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Abstract: Learning from imbalanced data is a challenging task, as with this type of data, most 
conventional supervised learning algorithms tend to favor the majority class, which has 
significantly more instances than the other classes. Ensemble learning is a robust solution for 
addressing the imbalanced classification problem. To construct a successful ensemble classifier, the 
diversity of base classifiers should receive specific attention. In this paper, we present a novel 
ensemble learning algorithm called Selective Evolutionary Heterogeneous Ensemble (SEHE), 
which produces diversity by two ways, as follows: 1) adopting multiple different sampling 
strategies to generate diverse training subsets and 2) training multiple heterogeneous base 
classifiers to construct an ensemble. In addition, considering that some low-quality base classifiers 
may pull down the performance of an ensemble and that it is difficult to estimate the potential of 
each base classifier directly, we profit from the idea of a selective ensemble to adaptively select 
base classifiers for constructing an ensemble. In particular, an evolutionary algorithm is adopted 
to conduct the procedure of adaptive selection in SEHE. The experimental results on 42 
imbalanced data sets show that the SEHE is significantly superior to some state-of-the-art 
ensemble learning algorithms which are specifically designed for addressing the class imbalance 
problem, indicating its effectiveness and superiority. 

Keywords: class imbalance learning; ensemble learning; heterogeneous ensemble; evolutionary 
computation; Bagging 
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1. Introduction  

Learning from class imbalanced data is a hotspot and challenging issue in the field of machine 
learning [1,2]. Also, we note that the class imbalance problem exists widely in real-world 
applications, including biology data processing [3], business data analysis [4], industry fault 
detection [5], face recognition [6] and crime linkage discovery [7]. In these applications, the users 
generally focus on the minority class that has less training instances than the other classes. However, 
the conventional supervised learning algorithms always expect to minimize the overall training errors, 
and hence it is inevitable to favor the majority class but sacrifice the performance of the minority class.  

Over the past two decades, many learning algorithms for addressing the imbalanced 
classification problem have been proposed. The methods mainly include sampling [8–16], 
cost-sensitive learning [17–19], threshold-moving [20–22], one-class learning [23] and ensemble 
learning [24–31] or multiple classifiers system [32–39]. Sampling is a data preprocessing strategy 
that is used to add the minority instances (oversampling) or remove the majority examples 
(undersampling) to balance the training set, further satisfying the learning rule of the conventional 
supervised learning algorithms. Cost-sensitive learning assigns higher penalty weights for minority 
instances to force the learning algorithms to pay more attention to the minority class. 
Threshold-moving is a post-processing solution which empirically or adaptively tunes the decision 
threshold to push the classification hyperplane towards the majority class. One-class learning, which 
describes the boundary of one class by merely training on the instances belonging to that class, is 
generally used to address a highly imbalanced problem. Ensemble learning aims to utilize the other 
class imbalance learning methods, e.g., sampling, cost-sensitive-cost learning or threshold-moving, 
to combine with the emerging ensemble learning paradigms, e.g., bagging or boosting, for 
classifying imbalanced data. In comparison to those single models, ensemble learning is expected to 
greatly improve the classification performance, especially the generalization ability, on class 
imbalanced data. In view of the merits of ensemble learning, it has been widely studied and adopted 
in the context of imbalanced data classification. 

As we know, to make an ensemble classifier be effective, we should consider two key factors. 
The first one is that the performance of each base classifier should be not very poor, and the other 
one is that all base classifiers contained in an ensemble should be diverse as far as possible [40]. For 
the first factor, most class imbalance ensemble learning algorithms can guarantee it well by assigning 
excellently distributed training subsets and designating a robust supervised learning algorithm to train 
each base classifier. Meanwhile, for the second factor, i.e., diversity, many ensemble learning algorithms 
cannot satisfy it well, as most of them acquire diversity only by perturbing distributions of instances or 
costs in each training subset. Actually, only when there is a balance between the single performance and 
the group diversity, the corresponding ensemble model could present the strongest performance [38]. 

In this study, we focus on how to further improve the diversity of ensemble classifiers and how 
to find the best tradeoff between single performance and group diversity. For the first problem, we 
profit from the idea of [39] to combine multiple different sampling algorithms and multiple different 
types of classifiers to construct a heterogeneous ensemble learning algorithm. As indicated in [39], 
perturbing instances and classifiers simultaneously can help provide more diversity for an ensemble 
and meanwhile can improve the quality of the ensemble. As for the second problem, considering that 
one cannot simply estimate the potential and effect of each base classifier in ensemble by its single 
performance, an evolutionary genetic algorithm is adopted to adaptively select a high-quality 
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combination of base classifiers for making the decision. According to the many could be better than 
all theory [41], the selective ensemble strategy must be helpful for searching a better tradeoff 
between single performance and group diversity. We call the proposed ensemble learning algorithm 
Selective Evolutionary Heterogeneous Ensemble, which can be called SEHE in brief. To verify the 
effectiveness and feasibility of the proposed SEHE algorithm, we compare it with lots of 
state-of-the-art class imbalance ensemble learning algorithms on 42 imbalanced data sets acquired in 
the Keel data repository [42] and UCI machine learning repository [43], and the results show the 
superiority of SEHE. 

The main contribution in this study is combining the ideas of the heterogeneous ensemble and 
the selective ensemble to improve the performance of class imbalanced learning. To our best 
knowledge, it is the first time integrating these two ideas for addressing the class imbalanced 
learning problem. It not only increases diversity production but also helps to find the best tradeoff 
between single performance and group diversity 

The remainder of this paper is organized as follows. Section 2 reviews the related work about 
class imbalance ensemble learning. Section 3 describes the proposed SEHE algorithm and its 
framework in detail. In Section 4, the experimental results and analysis are presented. Finally, 
Section 5 concludes this study and indicates the future research directions. 

2. Related work 

As mentioned above, lots of different techniques and solutions have been proposed to solve the 
class imbalance problem during the past two decades, in which the ensemble learning is most 
successful and popular to address such problem [1,2]. The general idea of class imbalance ensemble 
learning is to combine a single class imbalanced learning technique, e.g., sampling, cost-sensitive 
learning or threshold-moving, with one of the Bagging or Boosting ensemble learning paradigms for 
achieving the aim of improving the generalization capability of the classification model. Here, the 
adoption of a single technique aims to acquire an approximately unbiased base classifier, while the 
adoption of an ensemble aims to promote the robustness of the decision model. 

