improves the accuracy of prediction results. However, 
when confronted with multi-step prediction, time cost is an unbearable problem. And taking the mean 
values as final results may result in distortion as well.  

Below are other state-of-the-art models with memorability for time series. As a classical variant 
of recurrent neural network (RNN), long short-term memory (LSTM) is widely used due to its ability 
to avoid vanishing gradients in RNN [34]. The modification is to introduce more layers so as to 
alleviate multiplication of past time units. Existing researches show that LSTM performs well in 
financial time series [35]. Furthermore, for simplification, researchers proposed the gate recurrent unit 
(GRU) with less layers [36]. A few years later, Jaeger put forward a novel network called echo state 
network (ESN) [37]. The ESN develops based on RNN as well and absorbs the nonlinear high-
dimensional transformation feature as the SVM does. ESN has widely applied to temperature time 
series [38] but suffer from unstable probability distributions which is harmful to its prediction. In 
addition, the three memorable algorithms above are time-consuming when series become longer.  

Putting the above factors aside, original series are chaotic and disorganized, which needs a 
preprocessing method to reduce their adverse effects on predicting. A classical method is empirical 
mode decomposition (EMD) [39]. It is a mathematical method to separate a sequence into the sum of 
multiple subseries based on the Fourier transformation. This approach has strong interpretability but 
has little connection with basic features of the original data.  

Given the situation above, we need a model concerning both data preprocessing and close relation 
with features of series. In recent studies, instead of traditional mathematical EMD, a novel 
decomposing method [40] based on sequence features called STL is used. The seasonal and trend 
elements of the original series are successfully extracted using the STL, an abbreviation for the 
seasonal-trend decomposition procedure based on LOESS. Then the original problem is simplified and 
become a prediction of the third subseries. Here, a model called dendritic neuron model (DNM) [41] 
inspired by biological excitement is introduced. By deciding which branch is activated, researchers 
can construct a neural network with complex relations. With the use of sigmoid functions and 
multiplicated units, nonlinearity is well solved. Furthermore, as time series are basically one-
dimension, the network can be further improved to DNM* by simplifying several functions of DNM. 
So far, a STLDNM* approach is constructed in order to predict time series.  

Considering the huge significance of weather forecasting, and the urgent need to overcome 
difficulties mentioned above, we propose the STLDNM* model to make a solution. The model 
successfully combines the decomposition technology STL and the machine learning model DNM, and 
experiments demonstrate that the proposed model performs better in predicting instant weather 
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conditions than other cutting-edge methods. It excels in both aspects of accuracy and efficiency, thus 
has a promising prospect in weather forecasting in the real world.  

The main contributions are summarized as follows:  
• To tackle the problem of predicting dew point series, a new combination of the decomposing 

method STL and the forecasting model DNM is proposed. This combination boasts both 
consistency and accuracy in the application of weather forecasting.  

• The DNM model is improved to be DNM* which is more suitable for time series. DNM* is 
better on both stability and accuracy and has potentials for more chaotic series. BP is chosen 
as the optimization method due to its simplicity.  In this paper, DNM* manages to predict 
dew points of different cities nationwide. 

2. Methods  

2.1. Seasonal-trend decomposition based on LOESS (STL)  

The STL is a method of decomposing time series data into three elements: the seasonal, trend and 
residual elements. Its formula is represented as follows:  

𝑌௞ ൌ 𝑇௞ ൅ 𝑆௞ ൅ 𝑅௞          (1) 

where 𝑇௞, 𝑆௞, 𝑅௞ respectively denotes the trend, seasonal and residual element, for 𝑘 ∈ ሾ1, 𝑀ሿ, 𝑀 
is the length of time series.  

LOESS, or locally weighted regression, is its full name. It aims to smooth the trend and seasonal 
parts of time series [42]. Two variables, 𝑥௜ and 𝑦௜ (𝑖 ൌ 1,2, … , 𝑛), are adopted to fit the regression 
curve, denoted by ℎ෠ሺ𝑥ሻ. Given 𝑥, fitting value of ℎ෠ሺ𝑥ሻ is the smooth of 𝑦 along the scale of the 
independent variable. Therefore, we shall deal with datasets with missing values.  

