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Abstract: In this paper, a topology optimization algorithm for the mechanical-electrical coupling
problem of periodic composite materials is studied. Firstly, the homogenization problem of the
mechanical-electrical coupling topology optimization problem of periodic composite materials is es-
tablished by the multi-scale asymptotic expansion method. Secondly, the topology optimization algo-
rithm for the mechanical-electrical coupling problem of periodic composite materials is constructed by
finite element method, solid isotropic material with penalisation method and homogenization method.
Finally, numerical results show that the proposed algorithm is effective to calculate the optimal struc-
ture of the periodic composite cantilever beam under the influence of the mechanical-electrical cou-
pling.
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1. Introduction

Structural optimization of piezoelectric composites is one of the hot issues in structural design of
materials. Piezoelectric composites are widely used in aircraft structure, electronic information tech-
nology and semiconductor materials [1,2]. Composite materials generally have some small periodicity,
which makes it difficult to solve the differential equations that describe piezoelectric problems theo-
retically. For piezoelectric phenomena of composite structures, a simple and effective algorithm is
developed based on the idea of homogenization [3, 4]. In [5], the homogenization method is used
to establish a numerical algorithm for calculating the optimal design of composite structures. In [6],
mainly presented a multi-scale and multi-material topology optimization algorithm for designing cel-
lular structure. The reference [7] proposed a topology optimization method for structural heat transfer
and load carrying capabilities. The optimal structure and microstructure topology optimization meth-

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023136


2690

ods of materials are presented in [8]. In [9], a piezoelectric plate energy harvester of in-plane harmonic
energy is studied, and proposed a topology optimization algorithm of two-dimensional piezoelectric
material model, which minimizes the numerical instability. A topology optimization algorithm is pro-
posed based on probabilistic reliability for piezoelectric uncertainty, and established a nested double-
loop optimization algorithm to satisfy the displacement performance in [10]. For multi-scale structural
topology optimization, in [11], mainly studies a two-scale concurrent topology optimization design
of multi-micro heterogeneous materials. The two-scale design optimization problem of minimizing
structural compliance under the constraints of seepage flow rate and material void is studied in [12].
In [13], a hierarchical topology optimization design method applied to single scale microstructure of
mechanical materials is proposed. The finite element method is introduced through the homogenization
method of composite materials, and the homogenization constant of composite materials is realized by
the program [14–16]. A structure-material design two-scale optimization methods in the framework
of level set method presented in [17]. In reference [18, 19] proposed a topology optimization design
method for solids and fluids periodicity and microstructure of porous materials. In [20], based on the
multi-material topology optimization, some materials with fully combined bi-functions are developed
and proposed a method for selecting reasonable parameters. A topology optimization algorithm to
improve the alternating active phase and object of multiple materials and a new formula to overcome
convergent oscillations are presented in [21]. A two-scale parallel optimization method is proposed
and applied to the macroscopic and microscopic structures, finally, compared the optimized gradient
and uniform graded lattice structures in [22]. In [23], mainly proposed a multi-material topology op-
timization algorithm and candidate material selection criteria, and applied the topology optimization
algorithm to the compliance minimization problem. In [24], this paper mainly studies the bending
behavior of three-dimensional periodic composite plates and designs a two-scale computing method,
which is used to solve the effective parameters and displacement strains of the composite plates. A
method of constructing a higher order scheme for numerical solutions of the fractional ordinary dif-
ferential equations is proposed in [25]. The high-order numerical scheme of caputo time fractional
differential equation with uniform accuracy is constructed by constructing high-order finite difference
method and local truncation error in [26]. An effective topology optimization method for macrostruc-
ture and their corresponding parameterized microstructure is presented in [27]. In [28], a topology
optimization algorithm based on level set composites is proposed, and the algorithm is applied to the
compliance minimization of linear elastic problems. It established a two-scale coupling relationship
between potential and displacement and analyzed some improved asymptotic error estimates in [29].
The structure optimization algorithm of piezoelectric material plate is established by moving asymp-
tote method, and the program experiment is given by Matlab in [30]. For more practical applications,
see [31, 32].

According to the current literature research, there are few mechanical-electrical coupling topology
optimization algorithms for piezoelectric composites. This paper constructs a structural optimization
algorithm for the electro-mechanical coupling problem of composite materials based on the two-scale
asymptotic expansion method. The algorithm is used to calculate the optimization problem of can-
tilever beam structure. This paper is arranged as follows: construction and analysis of topological opti-
mization method for electro-mechanical coupling problems of periodic composite materials in Section
2. In Section 3, establish a topological optimization algorithm for the electro-mechanical coupling
problem of periodic composite materials, and the topology optimization structure of fine mesh and

Electronic Research Archive Volume 31, Issue 5, 2689–2707.



2691

homogenized solution were compared. Finally, some conclusions are given in Section 4.

Nomenclature
List of Symbols

Eε Young’s modulus(N/m2) ρ Density(kg/m3)
Eε0 Young’s modulus for void materials(N/m2) λε, µε Lame constants
Eε1 Young’s modulus for solid materials(N/m2) fi Body forces(N)
Cθ,εi jhk Elastic constant(N/m2) uεk Displacement field(m)
Cθ,εi jhk(0) Elastic constant for void materials(N/m2) ti Surface load(N)
Cθ,εi jhk(1) Elastic constant for solid materials(N/m2) θ Design variable
eθ,εi jk Piezoelectric constant(C/m2) ν Poisson’s ratio
eθ,εi jk(0) Piezoelectric constant for void materials(C/m2) G Original sensitivity
eθ,εi jk(1) Piezoelectric constant for solid materials(C/m2) Gr Smoothed sensitivity
bθ,εi j Dielectric constant(F/m) δGr The variation of Gr

bθ,εi j(0) Dielectric constant for void materials (F/m) γi Positive constant
bθ,εi j(1) Dielectric constant for solid materials(F/m) χk, λ̄, ϕ Lagrange multiplier
Φε Electric potential field(V) move Density change
p Penalization factor η Damping coefficient
q Concentrated electric loads(C) ϑ Volume constraint
Kh0(Y) Finite element spaces Kh1(Y) Finite element spaces