Some primitive class imbalance ensemble learning algorithms, including UnderBagging [24], 
OverBagging [37], SMOTEBagging [37], RUSBoost [33], SMOTEBoost [25], EUSBoost [28], 
Asymmetric Bagging [36], etc., directly combine a simple undersampling or oversampling algorithm 
with a Bagging or Boosting ensemble framework. The merit of these algorithms lies in that they are 
simple and easily implemented. However, they produce diversity only by sampling different data 
subsets. It is clear that when adopting an undersampling strategy to generate training subsets, the 
diversity of training subsets could be highlighted, but the performance of each single base learning 
model could not be safely guaranteed. Meanwhile, oversampling safeguards the performance of a 
single model but always hurts the group diversity. Yu et al. [38] indicated that when and only when 
there exists an approximate tradeoff between single performance and group diversity, the quality of 
the ensemble could be maximized. They integrated several techniques, including feature selection, 
feature subspace, asymmetric bagging, into an ensemble algorithm called asBagging-FSS for 
classifying high-dimensional imbalanced biomedicine data. In contrast to Asymmetric Bagging [36], 
the asBagging-FSS simultaneously enhances the group diversity by inserting disturbances in feature 
space and the single performance by adding a feature selection procedure. However, the solution 
might be ineffective on low-dimensional class imbalanced data. 
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Another group of class imbalance ensemble learning algorithms consider coupling instance 
costs together with ensemble learning. In fact, the cost of an instance can be naturally combined with 
the Boosting ensemble learning paradigm. Some well-known algorithms integrating both 
cost-sensitive learning and Boosting include AdaCost [27], AdaC1 [34], AdaC2 [34] and AdaC3 [34]. 
These ensemble solutions gradually focus on classifying those difficult instances by the way of 
iterative feedback. In such fashion, the diversity between two continuous base classifiers can be seen 
as the variance of cost distributions. 

Several algorithms also combine the threshold-moving technique with the Bagging ensemble 
learning paradigm, such as PT-Bagging [26] and EnSVM-OTHR [20]. Specifically, the PT-Bagging 
produces diversity only relying on bootstrap strategy which is a natural step in Bagging, while the 
EnSVM-OTHR adopts both bootstrap and a small random disturbance happening on the adjusted 
threshold to acquire diverse base classifiers. 

To enhance the performance of a single model in an ensemble, some previous studies utilize the 
ensemble learning model to represent the single model, i.e., the algorithm can be seen as an ensemble 
of an ensemble. Such cases include EasyEnsemble [30], BalanceCascade [30] and GIR series 
algorithms [35]. Specifically, in GIR series algorithms, two sampling approaches convert the class 
imbalance problem into several balanced sub-problems for training the classifiers, and in each 
sub-problem, several weak classifiers are respectively trained by using Boosting method and finally 
combined by Bagging. These two-level ensemble algorithms ignore the effect of diversity, and hence 
the performance improvement is generally restricted. 

In recent several years, more and more researchers began to focus on studying how to promote 
diversity in an ensemble. The strategies of enhancing ensemble diversity include evolutionary 
strategy [29,31] and heterogeneous ensemble [39]. Roshan and Asadi [31] adopted a popular 
evolutionary multi-objective optimization algorithm called NSGA-II to synchronously optimize the 
three following goals: class imbalance ratio IR in each bag, group diversity in ensemble and AUC 
performance metric. Lim et al. [29] presented a novel cluster-based synthetic oversampling (CSO) 
algorithm and integrated its five hyper-parameters in each bag together to implement chromosome 
encoding, finally taking advantage of a genetic algorithm (GA) to determine and produce training 
subsets. Due to the number of data to generate, the clustering method, the number of clusters, the 
number of nearest neighbors within each cluster for oversampling and the oversampling method are 
different in different bags, so there exists a significant diversity among those generated training 
subsets. Zefrehi and Altincay [39] investigated the possibility of integrating both heterogeneous 
sampling strategies and classification models to enhance diversity in an ensemble. A significant 
performance improvement has been observed by adopting heterogeneous classifiers in contrast to using 
homogeneous classifiers. Meanwhile, when the number of heterogeneous classifiers increases from 1 
to 5, the performance of the ensemble model can continuously increase. 

According to the reviews above, it is not difficult to observe that there are two major challenges 
for the class imbalance ensemble learning technique. The first one is how to further improve the 
group diversity, and the second one is how to achieve an approximately excellent tradeoff between 
single performance and group diversity. In this study, we wish to simultaneously focus on these 
two problems. 
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3. Methods 

In this section, we first introduce the heterogeneous class imbalance ensemble learning method, 
and then on this basis, a selective evolutionary heterogeneous class imbalanced ensemble learning 
algorithm is described in detail. 

3.1. Heterogeneous class imbalance ensemble learning framework 

As we know, developing a successful ensemble learning method should simultaneously focus 
on the two following conditions: the quality of single base learning model and the group diversity 
among different base learning models [40]. It is not difficult to generate high-quality single 
classifiers; however, it is a difficult task guaranteeing the generated base classifiers to be diverse 
enough. The reason lies in that diversity, as an abstract notion, is difficult to accurately measure. In 
addition, the methods of producing and/or enhancing diversity are generally naïve. In Bagging, it 
always adopts a bootstrap technique to produce diverse training subsets for acquiring diversity, and 
hence it guarantees to produce 36.8% diverse training instances between two different subsets in 
theory [44]. In contrast, the Boosting acquires diverse training subsets by disturbing the distribution 
of training instances or the weights of training instances [45], which is totally uncontrolled in 
practical applications. Random forest [46] and random subspace [47] enhance the diversity of 
training subsets by disturbing both instance space and feature space, but the diversity promotion would 
be limited by the dimension of the feature space. That is to say, if the training data is low-dimension, 
we could not significantly improve the diversity of training subsets by these two methods. 

All methods mentioned above utilize data-level disturbance to produce diversity. However, it is 
noteworthy that the classifier level can produce diversity for an ensemble, too. That means the 
diversity source can be associated with adopting multiple types of classifiers. In general, we call this 
strategy heterogeneous ensemble. Several previous works have indicated that the diversity among 
heterogeneous members is significantly higher than that of homogeneous ones [48,49], and the 
heterogeneous ensemble always performs better than any one single member [50,51]. As for class 
imbalance learning, an ensemble algorithm combining heterogeneous sampling and heterogeneous 
classifiers had also been proposed by Zefrehi and Altincay [39] and had acquired improving 
classification results in comparison to some popular class imbalance ensemble learning algorithms. 
Profiting from the idea of the HeteroEn algorithm proposed in [39], we propose a heterogeneous 
ensemble (HE) algorithm for addressing the class imbalance learning problem.  

Let Φ denote the class imbalanced training data set, and S = {s1, s2, …, sL} and K = {k1, k2, …, 
kN} respectively denote the set including L different sampling algorithms and the set containing N 
diverse types of classifiers. Then, we can produce L*N diverse combinations of training subsets and 
classification approaches, where each combination has one of two differences at the data level and 
classifier level from any other combination at least. In HE, the most popular and simplest decision 
rule, i.e., majority voting, is adopted to combine decisions of all base classifiers. The flow path of the 
HE algorithm is described below. 



2738 

Electronic Research Archive                           Volume 31, Issue 5, 2733-2757. 

Algorithm 1: HE algorithm 
Input: A class imbalanced training set Φ, a sampling approaches set S={s1, s2, …, sL}, a 
classification methods set K = {k1, k2, …, kN} 
Output: An ensemble classifier set E={C11, C12,…,C1N, C21, C22,…,C2N, ……, CL1, CL2…CLN} 
Procedure: 
1. Initialize E = ϕ; 
2. for i = 1: L 
3.     for  j = 1:N 
4.       generate a training subset Φij by adopting the sampling algorithm si acting on the 
training set Φ; 
5.       train a base classifier Cij on the training subset Φij by adopting the classification 
method kj; 
6.       put Cij into E; 
7.     end 
8. end 

A more intuitive description about the flow path of the HE algorithm can be observed in Figure 1. 

 

Figure 1. Description for the flow path of the HE algorithm. 