ℎ෠ሺ𝑥ሻ  is obtained considering two cases. Assume a positive integer 𝑟 , then we shall launch a 
discussion below:  

1) If 𝑟 ൑ 𝑛, we choose the 𝑟 points from ሼ𝑥௜ሽ which stand closest to 𝑥. Then every point will 
be given a specific local weight according to how far it is from 𝑥. Below are two related equations. 
𝜆௥ሺ𝑥ሻ denotes how far 𝑥 is from the 𝑟th farthest point 𝑥௜. 𝑊 is tricube weight function. 𝑣௜ሺ𝑥ሻ is 
the local weight of 𝑥௜:  

𝑊ሺ𝑡ሻ ൌ  ൜
ሺ1 െ 𝑡ଷሻଷ, 𝑓𝑜𝑟 0 ൑ 𝑡 ൏ 1

 0,                 𝑓𝑜𝑟 𝑡 ൒ 1  
       (2) 

𝑣௜ሺ𝑥ሻ ൌ 𝑊 ቀ
|௫೔ି௫|

ఒೝሺ௫ሻ
ቁ         (3) 

2) If 𝑟 ൐ 𝑛, the definition of 𝜆௥ሺ𝑥ሻ becomes:  

𝜆௥ሺ𝑥ሻ ൌ  𝜆௡ሺ𝑥ሻ ௥

௡
         (4) 

From these formulae above, we can see that 𝑥௜  closest to 𝑥  have the largest weights. As 
𝑥௜ becomes farther from 𝑥, the weight decreases and eventually down to 0. This time 𝑥௜ is the 𝑟th 
farthest point. The polynomial function of ℎ෠ሺ𝑥ሻ is at last computed at the point ሺ𝑥௜, 𝑦௜ሻ, then the 
locally-fitted value of 𝑥 is ℎ෠ሺ𝑥ሻ.  
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The STL embeds two iterated loops: the inner loop and the outer loop. The seasonal element is 
updated on the detrending series in the inner loop. Then the resulting series are robustly weighted and 
run into the outer loop, the weight of which is computed in the outer loop. After that, the method 
implements multiple times of cycles as mentioned above. 

In this paper, python programmer is adopted and packaged STL module is imported. The specific 
periodicity during one observation 𝑛௣ is set to 365 and percentage of data used in LOESS regression 
is set to 0.6. Other pertinent parameters are set by the recommended settings. 

2.2. Dendritic neuron model  

Dendritic neuron model (DNM) is the simulation of the real neuron, which contains four 
connecting layers. The first and the last layer utilizes a sigmoid function as their processing tools. The 
second layer has a multiplication unit for received inputs. The third layer is an addition unit for inputs 
of the second layer. The four layers are denoted as the synaptic layer, the dendrite layer, the membrane 
layer and the soma layer, respectively in order. Figure 1 shows the DNM’s organizational structure. 
The model is explained in detail below: 

 

Figure 1. Structure of DNM (The inputs 𝑥௜ (𝑖 ൌ 1,2, … , 𝑁 ) go through the four-layers 
model and the DNM gives an output. In this figure, the curve means a sigmoid function, 
∑ means addition and ∏ means multiplication).  

2.2.1. Synaptic layer  

A synapse is the contact between neurons or inside the neuron itself. The original signal transfers 
from a presynaptic neuron to another one. By implementing the ionotropy, we determine whether the 
synapse is excitatory or inhibitory according to changes in the potential of postsynaptic. The synaptic 
layer serves to connects the 𝑖th (𝑖 ൌ  1, 2, . . . , 𝑁) synaptic input to the 𝑗th (𝑗 ൌ  1, 2, . . . , 𝑁) synaptic 
layer, shown as:  
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𝑌௜௝ ൌ ଵ

ଵା௘షೖቀഘ೔ೕೣ೔షഇ೔ೕቁ
         (5) 

where 𝑥௜ ∈ ሾ0, 1ሿ denotes the input signals. 𝑌௜௝ represents the output of the 𝑗th synaptic layer. And 
𝑘  represents a constant parameter. The weight 𝜔௜௝  and threshold 𝜃௜௝  are connection parameters. 
Here four types of connection samples can be listed as follows:  

• Case 1 (Constant 0 connection): under the condition of 𝜔௜௝ ൏ 0 ൏ 𝜃௜௝ or 0 ൏ 𝜔௜௝ ൏ 𝜃௜௝, the 
input 𝑥௜ changes from 0 to 1, whereas the output result 𝑌௜௝ is roughly 0. 