2. Construction and analysis of topological optimization method for mechanical-electrical
coupling problems of periodic composite materials

Suppose a cantilever beams with length W and width L were considered in the simulations. As
shown in Figure 1, let Ω be a bounded domain with Lipschitz boundary. In what follows, Latin indices
take numbers in 1, 2, 3, while Greek ones only run over 1, 2. In addition, we shall constantly use the
Einstein summation convention.

a. Composite materials domain Ω. b. Monocellular domain Y.

Figure 1. Initial material.

The famous material interpolation schemes is the density-based method. For non-isotropic piezo-
electric material, the interpolation function is the extension of solid isotropic microstructure with pe-
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nalization (SIMP) scheme which can be written as follows:

Eε(x) = Eε0(x) + (Eε1(x) − Eε0(x))θp(x),

Cθ,εi jhk(x) = Cθ,εi jhk(0)(x) + (Cθ,εi jhk(1)(x) −Cθ,εi jhk(0)(x))θp(x), (2.1)

eθ,εki j(x) = eθ,εki j(0)(x) + (eθ,εki j(1)(x) − eθ,εki j(0)(x))θp(x),

bθ,εi j (x) = bθ,εi j(0)(x) + (bθ,εi j(1)(x) − bθ,εi j(0)(x))θp(x).

It is noted that the parameter θ(x) is a design variable. Similarly, the Lame parameters describing
the mechanical properties of a solid can be expressed as follows:

λε(x) =
νEε(x)

(1 + ν)(1 − 2ν)
, µε(x) =

Eε(x)
2(1 + ν)

. (2.2)

Consider the following minimization of mechanical-electrical coupling problem for two-
dimensional periodic composite materials, the objective function is described as:

min
θ

J(θ) =
∫
Ω

fi(x)uεi (x)θ(x) dx +
∫

Bt

ti(x)uεi (x) ds

−

∫
Ω

ρ(x)Φε(x)θ(x) dx −
∫

Bϕ
q(x)Φε(x) ds, (2.3)

subject to 

−
∂

∂x j

(
Cθ,εi jkl(x)

∂uεk(x)
∂xl

+ eθ,εki j(x)
∂Φε(x)
∂xk

)
= fi(x)θ(x), in Ω,

−
∂

∂xi

(
bθ,εi j (x)

∂Φε(x)
∂x j

− eθ,εi jk(x)
∂uεk(x)
∂x j

)
= ρ(x)θ(x), in Ω,

uεk (x) = 0, on Bu,(
∂uεk (x)
∂xl

Cθ,εi jkl(x) + eθ,εki j(x)
∂Φε(x)
∂xk

)
n j = ti(x), on Bt,(

∂Φε(x)
∂x j

bθ,εi j (x) − eθ,εi jk(x)
∂uεk(x)
∂x j

)
ni = q(x), on Bϕ,

Φε (x) = 0, on Bq,∫
Ω
θ(x)dx/ |Ω| ≤ ϑ, 0 ≤ θ(x) ≤ 1,

(2.4)

where fi(x) is the body force, ρ(x) is the density of charge, ϑ is volume constraint, n is a normal vector,
uεk(x) is the displacement vector,Φε(x) is the scalar electric potential field, ti(x) is surface traction force,
q(x) denotes the electric body charge, and the boundary ∂Ω of Ω is composed of the traction boundary
Bt and the displacement boundary Bu with Bu ∩ Bt = 0 and Bu ∪ Bt = ∂Ω. Similarly, the electrical
boundaryΩ is divided into two parts, the electric potential boundary Bϕ and the electric loads boundary
Bq with Bϕ ∩ Bq = 0 and Bϕ ∪ Bq = ∂Ω.

Assume that all coefficients satisfy the following conditions

(I) Cθ,εi jhk(x) = Cθi jhk(ξ), e
θ,ε
i jk(x) = eθi jk(ξ), b

θ,ε
i j (x) = bθi j(ξ) is periodic Y and ξ = x

/
ε;
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(II) Cθ,εi jhk(x) satisfies the following coercive condition Ξ(k1, k2), s.t.,{
Cθ,εi jhk(x) = Cθ,εjikh(x) = Cθ,εi jkh(x),
k1ζihζih ≤ Cθ,εi jhk(x)ζihζ jk ≤ k2ζ jkζ jk,

where {ζih} is real elements with arbitrary symmetric matrix, k1 and k2 are positive constants
independent of ε;

(III) bθ,εi j (x) satisfies the following positive definite condition:

bθ,εi j (x) = bθ,εji (x), τ1ζiζi ≤ bθ,εi j (x)ζiζ j ≤ τ2ζ jζ j,

where {ζi} is an arbitrary vector with real element, τ1 and τ2 are constants greater than zero
independent of ε;

(IV) For tensor eθ,εi jk(x), we assume that eθ,εi jk(x) = eθ,εik j(x).