It is worthy to note that although both the HeteroEn algorithm proposed in [39] and our HE 
algorithm adopt the same construction, that is, the combination of diverse sampling approaches and 
heterogeneous classifiers to construct an ensemble, there is a significant difference between them. 
The difference lies in that the HeteroEn algorithm integrates the heterogeneous combination into 
Bagging and Boosting ensemble learning frameworks, while our proposed HE algorithm only 
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produces L*N base classifiers, equal to the number of combinations constructed on the data level and 
classifier level. The merits of such way are two-fold: 1) It would not generate excessively redundant 
base classifiers which lack enough diversity with each other in the ensemble; 2) the size of the 
ensemble could be restricted in a small scale to help reduce time and storage consumption. 

To make HE be effective, we also need to consider which sampling approaches and 
classification algorithms should be put into S and K, respectively. Obviously, to guarantee the quality 
of a single base classifier, each sampling and each classification algorithm in HE should be robust. 
Furthermore, to enhance the diversity, both sampling algorithms and classification models should be 
based on different theoretical rules and inherent assumptions. According to these two criterions, we 
select seven sampling approaches (including three undersampling algorithms: RUS [9], UFFDFR [12] 
and MPBU [13]; and four oversampling algorithms: ROS [9], SMOTE [11], MWMOTE [8] and 
GA-SMOTE [16]) and six classification models to constitute S and K in HE, respectively. These 
heterogeneous methods are shown in Table 1. In practical applications, the combination of these 
methods is not constant, and thus the users are encouraged to add and remove any sampling approach 
or classification model in this list. 

Table 1. Sampling approaches and classification methods used in HE. 

sampling approach classification method 
s1 RUS [9] k1 decision tree (CART) 
s2 UFFDFR [12] k2 K-nearest neighbors (KNN) 
s3 MPBU [13] k3 support vector machine (SVM) with Gaussian kernel 
s4 ROS [9] k4 extreme learning machine (ELM) with sigmoid activation function 
s5 SMOTE [11] k5 logistic regression (LR) 
s6 MWMOTE [8] k6 naïve Bayes classifier (NB) 
s7 GA-SMOTE [16]   

3.2. Selective evolutionary heterogeneous class imbalance ensemble learning algorithm 

In HE, although we have safeguarded the performance of the ensemble by adopting robust and 
diverse sampling approaches and classification methods, there is still a huge potential to further 
improve the quality of the ensemble. This is because each classification method has its specific 
inherent assumption, which causes it to perform well on some data but perform poorly on some other 
data. This phenomenon has been observed by many previous works [8,14,16]. Therefore, it is 
necessary to remove some low-quality single base classifiers for further enhancing the quality of the 
ensemble. However, considering that diversity is an abstract notion, it is difficult to directly estimate 
the effect and potential of any one base classifier in HE, and thus it can be regarded as a 
sophisticated optimization problem. This is consistent with the idea of selective ensemble [41], i.e., 
many could be better than all. 

To solve the optimization problem above, we refer the idea in [41] to conduct a procedure of 
selective ensemble on HE by using an evolutionary genetic algorithm. The proposed algorithm is 
called selective evolutionary heterogeneous ensemble, which can be also called SEHE in brief. It is 
clear that the SEHE is an adaptive algorithm to avoid estimating the quality of each base classifier 
and the diversity among them. 

The reason for selecting the genetic algorithm is that the optimization problem in SEHE is 
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discrete, which is specifically appropriate for use with this optimization technique. There are several 
key conditions and parameters, which are chromosome encoding strategy, fitness function, 
population size, crossover factor, mutation factor and the termination condition, that should be 
seriously considered in a genetic algorithm [52]. In our proposed SEHE algorithm, the chromosome 
encoding is organized as a vector of length L*N to represent all base classifiers. In each position of 
the chromosome, it adopts a binary coding, where 1 indicates the corresponding base classifier 
joining into the final ensemble, while 0 expresses that the corresponding one should be excluded 
from the final ensemble. Each chromosome denotes an alternative of selective ensemble. As for the 
fitness function that is used to evaluate the quality of each selective ensemble solution, we consider 
that it should be directly associated with a performance evaluation metric. Here, we adopt a 
combination of two popular class imbalance learning performance evaluation metrics, i.e., 
F1-measure and G-mean, as the fitness function f. In particular, the F1-measure originating from 
F-measure can be calculated as below: 

              

2

2

(1 ) recall precisionF-measure=
recall+precision



  

                         (1) 

where β is a parameter denoting the relative importance between precision and recall. In general, β is 
set to be 1, and then the metric is transformed to be the widely used F1-measure, i.e.,  

2 recall precisionF1-measure=
recall+precision
 

                        (2) 

G-mean can be calculated as below: 

G-mean= TPR TNR                              (3) 

where TPR and TNR denote the true positive rate and true negative rate, respectively. Thus, the 
G-mean metric can be regarded as a tradeoff between TPR and TNR. Based on the F1-measure and 
G-mean, the fitness function f can be calculated as follows. 

1 1= F1-measure G-mean
2 2

f   
                        (4) 

It is obvious that the fitness function f represents an impartial tradeoff between F1-measure and 
G-mean. 

In addition, to keep the tradeoff between the quality of solution and running time consumption, 
the population size and terminal iterative times are empirically suggested to be designated as 50 and 
30, respectively. Furthermore, to accelerate the exploration process, the crossover factor and 
mutation factor are respectively set to be 1.0 and 0.1 in SEHE. That means all parents conduct 
crossover operation to generate their offspring, and random 10% of positions of all chromosomes 
transform their coding values. 

The flow path of the proposed evolutionary algorithm is presented as below. 
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Algorithm 2: Evolutionary algorithm 
Input: An ensemble classifier set E which includes L*N base classifiers, the population size 
parameter Npop, a crossover factor Nc, a mutation factor Nm, the terminal iterative times Ns 
Output: A selective ensemble set SE 
Procedure: 
1. Initialize a binary vector Vbest with length L*N randomly; 
2. Initialize a variance fbest, which is used to reserve the current best fitness value, as 0; 
3. Initialize Npop chromosomes with the length L*N using binary coding randomly; 
4. for i = 1: Ns 
5. transform each chromosome to an ensemble according to its coder mapping on E, and estimate 

its quality by the fitness function, then compare it with fbest, if there exists a better fitness 
value, it would be used to replace fbest, and meanwhile the corresponding chromosome would 
be used to update Vbest; 

6. end 
7. decode Vbest on E to acquire SE. 
8. end 

In addition, we note that the fitness function of evolutionary algorithm associates with both 
F1-measure and G-mean metrics, and then if both the training procedure of HE and the calculation of 
fitness of evolutionary algorithm are conducted directly on the original training set Φ, the selected 
combination of base classifiers might be overfit. To solve the problem, we adopt an internal five-fold 
cross validation strategy in our SEHE algorithm, in which the original training set E is averagely 
divided into five non-overlapping subsets Φ1, Φ2, Φ3, Φ4 and Φ5. First, we conduct a five-round 
iterative operation in which at each round, four subsets are integrated as the internal training set, and 
the remaining one is used as the internal verifying set. Then, on each internal training set, we conduct 
the HE algorithm to produce L*N classifiers. That means 5*L*N classifiers are generated in total. 
Next, for each chromosome in SEHE, its fitness is estimated five times, in which for the ith time, the 
corresponding classifiers trained on the ith internal training set are used to evaluate the 
chromosome’s fitness on the ith internal verifying set. Furthermore, we adopt the average of the five 
results as the fitness of the chromosome. Finally, to avoid wasting the training instances, it is 
required to retrain the best combination of classifiers on the original training set Φ after finishing 
the evolutionary procedure. Based on this rule, the flow path of the SEHE algorithm can be 
described as follows. 