• Case 2 (Constant 1 connection): under the condition of 𝜃௜௝ ൏ 𝜔௜௝ ൏ 0 or 𝜃௜௝ ൏ 0 ൏ 𝜔௜௝, t 
the input 𝑥௜ changes from 0 to 1, whereas the output result 𝑌௜௝ is roughly 1. 

• Case 3 (Excitatory connection): under the condition of 0 ൏ 𝜃௜௝ ൏ 𝜔௜௝ , while the input 𝑥௜ 
transforms from 0 to 1, input 𝑥௜ and the output 𝑌௜௝ are positively correlated.  

• Case 4 (Inhibitory connection): under the condition of 𝜔௜௝ ൏ 𝜃௜௝ ൏ 0 , the output 𝑌௜௝  is 
inversely proportional to the input, while the input 𝑥௜ transforms from 0 to 1.  

As 𝑥௜  is normalized before entering the model, only the conforming part is worth paying 
attention to. Figure 2 displays four cases above in detail.  

 

Figure 2. Four types of connection instances in the synaptic layer (Figure (a),(b) show 
constant 0 connection; Figure (c),(d) show constant 1 connection; (e) shows excitatory 
connection; (f) shows inhibitory connection).  

2.2.2. Dendrite layer  

In this layer, a multiplicative function is implemented on the outputs from the synaptic layer. 
Given the non-linearity of synapses transforming from 0 to 1, a multiplicative operation is introduced. 
This is equal to the logic AND operation, denoted in Figure 1 by the symbol ∏. Thus the output 
function for the 𝑗th dendrite is:  
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𝑍௝ ൌ  ∏ 𝑌௜௝
ே
௜ୀଵ          (6) 

2.2.3. Membrane layer  

Similar to the second layer, this layer implements an addition function of the outputs on each 
dendrite. This function makes it equal to the logic OR operation under normalization between 0 and 1. 
Then, the summed result is sent to the fourth layer. The function of the membrane layer is:  

𝑉 ൌ  ∑ 𝑍௝
ெ
௝ୀଵ           (7) 

2.2.4. Soma layer  

At last, the soma layer utilizes another sigmoid function for the output 𝑉 of the membrane layer. 
Once 𝑉 exceeds its threshold, the neuron fires. Thus according to the following formula, the final 
result of the entire model is as follows: 

𝑂 ൌ ଵ

ଵା௘షೖೞሺೇషഇೞሻ          (8) 

2.3. Combined model  

The proposed model used in this paper is the combination of STL and DNM with their benefits. 
It makes the best adjustment for better forecasting results. Given the dataset, we implement the STL 
on it at first. Then, decomposed components are respectively processed. The seasonal element 𝑆௞ 
remains unchanged. 𝑇௞  is disposed using the least squares method (LSM). For the third part, the 
residual element 𝑅௞  is regarded as the input of DNM (*), where the sign* means there is a 
simplification of the model. At last, the three elements are added after being processed. Figure 3 is a 
clear illustration of the STLDNM (*).  

 

Figure 3. Model of STLDNM (*) (The original series are decomposed to three subseries 
using STL, and these series are forecast respectively, where the DNM (*) is used for the 
third part. At last, the output is the sum of three disposed series).  
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As the seasonal element 𝑆௞  is an objective reflation of the original series, it tends to keep 
unchanged in this paper. As for 𝑇௞, a tricube continuous polynomial function is used to fit. Eq (9) 
describes the function:  

𝑇௞  ൌ 𝑝𝑘ଷ ൅ 𝑞𝑘ଶ ൅ 𝑢𝑘 ൅ 𝑣        (9) 

where values of 𝑝, 𝑞, 𝑢, 𝑣 are obtained using LSM. Hence, the first two elements of the decomposed 
results are processed in an easy way.  