Theorem 2.1. Assume that the homogenization coefficients Ĉθi jhk, ê
θ
i jk and b̂θi j satisfy the conditions (I)–

(IV), then the homogenization problem of Eq (2.3) is as follows:

min
θ

J(θ) =
∫
Ω

fi(x)u0
i (x)θ(x) dx +

∫
Bt

ti(x)u0
i (x) ds −

∫
Ω

ρ(x)Φ0(x)θ(x) dx −
∫

Bϕ
q(x)Φ0(x) ds,

and satisfy the following equations

−
∂

∂x j

(
Ĉθi jkl

∂u0
k(x)
∂xl

+ êθki j
∂Φ0(x)
∂xk

)
= fi(x)θ(x), in Ω,

−
∂

∂xi

(
b̂θi j
∂Φ0(x)
∂x j

− êθi jk

∂u0
k(x)
∂x j

)
= ρ(x)θ(x), in Ω,

u0
k (x) = 0, on Bu,(
Ĉθi jkl

∂u0
k(x)
∂xl

+ êθki j
∂Φ0(x)
∂xk

)
n j = ti(x), on Bt,(

b̂θi j
∂Φ0(x)
∂x j

− êθi jk

∂u0
k(x)
∂x j

)
ni = q(x), on Bϕ,

Φ0 (x) = 0, on Bq,∫
Ω
θ(x)dx/ |Ω| ≤ ϑ, 0 ≤ θ(x) ≤ 1.

(2.5)

Let’s define the coefficients of homogenization Ĉθi jhk, ê
θ
i jk and b̂θi j as follows:

Ĉθi jhk =
1
|Y |

∫
Y

[
Cθi jhk(ξ) +Cθi jlm(ξ)

∂(Nhk(ξ))l

∂ξm
+ eθli j(ξ)

∂Ghk(ξ)
∂ξl

]
dξ, (2.6)

êθi jk =
1
|Y |

∫
Y

[
eθi jk(ξ) +Cθi jlm(ξ)

∂(Mk(ξ))l

∂ξm
+ eθli j(ξ)

∂Hk(ξ)
∂ξl

]
dξ, (2.7)

b̂θi j =
1
|Y |

∫
Y

[
bθi j(ξ) − eθilm(ξ)

∂(M j(ξ))l

∂ξm
+ bθik(ξ)

∂H j(ξ)
∂ξk

]
dξ, (2.8)
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where H(ξ),G(ξ),M(ξ),N(ξ) are Y-periodic in ξ and defined by as follows

∂

∂ξ j

(
eθki j(ξ)

∂Hα1 (ξ)
∂ξk

)
+
∂

∂ξ j

(
Cθi jhk(ξ)

∂(Mα1(ξ))h

∂ξk

)
+
∂

∂ξ j

(
eθα1i j(ξ)

)
= 0, in Ω,

∂

∂ξi

(
−bθi j(ξ)

∂Hα1(ξ)
∂ξ j

)
+
∂

∂ξi

(
eθik j(ξ)

∂(Mα1(ξ))k

∂ξ j

)
−
∂

∂ξi

(
bθα1i(ξ)

)
= 0, in Ω,∫

Ω

Mα1(ξ)dξ = 0,
∫
Ω

Hα1(ξ)dξ = 0,

(2.9)

and 

∂

∂ξ j

(
Cθi jhk(ξ)

∂(Nα1m(ξ))h

∂ξk

)
+
∂

∂ξ j

(
Cθi jα1m(ξ)

)
+
∂

∂ξ j

(
eθki j(ξ)

∂Gα1m(ξ)
∂ξk

)
= 0, in Ω,

∂

∂ξi

(
−bθi j(ξ)

∂Gα1m(ξ)
∂ξ j

)
+
∂

∂ξi

(
eθik j(ξ)

∂(Nα1m(ξ))k

∂ξ j

)
+
∂

∂ξi

(
eθimα1

(ξ)
)
= 0, in Ω,∫

Ω

Nα1m(ξ)dξ = 0,
∫
Ω

Gα1m(ξ)dξ = 0.

(2.10)

Proof. For a detailed proof, see Appendix A.

The sensitivity analysis is derived by the Lagrange multiplier L, for the optimization problem of
mechanical-electrical coupling of the discussed composite materials, the Lagrange multiplier can be
defined as:

L
(
ū0(x), Φ̄0(x), θ(x), χ̄(x), ϕ̄(x)

)
= J(θ) −

∫
Ω

fi(x)χ̄i(x)θ(x)dx −
∫

Bt

ti(x)χ̄i(x)ds

+

∫
Ω

ρ(x)ϕ̄(x)θ(x)dx +
∫
Ω

(êθki j(ξ)
∂Φ̄0(x)
∂xi

)
∂χ̄k(x)
∂x j

dx +
∫
Ω

(êθi jk(ξ)
∂ū0

k(x)
∂x j

)
∂ϕ̄(x)
∂xi

dx

+

∫
Ω

(Ĉθi jkl(ξ)
∂ū0

k(x)
∂xl

)
∂χ̄i(x)
∂x j

dx +
∫

Bϕ
q(x)ϕ̄(x)ds −

∫
Ω

(b̂θi j(ξ)
∂Φ̄0(x)
∂x j

)
∂ϕ̄(x)
∂xi

dx, (2.11)

where (ū0(x), χ̄(x)) ∈ U is a vector-valued function, χ̄(x) is the Lagrange multiplier of the governing
equation and the Neumann boundary condition on Bt, (Φ̄0(x), ϕ̄(x)) ∈ Z is a quantity-valued function,
ϕ̄(x) is the Lagrange multiplier of the governing equation and the Neumann boundary condition on Bϕ.
The dual spaces of U and Z are U′ and Z′, respectively.