From the flow path of the SEHE algorithm, it is not difficult to observe that it is implemented 
by a two-level training procedure, where the first level runs in a five-fold cross validation 
environment to search for the best combination of sampling approaches and classification methods, 
while the second level takes charge of retraining this combination on the original training set to 
produce the selective ensemble result. Due to the adoption of a two-level training mode and 
evolutionary algorithm, it is inevitable that SEHE is a time-consuming algorithm. 
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Algorithm 3: SEHE algorithm 
Input: A class imbalance training set Φ, a sampling approaches set S = {s1, s2, …, sL}, a 
classification methods set K = {k1, k2, …, kN}, the population size parameter Npop, a crossover 
factor Nc, a mutation factor Nm, the terminal iterative times Ns 
Output: A selective ensemble set SE 
Procedure: 
1. divide randomly Φ into five average subsets Φ1, Φ2, Φ3, Φ4 and Φ5; 
2. for i = 1:5 
3.     integrate all training subsets except Φi as training set Ψi; 
4.     call HE algorithms to produce an ensemble classifiers set Ei on Ψi; 
5.     produce the output of each base classifier in Ei on each instance in the verifying set Φi, 

and record them; 
6. end 
7. call evolutionary algorithm to get a binary vector indicating which combinations of sampling 

approaches and classification methods should be reserved; 
8. adopt the reserved combinations to retrain a selective ensemble set SE on Φ. 

4. Experiments and analysis 

4.1. Experimental data description 

We collected 42 imbalanced data sets, including 30 ones from Keel data repository [42] and 12 
ones from UCI machine learning repository [43], to verify the effectiveness and superiority of the 
proposed SEHE algorithm. Specifically, these datasets have different numbers of instances, numbers of 
features and class imbalance ratios. The information about these data sets is described in Table 2 in detail. 

Table 2. Description about the used class imbalanced data sets in this study, where 
#Instances and #Features denote respectively the number of instances and features 
contained in the corresponding dataset, and IR denotes the class imbalance ratio, which is 
calculated by the number of majority instances / the number of minority instances. 

Dataset #Instances #Features IR Dataset #Instances #Features IR 
glass1 214 9 1.82 ecoli-0-6-7_vs_5 220 6 10.00 
wisconsin 683 9 1.86 led7digit-0-2-4-5-6-7-8-9_vs_1 443 7 10.97 
pima 768 8 1.87 ecoli-0-1_vs_5 240 6 11.00 
haberman 306 3 2.78 shuttle-6_vs_2-3 230 9 22.00 
vehicle1 846 18 2.90 flare-F 1066 11 23.79 
new-thyroid1 215 5 5.14 winequality-red-4 1599 11 29.17 
yeast3 1484 8 8.10 shuttle-2_vs_5 3316 9 66.67 
ecoli3 336 7 8.60 poker-8-9_vs_5 2075 10 82.00 
vowel0 988 13 9.98 poker-8_vs_6 1477 10 85.88 
yeast-1_vs_7 459 7 14.30 banknote 1372 4 1.25 
ecoli4 336 7 15.80 ctgC5 2126 21 28.50 
abalone9-18 731 8 16.40 ctgN1vsN3 2126 21 3.50 
shuttle-c2-vs-c4 129 9 20.90 ctgN2 2126 21 6.20 
yeast4 1484 8 28.10 ctgN3 2126 21 11.10 
yeast5 1484 8 32.73 wilt 4839 5 17.50 
abalone19 4174 8 129.44 mfeatmor01 2000 6 4.00 

Continued on next page 
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ecoli-0-3-4_vs_5 200 7 9.00 mfeatmor012 2000 6 2.30 
ecoli-0-6-7_vs_3-5 222 7 9.09 seeds2v13 210 7 2.00 
yeast-0-3-5-9_vs_7-8 506 8 9.12 segment1 2310 19 6.00 
yeast-0-3-5-9_vs_7-8 1004 8 9.14 segment12 2310 19 2.50 
ecoli-0-1_vs_2-3-5 244 7 9.17 segment123 2310 19 1.30 

4.2. Experimental settings 

To estimate whether the proposed SEHE algorithm is effective and feasible, it is widely 
compared with some popular and state-of-the-art class imbalance ensemble learning algorithms, 
including UnderBagging [24], OverBagging [37], SMOTEBagging [37], RUSBoost [33], 
SMOTEBoost [25], EUSBoost [28], EnSVM-OTHR [20], EasyEnsemble [30], BalanceCascade [30], 
GIREnUS [35], 2Obj* [31], ECO-Ensemble [29], HeteroEn [39] and our proposed HE algorithm. 
Considering that the parameter settings in any algorithm could affect its performance and further 
influence the impartiality of experiment comparisons, we adopted the recommended parameter 
settings referred to in each study as default ones. For examples, in [35], we selected GIREnUS, 
which had been indicated to perform better than its partner, i.e., GIREnOS, while in [31], we 
adopted the 2Obj* version that outperforms two other algorithm versions. As for the number of base 
classifiers, all Bagging- and Boosting- based algorithms are uniformly designated as 100 and 20, 
respectively. In addition, the base classifier types in each ensemble algorithm adopted the default 
ones used in the corresponding study. For our proposed HE and SEHE algorithm, all sampling 
algorithms contained in them used the default parameters recommended in the corresponding 
references, and the classification algorithms used the following parameter settings: The KNN 
adopted a default parameter k = 5, the SVM used a RBF kernel function with σ = 0.01 and the 
penalty factor C = 1, the ELM adopted the sigmoid activation function with L = 50 hidden nodes, and 
the LR used L2 regularization with a default penalty factor C = 1. To guarantee the impartiality of 
experiments, if some other ensemble learning algorithms have adopted one or several sampling or 
classification algorithms that are the same as the ones used in our proposed algorithm, they have 
been designated the same parameter settings. 

Both F1-measure and G-mean metrics which have been used to evaluate the fitness in our 
proposed SEHE algorithm are also selected as the performance evaluation metric for comparing 
various ensemble algorithms. In particular, both F1-metric and G-mean have been shown as the most 
popular metrics to evaluate the quality of a class imbalance learning algorithm. 

Finally, to impartially compare the quality of all comparative algorithms, 10 random runs’ 
external five-fold cross validation is conducted for each algorithm, and the average performance of 
the corresponding 50 validated results is used to represent its final result. 

4.3. Results and discussion 

Tables 3 and 4 present the comparative results of 15 ensemble learning algorithms in terms of 
F1-measure and G-mean metrics, respectively. Specifically, on each data set, the best result has been 
highlighted in boldface.  