2.4. Improved DNM  

According to our previous studies, DNM is broadly applied due to its advantage of high 
efficiency and theoretical explanation. For better prediction results, here we utilize a simplified 
DNM meant for time series according to our previous study [43]. Figure 4 is the structure of DNM*. 
In particular, the summation at the middle is omitted and becomes a line with a weight of one. 
Additionally, the sigmoid function reduces to a linear expression. The other two layers remain 
unchanged. The details are as follows:  

𝑌௜ ൌ 𝑤௜𝑥௜ ൅ 𝜃௜         (10) 

𝑍 ൌ  ∏ 𝑌௜
ே
௜ୀଵ          (11) 

𝑉 ൌ 𝑍           (12) 

𝑂 ൌ ଵ

ଵା௘షೖೄሺೇషഇೞሻ         (13) 

 

Figure 4. Structure of DNM* (The basic idea is the same as DNM, it’s just that the input 
is changed from N-dimensional to one dimensional, and the slash means a linear function).  

Hence, the structure of proposed DNM* is greatly simplified. The performance of either fitting 
or calculation is significantly improved. By implementing a model of a single line, the DNM* performs 
a better effect for time series prediction.  

As for time series, a phase space reconstruction (PSR) [44] is introduced to improve the 
experimenting results. It reconstructs the sequence into higher dimension. In this study, the embedding 
dimension and time delay are set to be 2 and 1 respectively. Thus, two adjacent values in the time 
series lay the foundation of later prediction. Generally, we can describe the input matrix as:  

𝐼 ൌ  ቂ
𝑥ଵ  𝑥ଶ   … 𝑥ெିଶ
𝑥ଶ   𝑥ଷ   … 𝑥ெିଵ

ቃ        (14) 
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The corresponding target vector 𝑇 is   

𝑇 ൌ  ሾ𝑥ଷ  𝑥ସ  …   𝑥ெሿ         (15) 

where 𝑀 represents the length of the series, and each dataset is divided into two parts: training part 
and testing part. The former possesses 70% and the latter is 30%.  

2.5. Back-propagation learning  

When dealing with problems about time series, it is most suitable to take back-propagation as a 
choice during the process of supervised learning. BP is a method using gradient descent learning to 
update and adjust the parameters of the neural network, whose purpose is to reduce the error at the 
terminal. We define the error by Eq (16):  

𝐸௣ ൌ ଵ

ଶ
൫𝑇௣ െ 𝑂௣൯

ଶ
         (16) 

where the 𝑇௣ is the teaching signal, while 𝑂௣ is the real output of the model. In BP algorithm, we 
decrease the error by correcting the values of 𝑤௜௝ and 𝜃௜௝ of the DNM model, their variations are 
shown as:  

∆𝑤௜௝ሺ𝑡ሻ ൌ ∑
డா೛

డ௪೔ೕ

௉
௣ୀଵ          (17) 

∆𝜃௜௝ሺ𝑡ሻ ൌ ∑
డா೛

డఏ೔ೕ

௉
௣ୀଵ          (18) 

The parameters of 𝑤௜௝ and 𝜃௜௝ are updated as follows:  

𝑤௜௝ሺ𝑘 ൅ 1ሻ ൌ 𝑤௜௝ሺ𝑘ሻ െ 𝜂∆𝑤௜௝ሺ𝑘ሻ       (19) 

𝜃௜௝ሺ𝑘 ൅ 1ሻ ൌ 𝜃௜௝ሺ𝑘ሻ െ 𝜂∆𝜃௜௝ሺ𝑘ሻ       (20) 

where 𝜂 represents the learning rate of the BP, and 𝑘 represents the learning iteration. 𝜂 is set 
to be 0.1 in this paper. Then, the partial differentials of 𝐸௣  with respect to 𝑤௜௝  and 𝜃௜௝  are 
obtained using the chain rule:  

డா

డ௪೔
 ൌ  డா

డை
∙ డை

డ௏
∙ డ௏

డ௓
∙ డ௓

డ௒೔
∙ డ௒೔

డ௪೔
        (21) 

డா

డఏ೔
 ൌ  డா

డை
∙ డை

డ௏
∙ డ௏

డ௓
∙ డ௓

డ௒೔
∙ డ௒೔

డఏ೔
        (22) 

Repeating the application of the chain rule, a list of partial differentials are displayed below:  

డா

డை
ൌ 𝑂 െ 𝑇          (23) 

డை

డ௏
ൌ  ௞ೞ௘షೖೞሺೇషഇೞሻ

൫ଵା௘షೖೞሺೇషഇೞሻ൯
మ        (24) 