Theorem 2.2. Suppose ū0
k(x) ∈ U and Φ̄0(x) ∈ Z are locally optimal solutions of (2.5), then there are

χk(x) ∈ U′ and ϕ(x) ∈ Z′, both of which satisfied the following conditions:

∂

∂x j

(
Ĉθi jkl
∂χk(x)
∂xl

+ êθi jk
∂ϕ(x)
∂xk

)
= fi (x) θ(x), in Ω,

∂

∂xi

(
b̂θi j
∂ϕ(x)
∂x j

− êθki j
∂χk(x)
∂x j

)
= ρ(x)θ(x), in Ω,

χk (x) = 0, on Bu,

−

(
Ĉθi jkl
∂χk(x)
∂xl

+ êθi jk
∂ϕ(x)
∂xk

)
n j = ti(x), on Bt,

−

(
b̂θi j
∂ϕ(x)
∂x j

− êθki j
∂χk(x)
∂x j

)
ni = q(x), on Bϕ,

ϕ (x) = 0, on Bq.

(2.12)

Electronic Research Archive Volume 31, Issue 5, 2689–2707.



2695

Proof. The partial derivative of Eq (2.11) with respect to ū0
k(x) in the direction δū0

k(x) at a stationary
point (u0

k(x), χk(x)) ∈ U leads to〈
∂L
∂ū0

k(x)

(
u0(x),Φ0(x), θ(x), χ(x), ϕ(x)

)
, δū0

k(x)
〉
=

∫
Bt

tk(x)δū0
k(x)ds +

∫
Ω

fk(x)δū0
k(x)θ(x)dx

+

∫
Ω

(Ĉθi jkl(ξ)
∂

∂xl
δū0

k(x))
∂χi(x)
∂x j

dx +
∫
Ω

(êθi jk(ξ)
∂

∂x j
δū0

k(x))
∂ϕ(x)
∂xi

dx = 0. (2.13)

Similarly, taking the derivative of Eq (2.11) with respect to Φ̄0(x) in the direction δΦ̄0(x) at a sta-
tionary point (Φ0(x), ϕ(x)) ∈ Z leads to〈

∂L
∂Φ̄0(x)

(
u0(x),Φ0(x), θ(x), χ(x), ϕ(x)

)
, δΦ̄0(x)

〉
= −

∫
Ω

ρ(x)δΦ̄0(x)θ(x)dx −
∫

Bϕ
q(x)δΦ̄0(x)ds

−

∫
Ω

(b̂θi j(ξ)
∂

∂x j
δΦ̄0(x))

∂ϕ(x)
∂xi

dx +
∫
Ω

(êθki j(ξ)
∂

∂xi
δΦ̄0(x))

∂χk(x)
∂x j

dx = 0. (2.14)

In the third term on the right hand side of (2.13) and (2.14), δū0
k(x) can commute with χk(x) and δΦ̄0

commute with ϕ(x) due to the symmetric property of the bilinear form, i.e.,(
Ĉθi jkl(ξ)

∂δū0
k(x)
∂xl

)
∂χi(x)
∂x j

=

(
Ĉθi jkl(ξ)

∂χi(x)
∂x j

)
∂δū0

k(x)
∂xl

, (2.15)(
b̂θi j(ξ)

∂δΦ̄0(x)
∂x j

)
∂ϕ(x)
∂xi

=

(
b̂θi j(ξ)

∂ϕ(x)
∂xi

)
∂δΦ̄0(x)
∂x j

. (2.16)

Substituting (2.15) into (2.13) and (2.16) into (2.14) and taking integration by parts lead to the
following equation〈

∂L
∂ū0

k

(
u0(x),Φ0(x), θ(x), χ(x), ϕ(x)

)
, δū0

k(x)
〉
=

∫
Ω

fk(x)θ(x)δū0
k(x)dx +

∫
Bt

tk(x)δū0
k(x)ds

+

∫
Bt

n j(Ĉθi jkl(ξ)
∂χi(x)
∂x j

)δū0
k(x)ds +

∫
Bt

n j(êθi jk(ξ)
∂ϕ(x)
∂xi

)δū0
k(x)ds

−

∫
Ω

∂

∂xl
(Ĉθi jkl(ξ)

∂χi(x)
∂x j

)δū0
k(x)dx −

∫
Ω

∂

∂x j
(êθi jk(ξ)

∂ϕ(x)
∂xi

)δū0
k(x)dx = 0, (2.17)

and 〈
∂L
∂Φ̄0(x)

(
u0(x),Φ0(x), θ(x), χ(x), ϕ(x)

)
, δΦ̄0(x)

〉
= −

∫
Ω

ρ(x)θ(x)δΦ̄0(x)dx −
∫

Bϕ
q(x)δΦ̄0(x)ds

+

∫
Ω

∂

∂xi
(bθi j(ξ)

∂ϕ(x)
∂x j

)δΦ̄0(x)dx −
∫
Ω

∂

∂xi
(êθki j(ξ)

∂χk(x)
∂x j

)δΦ̄0(x)dx

−

∫
Bϕ

n j(b̂θi j(ξ)
∂ϕ(x)
∂xi

)δΦ̄0(x)ds +
∫

Bϕ
ni(êθki j(ξ)

∂χk(x)
∂x j

)δΦ̄0(x)ds = 0. (2.18)

For arbitrarily function ū0
k(x) ∈ U and Φ̄0(x) ∈ Z are locally optimal solutions of (2.5). Theorem

2.2 has been proved.
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The finite element method is used to solve the adjoint Eq (2.12) to obtain χk(x) and ϕ(x), which are
substituted into J(θ). The sensitivity of the objective function is obtained by taking the derivative of

J(θ) = L
(
u0(x),Φ0(x), θ(x), χ(x), ϕ(x)

)
. (2.19)

With take the derivative of the design variable θ:〈
∂J
∂θ
, δθ

〉
=

∫
Ω

[
fi(x)u0

i (x) + (
∂Ĉθi jkl(ξ)

∂θ

∂u0
k(x)
∂xl

)
∂χi(x)
∂x j

− ρ(x)Φ0(x)

+(
∂êθki j(ξ)

∂θ

∂Φ0(x)
∂xi

)
∂χk(x)
∂x j

− (
∂b̂θi j(ξ)

∂θ

∂Φ0(x)
∂x j

)
∂ϕ(x)
∂xi

+ ρ(x)ϕ(x)

+(
∂êθi jk(ξ)

∂θ

∂u0
k(x)
∂x j

)
∂ϕ(x)
∂xi

− fi(x)χi(x)
]
δθdx =

∫
Ω

∂J
∂θ
δθdx.