From the results in Tables 3 and 4, it is not difficult to observe that our proposed SEHE 
algorithm outperforms all other competitors, as it produces best F1-measure result on 24 data sets 
and best G-mean result on 22 data sets, which are much more than the number of the best results 
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acquired by adopting other class imbalance ensemble learning algorithms. We note that no matter if 
it is on those data sets with low class imbalance ratio or on highly imbalanced data sets, our proposed 
SEHE algorithm can produce good classification results. We believe that it associates with the two 
following reasons: 1) The combination of heterogeneous sampling methods and heterogeneous 
classification models provides enough diversity for constructing ensemble learning model, and 2) the 
evolutionary selection procedure in SEHE algorithm adaptively meets the demands of data 
distribution well. Therefore, we can say that the proposed SEHE algorithm is a robust, flexible and 
self-adaptive class imbalance learning algorithm. 

Another interesting conclusion that can be observed from the results in Tables 3 and 4 is that 
several state-of-the-art algorithms proposed in recent several years, including EnSVM-OTHR, 
GIREnUS, 2Obj*, ECO-Ensemble and HeteroEn, generally perform better than those previously 
popular algorithms. Of course, in contrast to those simple ensembles, these state-of-the-art 
algorithms often have more sophisticated constructions, and hence their training procedures are 
more complex, too. 

We also observe that the proposed SEHE algorithm performs obviously better than the HE 
algorithm on almost all data sets, showing the correctness of adopting selective ensemble strategy, 
again. We believe that in comparison to aggregating all base classifiers, adaptively selecting 
some of them would be helpful for searching for a better tradeoff between single performance 
and group diversity. 

Furthermore, we are curious which combinations between sampling approaches and 
classification methods perform better in HE. On each data set, we scanned the average 
performance of F1-measure and G-mean throughout all combinations, and the best combination 
was recorded based on the feedback of 10 random runs’ external five-fold cross validation. Further, 
the top 10 combinations are presented in Table 5. One could  make the following conclusion 
from the results in Table 5: Combining one of those sophisticated sampling approaches, e.g., 
MWMOTE, MPBU, UFFDFR or GA-SMOTE, and one of those robust classification methods, 
e.g., Support Vector Machine or Extreme Learning Machine, it is easier to produce excellent 
classification performance. 
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Table 3. F1-measure results of 15 comparative algorithms, where on each data set, the best result has been highlighted in bold. 

Dataset Under 

Bagging 

Over 

Bagging 

SMOTE 

Bagging 

RUSBoost SMOTE 

Boost 

EUSBoost EnSVM 

-OTHR 

Easy 

Ensemble 

Balance 

Cascade 

GIREnUS 2Obj* ECO 

-Ensemble 

HeteroEn HE SEHE 

glass1 0.6179 0.6418 0.6566 0.6531 0.6479 0.6710 0.7022 0.6937 0.6819 0.7074 0.7196 0.7338 0.7292 0.7231 0.7479 

wisconsin 0.9496 0.9501 0.9532 0.9458 0.9526 0.9531 0.9368 0.9444 0.9496 0.9537 0.9486 0.9529 0.9501 0.9529 0.9685 

pima 0.6074 0.6291 0.6399 0.6518 0.6436 0.6457 0.6706 0.6619 0.6538 0.6560 0.6489 0.6917 0.6742 0.6721 0.6898 

haberman 0.4310 0.4036 0.4117 0.4425 0.4328 0.4679 0.4658 0.4631 0.4254 0.4738 0.4699 0.4852 0.4798 0.4881 0.5122 

vehicle1 0.6829 0.6473 0.6428 0.6716 0.6632 0.6811 0.6793 0.6627 0.6519 0.6521 0.7044 0.6759 0.6792 0.6721 0.7022 

new-thyroid1 0.9275 0.9310 0.9288 0.9219 0.9468 0.9390 0.9426 0.9410 0.9272 0.9587 0.9446 0.9510 0.9451 0.9439 0.9517 

yeast3 0.6866 0.6922 0.7014 0.7250 0.7033 0.7315 0.7446 0.7361 0.7410 0.7398 0.7316 0.7425 0.7355 0.7398 0.7461 

ecoli3 0.5632 0.5791 0.6318 0.6007 0.6101 0.6049 0.6251 0.5735 0.5816 0.5835 0.5961 0.6032 0.6397 0.6381 0.6441 

vowel0 0.9489 0.9876 0.9941 0.9774 0.9986 0.9826 0.9978 0.9598 0.9689 0.9936 0.9972 1.0000 0.9983 0.9973 1.0000 

yeast-1_vs_7 0.2816 0.2459 0.4109 0.3828 0.4350 0.3744 0.3610 0.2969 0.2871 0.3980 0.3792 0.4160 0.3967 0.4159 0.4287 

ecoli4 0.6491 0.7387 0.7519 0.6393 0.7275 0.7080 0.7441 0.6146 0.7269 0.7484 0.7175 0.7290 0.7448 0.7641 0.7548 

abalone9-18 0.3353 0.3798 0.4314 0.3722 0.3918 0.3816 0.4277 0.2934 0.2987 0.3970 0.4052 0.4329 0.4320 0.4388 0.4530 

shuttle-c2-vs-c4 0.9964 0.9981 1.0000 0.9981 1.0000 0.9993 0.9976 0.9952 0.9971 0.9994 1.0000 0.9972 0.9991 1.0000 1.0000 

yeast4 0.2798 0.3362 0.3517 0.3394 0.3707 0.3239 0.3949 0.2875 0.2987 0.3708 0.3646 0.3802 0.3569 0.3694 0.3743 

yeast5 0.5967 0.6652 0.6743 0.5969 0.6837 0.6345 0.6874 0.5350 0.5989 0.6947 0.6528 0.6777 0.6931 0.6895 0.6933 

abalone19 0.0372 0.0991 0.0869 0.0417 0.1132 0.0507 0.0962 0.0487 0.0396 0.1133 0.1521 0.1312 0.1479 0.1455 0.1752 

ecoli-0-3-4_vs_5 0.7109 0.7983 0.8109 0.7329 0.8086 0.7751 0.8108 0.6954 0.7374 0.7930 0.8028 0.8039 0.8184 0.7999 0.8481 

ecoli-0-6-7_vs_3-5 0.5819 0.6343 0.6420 0.5927 0.6588 0.6447 0.6736 0.5210 0.6001 0.6542 0.6571 0.6848 0.6352 0.6572 0.6791 

yeast-0-3-5-9_vs_7-8 0.2933 0.3231 0.3490 0.2815 0.3140 0.3392 0.3431 0.3089 0.3076 0.3418 0.3396 0.3210 0.3317 0.3396 0.3991 

yeast-0-3-5-9_vs_7-8 0.6956 0.7722 0.7630 0.6717 0.7448 0.7134 0.7520 0.6837 0.7474 0.7541 0.7498 0.7526 0.7279 0.7579 0.7890 

ecoli-0-1_vs_2-3-5 0.5549 0.6627 0.6788 0.5610 0.6472 0.6081 0.6654 0.6344 0.6290 0.6708 0.6587 0.6842 0.6738 0.6688 0.7223 

ecoli-0-6-7_vs_5 0.5345 0.6860 0.7438 0.6633 0.7297 0.7515 0.7337 0.6125 0.7120 0.6995 0.7498 0.7355 0.7378 0.7394 0.7511 

led7digit-0-2-4-5-6-7-8-9_vs_1 0.6627 0.7413 0.7427 0.6580 0.7336 0.7189 0.7355 0.6528 0.7066 0.7209 0.7515 0.7320 0.7458 0.7468 0.7515 

ecoli-0-1_vs_5 0.7440 0.7752 0.7836 0.7506 0.7878 0.7441 0.7642 0.6784 0.7043 0.7531 0.7752 0.7807 0.7735 0.7742 0.7835 

shuttle-6_vs_2-3 0.8929 0.7304 0.7543 0.8891 0.7984 0.8894 0.8906 0.8814 0.8839 0.8539 0.8901 0.8872 0.8756 0.8795 0.9194 

flare-F 0.1909 0.2542 0.2798 0.2590 0.2711 0.2433 0.2677 0.2516 0.2702 0.2710 0.2688 0.2854 0.2860 0.2991 0.3796 