డ௏

డ௓
ൌ 1          (25) 
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డ௓

డ௒೔
ൌ  ∏ 𝑌௜

ே
௟ୀଵ௔௡ௗ௟ஷ௜          (26) 

డ௒೔

డ௪೔
ൌ 𝑥௜          (27) 

డ௒೔

డఏ೔
ൌ 1          (28) 

The STL decomposing method is meant to extract the seasonal and trend elements to maintain 
the main and unique features of the original series, and the whole disposing procedures are 
implemented by the almost best appropriate measures. The three subseries are comprehensively 
considered as the global reflection of the original data, with no part neglected. Besides, the method has 
also robust properties due to its relatively stable parameters and computing steps. Therefore, the STL 
is an excellent choice to operate weather-related time series forecasting.  

3. Experiments  

3.1. Datasets selected  

The data sets of this paper are the yearly dew point temperatures of four cities from 2010 to 2015 
as shown in Table 1. Cities chosen are four different regions from mainland. Hence, the predicting 
result of STLDNM* can be fully experimented. In view of the same length of these sequences, original 
series are filtered before implementing STL.  

Table 1. Experimental datasets.  

Weather data Original Period 
Chosen Sequence 

Length 

Maximum Lyapunov 

Exponent 

Beijing’s dew points (BJ) 2010.01–2015.12 2187 0.6238 

Shenyang’s dew points (SY) 2010.01–2015.12 2175 0.7034 

Guangzhou’s dew points (GZ) 2010.01–2015.12 2183 0.1897 

Shanghai’s dew points (SY) 2010.01–2015.12 2183 0.5258 

In order to decide whether the original series can be short-termly forecasted or not, a maximum 
Lyapunov exponent (MLE) is computed before experiments [45]. This metric is obtained by the Wolf 
method. Given 𝑡଴ (the beginning time) and 𝑦௧଴ (the reconstructed first phase point), we can get the 
minimum length between 𝑦௧଴ and its nearest neighbor. This distance is called 𝐿଴. At a later time 𝑡ଵ , 
the initial distance becomes 𝐿଴

ᇱ ൌ ‖𝑦௧ଵ െ 𝑦௧଴‖ ൐ 𝜖, where 𝜖 is a positive threshold value. The 𝐿଴
ᇱ  

will be replaced when another phase point 𝑦௧ଵ
ଵ   with 𝐿ଵ ൌ ‖𝑦௧ଵ െ 𝑦௧ଵ

ଵ ‖ ൏ 𝐿଴
ᇱ   appears. This 

calculation process is carried out until 𝑦௧ reaches 𝑦ே. As a result, we can obtain MLE as:   

𝜆௠௔௫ ൌ ଵ

௧೘ି௧బ
∑ ln

௅೔
ᇲ

௅೔

௠
௜ୀ଴          (29) 

where 𝑚 is the generation. Table 1 also gives MLEs of four cities. As the fourth column shows, all 
these series are characterized by chaotic features as their MLEs are positive and less than one.  
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3.2. Previous filtering  

As the four chosen datasets are long, the original series are initially shortened. We firstly choose 
values on five or eight o’clock as they rarely involve invalidate data like “NaN”. Then, from the initial 
point, each five values are averaged. Finally, a new series is constructed from each dataset. 

Moreover, to reduce time cost, a normalization method is introduced to make inputs range 
from 0 to 1. We choose the simplest formula below:  

𝑥ሺ𝑡௜ሻ௡௢௥௠௔௟௜௭௘ௗ ൌ ௫ሺ௧೔ሻିெூே

ெ஺௑ିெூே
        (30) 

where 𝑀𝐼𝑁 and 𝑀𝐴𝑋 manifest the minimal and maximal values of a series 𝑥ሺ𝑡ሻ. Meanwhile, the 
teaching signal is going to be normalized under the same parameters. At last, outputs are disposed with 
similar rules.  