Then the objective function of the sensitivity analysis is following as:

∂J
∂θ
= fi(x)u0

i (x) − ρ(x)Φ0(x) + (
∂Ĉθi jkl(ξ)

∂θ

∂u0
k(x)
∂xl

)
∂χi(x)
∂x j

− fi(x)χi(x) + ρ(x)ϕ(x)

+ (
∂b̂θi j(ξ)

∂θ

∂Φ0(x)
∂x j

)
∂ϕ(x)
∂xi

− (
∂êθki j(ξ)

∂θ

∂Φ0(x)
∂xi

)
∂χk(x)
∂x j

+ (
∂êθi jk(ξ)

∂θ

∂u0
k(x)
∂x j

)
∂ϕ(x)
∂xi
. (2.20)

In order to ensure that checkerboard patterns are avoided in the solution of topology optimization
problems, some design constraints must be limited. This situation can be eliminated by smoothing
sensitivity of objective function J(θ) and material volume V is given by the following equation:∫

Ω

(
γi
∂Gr

∂xi

∂

∂xr
(δGr) +Gr(δGr)

)
dx =

∫
Ω

G(δGr)dx, (2.21)

where Gr and G are the smoothed and original densities, respectively. δGr is the variation of Gr, γi is
a positive constant. Considering only the volume constraint, the structural optimization problem of Eq
(2.19) can be expressed as:

min
θ

J(θ) s.t.
∫
Ω

θdx/ |Ω| ≤ ϑ, θmin ≤ θ ≤ 1. (2.22)

For the constraint conditions of Eq (2.22), the necessary condition for θ to be optimal is satisfying
that a subset of the stability condition of the Lagrange function, so we use the Lagrange multiplier
Λ, λ1 and λ2. Then, we have:

L̃
(
θ,Λ, λ̄1, λ̄2

)
= Λ

(∫
Ω

θdx/ |Ω| − ϑ
)
+

∫
Ω

λ̄1 (θmin − 1) dx +
∫
Ω

λ̄2 (θmin − θ) dx + J(θ). (2.23)

Similar references [33], to solve the optimization problem, the Optimality Criteria algorithm is used
here which can be written as:

θm+1 =


max (0, θ − move) , if θβb ≤ max (0, θ − move) ,
min (1, θ + move) , if θβb ≥ min(1, θ − move),
θβb, otherwise ,

(2.24)
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and β = −∂J
∂θ

(
λ̄∂V
∂θ

)−1

, where θm+1 represents the value of the density variable in the iterative step m =

1, 2, ..., n, move parameter is the maximum amount of density change, the value of move is considered
to be 0.2, b is a damping coefficient and takes the value 0.3, λ̄ is the Lagrange multiplier to augment
the volume constrain.

Next, we introduce the optimization algorithm for the mechanical-electrical coupling problem of
periodic composites as follows:

1). The geometric structure Y = [0, 1]2 and homogenization domain Ω of the reference cell and the ma-
terial parameters of each material were determined, the two domains are divided into finite element
spaces Kh1(Y) and Kh0(Y), where h1 and h2 represent the mesh size of the monocellular domain and
finite element respectively;

2). Equations (2.9) and (2.10) of first-order unicellular functions are solved on the finite element do-
main Kh1(Y), and obtain the first order monocellular solutions Mα1(ξ),Hα1(ξ),Nα1m(ξ) and Gα1m(ξ),
and the coefficients of homogenization Ĉθi jhk, ê

θ
i jk and b̂θi j. Interpolation is performed using the calcu-

lated homogenization coefficients at these mesh points, finally, we can obtain the homogenization
coefficients of domain Kh0(Ω);

3). Substituting the homogenization coefficients Ĉθi jhk, ê
θ
i jk and b̂θi j into Eq (2.5) to find Φ0(x) and u0

k(x);

4). By solving the adjoint Eq (2.12) of mechanical-electric coupling by finite element method, we can
obtain χk(x) and ϕ(x);

5). SubstitutingΦ0(x), u0(x), χ(x) and ϕ(x) into J(θ) and take the derivative of θ to obtain the sensitivity
analysis (2.20);

6). In order to eliminate checkerboard and other problems, smoothing sensitivity (2.21) is used;

7). In order to obtain the optimal solution of the structure, it is necessary to continuously iterate and
update the element density value, modify design variables using update scheme (2.23), here we use
dichotomy to update the intermediate variable:

(a) Calculate the Lagrange multiplierΛ = (Λmin+Λmax)/2, whereΛmin andΛmax represent the upper
limit and lower limit of the initial Kuhn-Tucker condition respectively, and substitute into (2.24)
to update the design variable θ;

(b) The structural volume
∫
Ω

θm+1dx is calculated, if
∫
Ω

θm+1dx −
∫
Ω

ϑdx > 0, output Λ = Λmin,

otherwise print Λ = Λmax;

(c) Repeat (a) and (b) until Λmax > 10−40 and (Λmax − Λmin) /(Λmin + Λmax) > 10−40, if true, output
θm+1 = θ, otherwise, go back to step (a).