Continued on next page 
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winequality-red-4 0.1277 0.1792 0.2098 0.1744 0.1811 0.1795 0.1811 0.1342 0.0970 0.1979 0.1594 0.1945 0.1986 0.2333 0.2691 

shuttle-2_vs_5 1.0000 0.9951 1.0000 0.9729 0.9982 1.0000 1.0000 0.9684 0.9797 0.9968 0.9981 1.0000 0.9952 0.9954 1.0000 

poker-8-9_vs_5 0.0372 0.0661 0.0971 0.0422 0.1157 0.0679 0.1011 0.0385 0.0406 0.0920 0.1008 0.1106 0.1033 0.1176 0.1795 

poker-8_vs_6 0.2906 0.6790 0.6929 0.2409 0.6508 0.4411 0.4076 0.1919 0.2143 0.5080 0.6945 0.6991 0.6876 0.6734 0.7394 

banknote 0.9828 0.9816 0.9830 0.9901 0.9749 0.9826 0.9724 0.9849 0.9751 0.9810 0.9886 0.9815 0.9843 0.9799 0.9896 

ctgC5 0.2820 0.3144 0.3462 0.2517 0.3727 0.2342 0.3109 0.3519 0.3442 0.3031 0.3572 0.3648 0.3528 0.3591 0.4327 

ctgN1vsN3 0.6542 0.7310 0.7479 0.6968 0.7444 0.7991 0.7580 0.7374 0.7511 0.7332 0.7546 0.7590 0.7376 0.7521 0.7986 

ctgN2 0.6378 0.7436 0.7387 0.7115 0.7220 0.7159 0.7034 0.7519 0.7226 0.7258 0.7196 0.7364 0.7419 0.7644 0.7428 

ctgN3 0.7476 0.8095 0.7964 0.7555 0.7858 0.7336 0.7686 0.7587 0.7462 0.7680 0.7904 0.7725 0.7531 0.7549 0.8073 

wilt 0.5625 0.6991 0.7415 0.6423 0.7404 0.6985 0.7840 0.7379 0.6581 0.8132 0.7310 0.7796 0.7529 0.7522 0.8461 

mfeatmor01 0.9089 0.9735 0.9818 0.9527 0.9886 0.9532 0.9897 0.9436 0.9528 0.9789 0.9901 0.9592 0.9301 0.9459 0.9711 

mfeatmor012 0.8546 0.8369 0.8226 0.8990 0.8467 0.8971 0.8858 0.8442 0.8325 0.8790 0.8687 0.8884 0.8628 0.8844 0.9122 

seeds2v13 0.9776 0.9664 0.9685 0.9702 0.9573 0.9696 0.9668 0.9794 0.9801 0.9642 0.9715 0.9733 0.9598 0.9696 0.9798 

segment1 0.8806 0.9428 0.9335 0.9010 0.9552 0.9336 0.9344 0.9522 0.9121 0.9258 0.9306 0.9357 0.9281 0.9194 0.9479 

segment12 0.9562 0.9314 0.9210 0.9668 0.9506 0.9632 0.9545 0.9619 0.9454 0.9508 0.9612 0.9675 0.9449 0.9491 0.9677 

segment123 0.9986 0.9847 0.9859 0.9987 0.9856 0.9981 1.0000 0.9992 0.9992 0.9983 0.9869 1.0000 0.9906 0.9984 1.0000 



2747 

Electronic Research Archive                                                                         Volume 31, Issue 5, 2733-2757. 

Table 4. G-mean results of 15 comparative algorithms, where on each data set, the best result has been highlighted in bold. 

Dataset Under 

Bagging 

Over 

Bagging 

SMOTE 

Bagging 

RUSBoost SMOTE 

Boost 

EUSBoost EnSVM 

-OTHR 

Easy 

Ensemble 

Balance 

Cascade 

GIREnUS 2Obj* ECO 

-Ensemble 

HeteroEn HE SEHE 

glass1 0.7211 0.7202 0.7198 0.7454 0.7219 0.7418 0.7529 0.7622 0.7619 0.7588 0.7641 0.7832 0.7699 0.7701 0.8109 

wisconsin 0.9796 0.9701 0.9732 0.9769 0.9680 0.9745 0.9761 0.9687 0.9594 0.9732 0.9858 0.9761 0.9752 0.9747 0.9830 

pima 0.6733 0.6566 0.6721 0.6831 0.6702 0.6801 0.7673 0.7328 0.7285 0.7271 0.7166 0.7330 0.7575 0.7520 0.7793 

haberman 0.6010 0.5994 0.6004 0.6002 0.6118 0.6233 0.6219 0.6258 0.6146 0.6375 0.5998 0.6425 0.6333 0.6379 0.6412 

vehicle1 0.7858 0.7741 0.7759 0.7901 0.7722 0.7910 0.7853 0.7766 0.7692 0.7581 0.7834 0.8022 0.7931 0.8018 0.8356 

new-thyroid1 0.9792 0.9801 0.9847 0.9818 0.9836 0.9790 0.9829 0.9715 0.9718 0.9844 0.9901 0.9774 0.9855 0.9882 0.9899 

yeast3 0.8993 0.8899 0.8706 0.8944 0.9052 0.8911 0.9237 0.8901 0.8877 0.9018 0.9134 0.9075 0.8969 0.8993 0.9105 

ecoli3 0.8580 0.8681 0.8706 0.8478 0.8644 0.8590 0.8647 0.8760 0.8791 0.8632 0.8661 0.8744 0.8709 0.8776 0.8924 

vowel0 0.9978 0.9963 0.9981 0.9972 0.9950 0.9981 1.0000 0.9935 0.9962 1.0000 0.9971 1.0000 0.9994 0.9991 1.0000 

yeast-1_vs_7 0.5678 0.6882 0.7109 0.5945 0.7208 0.7044 0.6786 0.7430 0.7238 0.7196 0.7200 0.6959 0.7006 0.7159 0.7455 

ecoli4 0.9196 0.8998 0.9106 0.9042 0.9119 0.9208 0.9198 0.9304 0.9196 0.9211 0.9307 0.9256 0.9388 0.9306 0.9329 

abalone9-18 0.6495 0.6784 0.6513 0.6690 0.6755 0.6821 0.7492 0.7326 0.7419 0.7430 0.7374 0.7513 0.7333 0.7420 0.7764 

shuttle-c2-vs-c4 0.9971 0.9984 1.0000 0.9975 1.0000 0.9995 0.9977 0.9941 0.9986 0.9997 1.0000 0.9982 0.9995 1.0000 1.0000 