3.3. Parameter selection  

Four user defined parameters affect predicting results of STLDNM*, three of which are 
parameters of the DNM model. Another important parameter is the 𝑛௣ of the STL, especially for 
series with relatively stable periods. The 𝑛௣ is decided by observing the sequence to be put into the 
STL. We make efforts to give a value closest to original period by using the scale line in the MATLAB 
toolbox. Besides, three structure parameters of DNM* are listed as 27 teams in Table 2. In order to 
provide a relatively comprehensive impression of the STLDNM*, three metrics mentioned above are 
included. Then, we execute a Friedman test [46] on the resulting values, thus obtaining the ranks of 
each dataset on each model as shown in Table 3. And Table 4 shows the final rank of each model, and 
the conclusion is that the Team 18 (𝑘௦ ൌ 1, 𝜃௦ ൌ 1, 𝜂 ൌ 0.1) performs the best under this evaluation.  

Table 2. Teams of parameters in the DNM* model. 

Parameter 𝑘௦ 𝜃௦ 𝜂 Parameter 𝑘௦ 𝜃௦ 𝜂 Parameter 𝑘௦ 𝜃௦ 𝜂 

Team 1 5 0 0.01 Team 10 1 0 0.01 Team 19 10 0 0.01 

Team 2 5 0.5 0.01 Team 11 1 0.5 0.01 Team 20 10 0.5 0.01 

Team 3 5 1 0.01 Team 12 1 1 0.01 Team 21 10 1 0.01 

Team 4 5 0 0.05 Team 13 1 0 0.05 Team 22 10 0 0.05 

Team 5 5 0 0.1 Team 14 1 0 0.1 Team 23 10 0 0.1 

Team 6 5 0.5 0.05 Team 15 1 0.5 0.05 Team 24 10 0.5 0.05 

Team 7 5 0.5 0.1 Team 16 1 0.5 0.1 Team 25 10 0.5 0.1 

Team 8 5 1 0.05 Team 17 1 1 0.05 Team 26 10 1 0.05 

Team 9 5 1 0.1 Team 18 1 1 0.1 Team 27 10 1 0.1 
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Table 3. Friedman test of each dataset on teams of DNM parameters in terms of 𝑀𝑆𝐸, 
𝑀𝐴𝑃𝐸 and 𝑀𝐴𝐸.  

Team index 
Ranks of parameters on 

BJ SY GZ SH 

1 15 18 6 14 

2 2 10 13 12 

3 14 16 12 23 

4 25 8 9 13 

5 10 13 7 19 

6 3 15 15 8 

7 5 9 14 6 

8 12 14 23 24 

9 11 11 19 21 

10 26 21 11 10 

11 9 6 24 5 

12 6 5 10 2 

13 21 22 16 15 

14 16 12 21 18 

15 7 1 1 9 

16 8 2 4 4 

17 4 3 3 3 

18 1 4 5 1 

19 13 17 18 7 

20 18 23 20 17 

21 23 27 25 27 

22 19 7 8 22 

23 17 19 2 11 

24 24 20 17 16 

25 20 25 26 26 

26 22 26 22 20 

27 27 24 27 25 

Table 4. Final rank of each parameter team.  

Rank Team Index Rank Team Index Rank Team Index 

1 12 10 19 19 14 

2 7 11 9 20 23 

3 17 12 5 21 26 

4 13 13 21 22 15 

5 10 14 18 23 11 

6 8 15 3 24 22 

7 6 16 4 25 25 

8 20 17 2 26 24 

9 16 18 1 27 27 



2890 

Electronic Research Archive  Volume 31, Issue 5, 2878–2899. 

Table 5. Details of compared models.  

Basic model Using condition 

Elman 10 hidden layers 

MLP 15 hidden layers 

SVM Radial basis function kernel 

DeepAR GluonTS Toolbox 

DNM —— 

DNM* Simplified DNM model 

STLDNM STL added 

STLDNM* STL added 

LSTM 100 hidden layers 

4. Results  

Eight models are compared with STLDNM* in the experiment, including STLDNM*, STLDNM, 
DNM*, DNM, Elman, MLP, SVR, DeepAR and LSTM. As different conditions may provide different 
results, this paper chooses optimal parameters of each model shown in Table 5. Tables 6–8 shows the 
𝑀𝑆𝐸, 𝑀𝐴𝑃𝐸 and 𝑀𝐴𝐸 of each method on each dataset. These three evaluation metrics are simply 
described as follows:  

To measure how well the proposed model and others perform, we utilize three criterions to assess 
each model’s performances. These metrics are computed between targeted vectors and outputs as the 
following formulas:  