8). Equations (2.1) and (2.2) were used to update the design variables for each material and calculate
the average compliance and volume fraction as well as the variation of the variables;

9). Optimization convergence
∣∣∣θm+1 − θm

∣∣∣ < 10−3, whether the number of iterations is greater than or
equal to the maximum number of iterations, if so, output the result, otherwise return step (b).
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3. Numerical results

In this section, we give some numerical results show that the proposed algorithm is effective to
calculate the optimal structure of the periodic composite cantilever beam under the influence of the
electromechanical coupling. Suppose a cantilever beams Ω with length W = 2(m) and width L =
0.5(m) were considered in the simulations. As shown in Figure 1, let Ω be a bounded domain with
Lipschitz boundary. The boundary ∂Ω of Ω is composed of the traction boundary Bt = {x = −0.96 ∗ l+
1.04, y = 0.625, l ∈ (0, 1)} and the displacement boundary Bu = {x = 0.04 ∗ l + 1.96, y = 0, l ∈ (0, 1)},
which do not overlap each other so that Bu ∩ Bt = 0 and Bu ∪ Bt = ∂Ω, a surface traction force
ti(x) = −107(N) is applied to the border of Bt. Also consider the electrical boundary Ω is divided into
two parts, the electric potential boundary Bϕ = {x = 0.08 ∗ l + 0.96, y = 0, l ∈ (0, 1)} and the electric
loads boundary Bq, there are Bϕ ∩ Bq = 0 and Bϕ ∪ Bq = ∂Ω. q(x) = 10−2(C) denotes the electric body
charge applied to the border Bϕ of the design domain. Assume that γi = 0.002, λ = 0.4, r = 0.1, θmin =

0.001,Λmin = 0,Λmax = 100, 000, ϑ = 0.4(m3), the maximum number of iterations n = 300. And the
Table 1 shows two different periodic composite material parameters.

a1. The 50th iteration of composite material. b1. The 50th iteration of homogenization structure.

a2. The 100th iteration of composite material. b2. The 100th iteration of homogenization structure.

a3. The 200th iteration of composite material. b3. The 200th iteration of homogenization structure.

a4. The 300th iteration of composite material. b4. The 300th iteration of homogenization structure.

Figure 2. The topological optimization of composite material and homogenization structure
with 50–300 iterations.
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Table 1. Material properties.

PZT5A(Y1) PZT4A (Y2) Homogenize material properties
E1 = 72 × 109(N/m2) E1 = 76 × 109(N/m2) E1 = 72 × 109(N/m2)
E0 = E110−9(N/m2) E0 = E110−9(N/m2) E0 = E110−9(N/m2)
e31 = −5.4(C/m2) e31 = −6.98(C/m2) e31 = −6.635(C/m2)
e310 = e3110−9(C/m2) e310 = e3110−9(C/m2) e310 = e3110−9(C/m2)
e33 = 15.8(C/m2) e33 = 13.84(C/m2) e33 = 14.292(C/m2)
e330 = e3310−9(C/m2) e330 = e3310−9(C/m2) e330 = e3310−9(C/m2)
e15 = 12.3(C/m2) e15 = 13.44(C/m2) e15 = 13.217(C/m2)
e150 = e1510−9(C/m2) e150 = e1510−9(C/m2) e150 = e1510−9(C/m2)
b11 = 916(F/m) b11 = 677(F/m) b11 = 743.557(F/m)
b110 = b3310−9(F/m) b110 = b1110−9(F/m) b110 = b1110−9(F/m)
b33 = 830(F/m) b33 = 618(F/m) b33 = 676.708(F/m)
b330 = b3310−9(F/m) b330 = b3310−9(F/m) b330 = b3310−9(F/m)

In order to illustrate the effectiveness of topology optimization algorithms using solid isotropic ma-
terial penalization method and homogenization method, some numerical results of periodic composite
topology optimization are presented. In other words, the comparison of the mechanical-electrical cou-
pling topology optimization between the composite cantilever in fine mesh which is the reference
solution of this problem and the homogeneous cantilever in coarse mesh is shown in Figure 2. It can
be seen from a3 and a4 in Figure 2 that the topology optimization results of composite structures are
almost unchanged after 200 and 300 iterations. Similarly, it can also be seen from b3 and b4 in Figure
2 that the topology optimization results of homogeneous cantilever are almost unchanged after 200 and
300 iterations. Therefore, this shows that the topology optimization algorithm of material structure is
convergent after 300 iterations. It can be seen from a4 and b4 in Figure 2 that the topology optimization
result of composite cantilever is consistent with the topology optimization result of homogeneous can-
tilever. Therefore, it is concluded that the homogeneity method can effectively obtain the topological
optimization of the composite.

In the following Figure 3, it shows the convergence curve of the objective function. It can be seen
from the curve change that the objective function value is decreasing fast in the first 100 iterations and
almost unchanged after 200 iterations. In this paper, we take the topology optimization result of the
structure at 300 iterations as the final result of the material structure design. This is consistent with the
conclusion in Figure 2.

Table 2 shows the grid information of composite material and homogenization structure respec-
tively. It can be seen from the table 2 that the number of triangles or vertices of the composite material
is much greater than that of the homogenization structure. So it can be known that the calculation
cost of the fine mesh method is much higher than that of the homogenization method. Therefore the
topology optimization algorithm of piezoelectric composite structure based on homogenization theory
is very effective.
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Figure 3. Convergence of objective functions.

Table 2. Grid information.