yeast4 0.8139 0.8057 0.8236 0.8294 0.8175 0.8277 0.8310 0.8194 0.8196 0.8079 0.8221 0.8174 0.8395 0.8358 0.8379 

yeast5 0.9535 0.9457 0.9674 0.9521 0.9443 0.9576 0.9495 0.9478 0.9406 0.9528 0.9663 0.9712 0.9591 0.9544 0.9642 

abalone19 0.3447 0.7240 0.7461 0.3290 0.6973 0.7276 0.5969 0.7085 0.4919 0.6738 0.7092 0.7329 0.7170 0.7181 0.7702 

ecoli-0-3-4_vs_5 0.8781 0.8857 0.8796 0.8981 0.8848 0.8932 0.8921 0.8830 0.8829 0.8990 0.8998 0.8776 0.8939 0.8901 0.8957 

ecoli-0-6-7_vs_3-5 0.8306 0.7998 0.8081 0.8272 0.8198 0.8255 0.8551 0.8030 0.8212 0.8187 0.8190 0.8464 0.8211 0.8186 0.8539 

yeast-0-3-5-9_vs_7-8 0.6997 0.5687 0.5868 0.6739 0.5710 0.6845 0.6861 0.6932 0.6911 0.6954 0.6878 0.6759 0.6922 0.6878 0.7154 

yeast-0-3-5-9_vs_7-8 0.8874 0.9028 0.9012 0.8966 0.8998 0.8775 0.8964 0.8981 0.8942 0.8911 0.8886 0.8932 0.8897 0.8933 0.8959 

ecoli-0-1_vs_2-3-5 0.8377 0.8119 0.8088 0.8394 0.8299 0.8301 0.8442 0.8527 0.8504 0.8425 0.8501 0.8499 0.8455 0.8479 0.8697 

ecoli-0-6-7_vs_5 0.8000 0.8642 0.8591 0.8320 0.8529 0.8617 0.8832 0.8653 0.8724 0.8695 0.8610 0.8736 0.8575 0.8531 0.8792 

led7digit-0-2-4-5-6-7-8-9_vs_1 0.8534 0.8631 0.8670 0.8498 0.8692 0.8506 0.8772 0.8650 0.8762 0.8696 0.8779 0.8699 0.8858 0.8744 0.8821 

ecoli-0-1_vs_5 0.8850 0.8952 0.8926 0.8901 0.8974 0.8833 0.8906 0.8864 0.8732 0.8830 0.8868 0.8953 0.8862 0.8934 0.9195 

shuttle-6_vs_2-3 0.8586 0.7760 0.7793 0.8228 0.7896 0.8499 0.8934 0.8820 0.8959 0.8876 0.9030 0.9123 0.8896 0.8867 0.9095 

flare-F 0.8218 0.7477 0.7652 0.8333 0.7501 0.8198 0.6744 0.8219 0.7946 0.8079 0.8139 0.8448 0.7989 0.8016 0.8337 

winequality-red-4 0.5919 0.6732 0.6673 0.5792 0.6545 0.5808 0.6273 0.5898 0.5170 0.6914 0.6632 0.6500 0.6705 0.6829 0.7173 

Continued on next page 
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shuttle-2_vs_5 1.0000 0.9982 1.0000 0.9711 0.9976 1.0000 1.0000 0.9774 0.9823 0.9954 0.9987 1.0000 0.9965 0.9988 1.0000 

poker-8-9_vs_5 0.3317 0.6053 0.6149 0.3140 0.5782 0.3438 0.5562 0.3710 0.3929 0.4618 0.4491 0.5312 0.4700 0.4854 0.6157 

poker-8_vs_6 0.5252 0.7410 0.7299 0.5740 0.7318 0.5237 0.7098 0.6536 0.6790 0.7492 0.7008 0.7129 0.7190 0.7152 0.7733 

banknote 0.9876 0.9810 0.9809 0.9913 0.9804 0.9821 0.9856 0.9830 0.9777 0.9822 0.9896 0.9811 0.9834 0.9791 0.9850 

ctgC5 0.5134 0.6658 0.6233 0.5730 0.6419 0.5099 0.5858 0.5736 0.6297 0.6419 0.6322 0.6785 0.6412 0.6430 0.6859 

ctgN1vsN3 0.8297 0.8170 0.8254 0.8137 0.8350 0.8445 0.8454 0.8361 0.8299 0.8317 0.8471 0.8360 0.8338 0.8415 0.8447 

ctgN2 0.8052 0.7969 0.8011 0.7994 0.8138 0.7876 0.8452 0.8092 0.7956 0.8004 0.8123 0.8223 0.7964 0.8558 0.8770 

ctgN3 0.8211 0.8732 0.8536 0.8341 0.8840 0.8109 0.8444 0.8277 0.8309 0.8650 0.8233 0.8766 0.8427 0.8501 0.8766 

wilt 0.7691 0.7038 0.6852 0.7222 0.7001 0.7559 0.7981 0.7226 0.7028 0.8006 0.7304 0.7578 0.7449 0.7611 0.7999 

mfeatmor01 0.9521 0.9815 0.9874 0.9662 0.9901 0.9633 0.9884 0.9601 0.9732 0.9807 0.9874 0.9663 0.9406 0.9535 0.9715 

mfeatmor012 0.8998 0.8227 0.8376 0.9015 0.8778 0.9192 0.9135 0.9004 0.8858 0.9030 0.8564 0.9002 0.8568 0.8774 0.9323 

seeds2v13 0.9855 0.9724 0.9789 0.9802 0.9693 0.9891 0.9868 0.9780 0.9876 0.9905 0.9872 0.9901 0.9701 0.9743 0.9856 

segment1 0.9423 0.9637 0.9716 0.9332 0.9630 0.9236 0.9579 0.9411 0.9619 0.9690 0.9848 0.9597 0.9481 0.9577 0.9700 

segment12 0.9701 0.9539 0.9611 0.9678 0.9555 0.9690 0.9772 0.9571 0.9580 0.9747 0.9689 0.9677 0.9704 0.9708 0.9882 

segment123 0.9991 0.9897 0.9879 0.9994 0.9834 0.9990 1.0000 0.9995 0.9994 0.9989 0.9881 1.0000 0.9935 0.9991 1.0000 

 



2749 

Electronic Research Archive                               Volume 31, Issue 5, 2733-2757. 

Table 5. Top 10 combinations between single sampling approach and classification method in HE. 

Rank Combination # data sets performing best 
1 MPBU + Support Vector Machine 7 
2 UFFDFR + Logistic Regression 5 
3 MWMOTE + Extreme Learning Machine 4 
4 MWMOTE + Support Vector Machine 3 
5 UFFDER + CART 3 
6 GA-SMOTE + Support Vector Machine 2 
7 MPBU + KNN 2 
8 MWMOTE + Support Vector Machine 2 
9 GA-SMOTE + Extreme Learning Machine 2 
10 MPBU + Extreme Learning Machine 2 

Furthermore, we investigated an important issue, that is, how many base classifiers have been 
selected to organize the ensemble in our proposed SEHE algorithm? Figure 2 shows the average 
number of selected base classifiers in SEHE based on 50 independent runs on each data set. In Figure 2, 
we observed that on most data sets, SEHE integrates no more than 20 base classifiers to make final 
decision but produces robust results, which verifies the assumption that SEHE could adaptively find 
the trade-off between single quality and group diversity, again. 