• 𝑀𝑆𝐸: Mean square error  

𝑀𝑆𝐸 ൌ ଵ

௡
∑ ሺ𝑇௜ െ 𝑂௜ሻଶ௡

௜ୀଵ         (31) 

• 𝑀𝐴𝑃𝐸: Mean absolute percentage error  

𝑀𝐴𝑃𝐸 ൌ  ଵ

௡
∑ ቚ்೔ିை೔

்೔
ቚ௡

௜ୀଵ         (32) 

• 𝑀𝐴𝐸: Mean absolute error  

𝑀𝐴𝐸 ൌ ଵ

௡
∑ |𝑇௜ െ 𝑂௜|௡

௜ୀଵ         (33) 

Table 6. 𝑀𝑆𝐸 of compared models on each dataset.  

Data 

sets 

MSE of  

STLDNM* STLDNM DNM* DNM Elman MLP SVR DeepAR LSTM 

BJ 2.45E-01 4.79E+00 7.96E-01 4.74E+01 5.88E-01 3.40E-01 3.48E+00 3.49E+01 1.11E+00

SY 2.65E-01 9.24E+00 1.49E+00 3.94E+01 4.71E-01 4.02E+00 3.20E+00 1.97E+01 1.09E+00

GZ 5.42E-02 9.99E+00 6.65E-01 9.89E+00 1.07E-01 4.87E-01 1.69E-01 2.93E+02 4.53E-01

SH 1.97E-01 1.12E+01 5.40E-01 1.70E+01 1.47E+00 1.90E+00 1.56E+00 1.45E+02 6.58E-01
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Table 7. 𝑀𝐴𝑃𝐸 of compared models on each dataset.  

Data 

sets 

MAPE of  

STLDNM* STLDNM DNM* DNM Elman MLP SVR DeepAR LSTM 

BJ 5.94E-06 4.42E-06 1.66E-05 3.90E-04 5.10E-06 4.68E-06 4.80E-06 1.53E-04 1.18E-05

SY 8.31E-06 3.65E-05 1.30E-05 4.26E-04 1.14E-05 1.82E-07 8.75E-06 2.08E-04 7.73E-06

GZ 8.10E-07 3.98E-05 1.15E-05 6.61E-06 6.98E-06 3.26E-06 1.37E-06 1.07E-03 4.03E-05

SH 1.97E-06 2.13E-05 4.34E-06 4.95E-06 7.58E-06 6.72E-06 1.94E-06 7.94E-04 4.77E-06

Table 8. 𝑀𝐴𝐸 of compared models on each dataset.  

Data 

sets 

MAE of  

STLDNM* STLDNM DNM* DNM Elman MLP SVR DeepAR LSTM 

BJ 3.03E-01 1.42E+00 7.62E-01 4.59E+00 5.46E-01 4.83E-01 1.33E+00 4.34E+00 7.69E-01

SY 2.59E-01 1.99E+00 1.00E+00 3.53E+00 5.39E-01 1.70E+00 1.24E+00 3.49E+00 7.64E-01

GZ 1.71E-01 1.99E+00 6.99E-01 1.77E+00 2.75E-01 5.29E-01 2.92E-01 1.58E+01 5.96E-01

SH 2.26E-01 2.52E+00 6.15E-01 2.54E+00 9.38E-01 1.10E+00 8.70E-01 1.08E+01 5.93E-01

Later we employ the Friedman test on all the eight models to display which ranks the highest. 
Table 9 gives the rank of each model under the standard of 𝑀𝑆𝐸, 𝑀𝐴𝑃𝐸 and 𝑀𝐴𝐸. It concludes 
that STLDNM* performs the best. According to previous researches [47,48], to compensate the 
drawback that Friedman test can only judge whether there are differences among these models, 
Wilcoxon test is used for comparison between STLDNM* and other models. As can be seen from 
Table 10, STLDNM* outperforms its peers, except for MLP and SVM on MAPE. Besides, Table 11 
shows the average time cost of each model. It can be seen that our model is the most efficient in terms 
of time cost. Tables 9–11 show that DNM* is better than other machine learning models, both in 
efficiency and precision.  

Table 9. Ranks of Friedman test on all models.  