Macro periodic complex solution Homogenized solution
Triangles 1,207,779 191, 601
vertices 606, 690 96, 851

4. Conclusions

In this paper, the topological optimization algorithm and numerical simulation for electro-
mechanical coupling problems of composites are discussed. Using the two scale asymptotic method,
we prove the homogenization problem of topological optimization electro-mechanical coupling prob-
lems of composites. By solving the homogenization problem of the topology optimization problem of
the piezoelectric composite structure, we obtained the topology optimization algorithm of the topology
optimization problem of the piezoelectric composite structure. The numerical results of the paper show
that the results of equivalent homogenized materials are close to the results of calculating composite
materials in fine mesh. Therefore the topology optimization algorithm of piezoelectric composite
structure based on homogenization theory is effective. The structural optimization of piezoelectric ma-
terials has a broad application prospect, which can be used in intelligent sensors, intelligent control,
intelligent robots, intelligent home, intelligent transportation and other fields. In addition, structural
optimization of piezoelectric materials can also be used to improve the performance, reliability and
energy efficiency of electronic components.

In the future work, we will use the topological optimization algorithm to establish the topology
optimization algorithm of structural optimization of composite plates of electro-mechanical coupling
problems.
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Appendix

Appendix A: the proof of Theorem 2.1.

Proof. The asymptotic expansion of Φε(x) and uεk(x) is as follows:

Φε(x) = Φ(x, x/ε) = Φ (x, ξ) = Φ0(x, ξ) + εΦ1(x, ξ) + ε2Φ2(x, ξ) + o(ε2), (A.1)
uεk(x) = uk(x, x/ε) = uk(x, ξ) = u0

k(x, ξ) + εu1
k(x, ξ) + ε2u2

k(x, ξ) + o(ε2), (A.2)

in which x and ξ are two independent variables, and the partial derivative operation is:

∂

∂xi
→
∂

∂xi
+ ε−1 ∂

∂ξi
. (A.3)

Suppose Φ j(x, ξ) and u j(x, ξ)( j = 0, 1, 2), x ∈ Ω, ξ ∈ Y are Y-periodic with respect to ξ. Define the
operators Hε, Fε, Aε and Wε as follows:

Hε = −
∂

∂x j
(Cθi jkl(ξ)

∂

∂xl
), Fε = −

∂

∂x j
(eθki j(ξ)

∂

∂xk
),

Electronic Research Archive Volume 31, Issue 5, 2689–2707.

http://dx.doi.org/https://doi: 10.3934/era.2022195
http://dx.doi.org/https://doi: 10.3934/era.2022195
http://dx.doi.org/https://doi.org/10.1007/s00158-018-2009-0
http://dx.doi.org/https://doi.org/10.1016/j.cma.2020.113090
http://dx.doi.org/https://doi.org/10.1007/s11433-013-5304-1
http://dx.doi.org/https://doi.org/10.1007/s00158-020-02726-w
http://dx.doi.org/https://doi.org/10.1016/j.cma.2021.114512
http://dx.doi.org/https://doi.org/10.1016/j.apm.2021.08.033
http://dx.doi.org/https://doi.org/10.1063/1.3067231


2704

Aε = −
∂

∂xi
(bθi j(ξ)

∂

∂x j
), Wε =

∂

∂xi
(eθki j(ξ)

∂

∂x j
).

Form (2.4), the mechanical-electrical coupling equations can be written as:

fk(x)θ(x) =Hεuεk + FεΦε

=
(
ε−2H0 + ε

−1H1 + H2

) (
u0

k + εu
1
k + ε

2u2
k + o(ε2)

)
(x, x/ε)

+
(
ε−2F0 + ε

−1F1 + F2

) (
Φ0 + εΦ1 + ε2Φ2 + o(ε2)

)
(x, x/ε), (A.4)

ρ(x)θ(x) =Wεuεk + AεΦε

=
(
ε−2W0 + ε

−1W1 +W2

) (
u0

k + εu
1
k + ε

2u2
k + o(ε2)

)
(x, x/ε)

+
(
ε−2A0 + ε

−1A1 + A2

) (
Φ0 + εΦ1 + ε2Φ2 + o(ε2)

)
(x, x/ε) , (A.5)

where 

H0 = −
∂

∂ξ j
(Cθi jkl(ξ)

∂

∂ξl
), H1 = −

∂

∂ξ j
(Cθi jkl(ξ)

∂

∂xl
) −
∂

∂x j
(Cθi jkl(ξ)

∂

∂ξl
),

H2 = −
∂

∂x j
(Cθi jkl(ξ)

∂

∂xl
), F0 = −

∂

∂ξ j
(eθki j(ξ)

∂

∂ξk
),

F1 = −
∂

∂ξ j
(eθki j(ξ)

∂

∂xk
) −
∂

∂x j
(eθki j(ξ)

∂

∂ξk
), F2 = −

∂

∂x j
(eθki j(ξ)

∂

∂xk
),

A0 = −
∂

∂ξi
(bθi j(ξ)

∂

∂ξ j
), A1 = −

∂

∂ξi
(bθi j(ξ)

∂

∂x j
) −
∂

∂xi
(bθi j(ξ)

∂

∂ξ j
),

A2 = −
∂

∂xi
(bθi j(ξ)

∂

∂x j
), W0 =

∂

∂ξi
(eθi jk(ξ)

∂

∂ξ j
),

W1 =
∂

∂ξi
(eθi jk(ξ)

∂

∂x j
) +
∂

∂xi
(eθi jk(ξ)

∂

∂ξ j
), W2 =

∂

∂xi
(eθi jk(ξ)

∂

∂x j
).

(A.6)

By comparing the ε power coefficients at both ends of Eqs (A.4) and (A.5), (A.1) and (A.2), we can
obtain the following equations: H0u0

k = −F0Φ
0, A0Φ

0 = −W0u0
k , in Y,

u0
k and Φ0 for ξ is the period Y.