 

Figure 2. Average number of selected base classifiers in SEHE on each data set, where 
the number on the horizontal axis corresponds to the order of the data set in Table 2. 

4.4. Significance analysis 

Next, the Nemenyi test [53,54] is used to observe whether there exist some actual differences 
between the proposed SEHE algorithm and the other comparative algorithms in statistics. 
Specifically, the critical difference (CD) metric is used to show the differences among various 
algorithms. Figure 3 shows the CD diagram at a standard level of significance, α = 0.05, where the 
average ranking of each algorithm is marked along the axis (higher rankings to the left). In a CD 
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diagram, if a group of algorithms are not significantly different, then these algorithms will be 
connected by a thick line. 

In Figure 3, we observed that our proposed SEHE algorithm has acquired the lowest average 
rankings 1.7976 on F1-measure and 2.3571 on G-mean, which show that it is the best one among all 
comparative algorithms on both metrics. At a standard level of significance, α = 0.05, SEHE 
significantly outperforms its competitors except ECO-Ensemble on F1-measure metric. Therefore, 
we have to say that on the F1-metric at least, in contrast to the ECO-Ensemble algorithm, our 
proposed SEHE algorithm has not presented a significant superiority. In addition, another conclusion 
can be drawn from the results in Figure 3, i.e., several state-of-the-art algorithms proposed in several 
recent years generally perform better than those previously popular algorithms. 

 
(a) CD diagram on F1-measure 

 

(b) CD diagram on G-mean 

Figure 3. CD diagrams of various comparative algorithms at a standard level of 
significance, α = 0.05. 
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4.5. Performance improvement with two baselines 

To make clear how much improvement the proposed SEHE algorithm has acquired, we also 
compared it with the two following baselines: One is the performance yielded by the best base 
classifier in HE, and the other one is the performance produced by HE. The percentages of 
performance improvement compared with the two baselines in terms of F1-measure and G-mean 
metrics are respectively presented in Figure 4. 

 
(a) F1-measure improvement 

 
(b) G-mean improvement 

Figure 4. Percentage of performance improvement of SEHE in comparison with two 
baselines: HE and the best base classifier in HE, on each data set. 

Figure 4 shows that on most data sets, the proposed SEHE algorithms can improve 
classification performance in comparison with two baselines to some extent, which indicates the 
necessity of adopting a selective ensemble, again. Meanwhile, we observed an interesting 
phenomenon, that is, on most data sets, the HE algorithm performs poorer than its best member (base 
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classifier). This is acceptable, because in a practical application, it cannot foresee the best 
combination of sampling method and classification model. In contrast to directly integrating 
heterogeneous methods, the model selection is obviously a more complex task. 

4.6. Ablation study 

Finally, we designed two groups of ablation experiments to make clear the effect of adopting 
diverse sampling approaches and heterogeneous classifiers in SEHE, respectively. We tuned the 
ablation at the data level and classifier level, respectively. That is to say, for each test, we only 
reserve either one data-level or one classifier-level method in SEHE, whereas the other level remains 
stable. For example, if the ablation associates with SMOTE, then all other sampling algorithms 
would be removed, but the classifier level still maintains six heterogeneous classifiers. Considering 
that the ablation reduces the ensemble size and further causes an impartial comparison, we utilized 
the bootstrap technique before sampling to guarantee that a total number of 42 diverse base 
classifiers can be generated. A pairwise t-test at 5% significance level was adopted to compare 
SEHE with its ablation algorithm, and further the numbers of wins/ties/losses throughout all 42 
data sets were recorded, respectively. 

Table 6. Statistical comparison between SEHE and its data-level ablation algorithm 
based on a pairwise t-test at 5% significance level. 

Ablation comparison F1-measure G-mean 
Win Tie Loss Win Tie Loss 

SEHE vs. SEHE_RUS 15 26 1 14 25 3 
SEHE vs. SEHE_UFFDFR 13 28 1 14 28 0 
SEHE vs. SEHE_MPBU 11 29 2 15 26 1 
SEHE vs. SEHE_ROS 10 31 1 12 28 2 
SEHE vs. SEHE_SMOTE 7 33 2 9 29 4 
SEHE vs. SEHE_MWMOTE 6 34 2 10 29 3 
SEHE vs. SEHE_GA-SMOTE 6 32 4 8 33 1 

Table 7. Statistical comparison between SEHE and its classifier-level ablation algorithm 
based on a pairwise t-test at 5% significance level. 

Ablation comparison F1-measure G-mean 
Win Tie Loss Win Tie Loss 

SEHE vs. SEHE_CART 17 25 0 19 22 1 
SEHE vs. SEHE_KNN 20 21 1 23 19 0 
SEHE vs. SEHE_SVM 15 22 5 17 22 3 
SEHE vs. SEHE_ELM 13 26 3 15 24 3 
SEHE vs. SEHE_LR 18 24 0 21 20 1 
SEHE vs. SEHE_NB 25 17 0 23 18 1 

Tables 6 and 7 provide the results of ablation experiments at data level and classifier level, 
respectively. Specifically, each ablation algorithm was still conducted by 10 random runs’ external 
five-fold cross validation. The results show that reducing diversity at data level influences less the 
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classification performance than tuning the classifier level. In other words, the adoption of 
heterogeneous classifiers contributes significantly more for the success of our SEHE algorithm, 
which illustrates that the ensemble of heterogeneous classifiers is helpful for reducing the bias of a 
single classifier and enhancing group diversity of ensemble, again. 

5. Conclusions 

In this study, a selective evolutionary heterogeneous ensemble algorithm has been proposed to 
address the class imbalance learning problem. First, a group of different sampling approaches run on 
the original training data to acquire multiple diverse balanced training subsets. Then, each subset is 
trained on multiple different types of classifiers, further generating some diverse base classifiers. 
Next, a selective ensemble procedure relying on the evolutionary algorithm is conducted to search 
for the best combination of base classifiers. By lots of comparative experiments, the proposed SEHE 
algorithm shows a superior performance in comparison to some state-of-the-art class imbalance 
ensemble learning algorithms. 

From the experimental results, several major conclusions could be safely drawn as follows: 
1) Disturbing the data level and the classifier level both help to enhance ensemble diversity, but the 
disturbance at the classifier level contributes significantly more. 
2) Many are really better than all: Adaptively selecting a few base classifiers always performs better 
than aggregating all. 
3) The best base classifier often outperforms the HE, but in most cases, it performs poorer than 
the SEHE. 
4) SEHE is a flexible, robust and competitive algorithm to solve the class imbalance learning 
problem in real-world applications. 

In future work, the issue of how to decrease the time-complexity of the SEHE algorithm will be 
investigated. The performance variation of SEHE by extending the library of sampling and 
classification methods will be observed in future study, too. Additionally, we state that although in 
this study, the SEHE has not been verified on a multi-class imbalanced learning problem, it is indeed 
compatible for both binary and multi-class classification problems when and only when all 
embedded sampling algorithms are simultaneously appropriate for these two problems. Therefore, 
extending the current SEHE version to the multi-class classification problem for estimating its 
effectiveness and superiority will also be studied in future work. 
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