Model MSE Model MAPE Model MAE 

STLDNM* 1 STLDNM* 2 STLDNM* 1 

STLDNM 7 STLDNM 7 STLDNM 7 

DNM* 4 DNM* 6 DNM* 4 

DNM 8 DNM 8 DNM 8 

Elman 2 Elman 5 Elman 2 

MLP 5 MLP 3 MLP 5 

SVR 5 SVR 1 SVR 5 

DeepAR 9 DeepAR 9 DeepAR 9 

LSTM 3 LSTM 4 LSTM 3 
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Table 10. Wilcoxon test on compared models.  

Compared models 
Exact 𝑝-values of  

MSE MAPE MAE 

STLDNM* vs Elman 1.312E-03 3.906E-03 9.155E-05 

STLDNM* vs MLP 3.052E-05 ≥ 0.2 3.052E-05 

STLDNM* vs SVR 4.272E-04 ≥ 0.2 6.104E-05 

STLDNM* vs DeepAR 3.052E-05 3.052E-05 3.052E-05 

STLDNM* vs DNM 3.052E-05 2.441E-04 3.052E-05 

STLDNM* vs DNM* 3.052E-05 3.357E-04 3.052E-05 

STLDNM* vs STLDNM 3.052E-05 6.104E-05 3.052E-05 

STLDNM* vs LSTM 3.052E-05 2.533E-03 3.052E-05 

Table 11. Time cost of each model.  

Model Average time cost (seconds) Rank 

STLDNM* 2.003739 1 

STLDNM 7.709 5 

DNM* 2.132047 2 

DNM 14.33868 6 

Elman 6.26621 4 

MLP 4.766181 3 

SVR 113.448 8 

DeepAR Greater than 2 hours 9 

LSTM 21.4106 7 

 

Figure 5. Prediction results of Beijing dew points.  
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Figure 6. Prediction results of Shenyang dew points.  

 

Figure 7. Prediction results of Guangzhou dew points.  
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Figure 8. Prediction results of Shanghai dew point.  

 

Figure 9. Deviation plots of 8 models on SY dew points.  
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Figure 10. The convergence curves of each model.  

The predicting results of four cities using several algorithms are shown in the Figures 5–8, 
respectively. Typically, we extract the Shenyang’s averages of each algorithm and plot another graph 
as shown in Figure 9. Thus, a group of curves surrounding "𝑦 ൌ 0" line is generated. Although the 
STLDNM* has the least advantage on the SY dataset, it remains more stable than most algorithms 
except MLP. For the other three series, it maintains the minimum deviation value.  

Finally, to verify the stability of each model, the convergence curve of each model is shown in 
Figure 10. Overall, DNM and STLDNM are worse than other models and converge rapidly after 
about 10 generations. While the improved STLDNM* and DNM* have obtained excellent 
performance, obviously superior to MLP and Elman. It is further verified that the improved DNM is 
suitable and efficient for time series.  

Although DNM is less popular than SVR and DeepAR for weather forecasting, it stands out for 
its simplicity. The experimental results show that the combination of preprocessing technology, neural 
network, and classical learning algorithm can achieve excellent results.  

5. Conclusions  

It is significantly important that a precise prediction of weather data reminds people to realize 
anormal phenomenon and make instant preparations, aiming to reduce loss to the least. However, 
forecasting consequences with high precision and efficiency is difficult due to various factors, such as 
variability and volatility.  

In this paper, we present a new method combining decomposition method STL and prediction 
model DNM for dew point series. The STLDNM* model is applied to meteorology and the dew point 
of different cities in China is predicted successfully. Regarding STL as the preprocessing method, LSM 
and DNM* as the forecast method, BP as the learning algorithm, this combination has achieved 
excellent accuracy in the application of weather forecast. 
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DNM*, as a variation of DNM, is a single-input-single-output model that is more suitable to one-
dimensional time series. The results show that the proposed model is superior to MLP, Elman, SVR, 
DeepAR in terms of time cost, convergence rate and prediction accuracy. And although the LSTM 
performs well in financial field, it does not fit weather data. In addition, Friedman test and Wilcoxon 
test were used to verify the above conclusions in terms of MSE, MAPE and MAE. Moreover, 
STLDNM* and DNM* are significantly better than DNM in stability. As a consequence, STLDNM* 
has great potential and prospects for development in more areas, whose performance in other types of 
series will be further discussed in the future.  
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