(A.7)


H0u1

k = −F0Φ
1 − F1Φ

0 − H1u0
k , in Y,

A0Φ
1 = −A1Φ

0 −W0u1
k −W1u0

k , in Y,
u1

k and Φ1 for ξ is the period Y.
(A.8)


H0u2

k = fk(x)θ(x) − H1u1
k − H2u0

k − F0Φ
2 − F1Φ

1 − F2Φ
0, in Y,

A0Φ
2 = ρ(x)θ(x) − A1Φ

1 − A2Φ
0 −W0u2

k −W1u1
k −W2u0

k , in Y,
u2

k and Φ2 for ξ is the period Y.
(A.9)

For Eq (A.7), we can be further expressed is:

∂

∂ξ j

(
eθki j(ξ)

∂Φ0

∂ξk

)
+
∂

∂ξ j

(
Cθi jkl(ξ)

∂u0
k

∂ξl

)
= 0, (A.10)
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∂

∂ξi

(
eθi jk(ξ)

∂u0
k

∂ξ j

)
−
∂

∂ξi

(
bθi j(ξ)

∂Φ0

∂ξ j

)
= 0. (A.11)

According to the theory of partial differential equation, both Φ0(x, ξ) and u0
k(x, ξ) are independent

of microscopic variable ξ, i.e.,

Φ0 (x, ξ) = Φ0 (x) , u0
k (x, ξ) = u0

k (x) . (A.12)

Substituting (A.12) into (A.8) yields:

−

(
∂

∂ξ j
(Cθi jkl (ξ)

∂u1
k

∂ξl
) +
∂

∂ξ j
(eθki j (ξ)

∂Φ1

∂ξk
)
)
=
∂Cθi jkl

∂ξ j
(ξ)
∂u0

k

∂xl
+
∂eθki j

∂ξ j
(ξ)
∂Φ0

∂xk
,

−

(
∂

∂ξi
(bθi j (ξ)

∂Φ1

∂ξ j
) −
∂

∂ξi
(eθi jk (ξ)

∂u1
k

∂ξ j
)
)
=
∂bθi j

∂ξi
(ξ)
∂Φ0

∂x j
−
∂eθi jk

∂ξi
(ξ)
∂u0

k

∂x j
,

Φ1 and u1
k for ξ is the period Y.

(A.13)

By the linear property of (A.12), the operators H0, F0,W0 and A0 refer only to the variable ξ, and

the partial derivative operations
∂Φ0

∂x j
and
∂u0

k

∂x j
are independent of ξ, so it can be solved in the following

form 
Φ1 (x, ξ) = Hα (ξ)

∂Φ0 (x)
∂xα

+Gαm(ξ)
∂u0

m (x)
∂xα

,

u1 (x, ξ) = Nα (ξ)
∂u0 (x)
∂xα

+ Mα (ξ)
∂Φ0 (x)
∂xα

.

(A.14)

Substituting (A.14) into (A.13), which leads to

∂

∂ξ j

(
eθki j (ξ)

∂Hα1 (ξ)
∂ξk

)
+
∂

∂ξ j

(
Cθi jhk (ξ)

∂(Mα1 (ξ))h

∂ξk

)
= −

∂

∂ξ j

(
eθα1i j (ξ)

)
, in Ω,

∂

∂ξi

(
−bθi j (ξ)

∂Hα1(ξ)
∂ξ j

)
+
∂

∂ξi

(
eθi jk (ξ)

∂(Mα1(ξ))k

∂ξ j

)
=
∂

∂ξi

(
bθα1i (ξ)

)
, in Ω,∫

Ω

Mα1 (ξ) dξ = 0,
∫
Ω

Hα1 (ξ) dξ = 0, Mα1(ξ),Hα1(ξ) is Y-periodic in ξ,

(A.15)

and 

∂

∂ξ j

(
eθki j(ξ)

∂Gα1m(ξ)
∂ξk

)
+
∂

∂ξ j

(
Cθi jhk(ξ)

∂(Nα1m (ξ))h

∂ξk

)
= −

∂

∂ξ j

(
Cθi jα1m(ξ)

)
, in Ω,

∂

∂ξi

(
−bθi j(ξ)

∂Gα1m(ξ)
∂ξ j

)
+
∂

∂ξi

(
eθi jk(ξ)

∂(Nα1m (ξ))k

∂ξ j

)
= −
∂

∂ξi

(
eθimα1

(ξ)
)
, in Ω,∫

Ω

Nα1m(ξ)dξ = 0,
∫
Ω

Gα1m(ξ)dξ = 0, Nα1m(ξ),Gα1m(ξ) is Y-periodic in ξ.

(A.16)

Suppose these three the homogenization coefficients Ĉθi jhk, êθi jk and b̂θi j satisfy conditions (I)-(IV),
Φε(x) ∈ Z = {Φ(x) ∈ H1 (Ω) | Φ(x) = 0 on Bt}, uεk(x) ∈ U = {uk(x) ∈ [H1(Ω)]2|uk(x) = 0 on Bu}, so the
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monocellular problems (A.15) and (A.16) have unique solutions Mα1(ξ),Hα1(ξ),Nα1m(ξ) and Gα1m(ξ) ∈
Wper(Y), where Wper(Y) = {θ(ξ) | θ(ξ) ∈ H1(Ω)}, and θ(ξ) is periodic Y .

All operators of formula (A.9) are expanded as follows:

−
∂

∂ξ j

(
Cθi jkl(ξ)

∂u2
k

∂ξl
+ eθki j(ξ)

∂Φ2

∂ξk

)
=
∂

∂ξ j

(
Cθi jkl(ξ)

∂u1
k

∂xl
+ eθki j(ξ)

∂Φ1

∂xk

)
+
∂

∂x j

(
Cθi jkl(ξ)

∂u1
k

∂ξl
+Cθi jkl(ξ)

∂u0
k

∂xl

)
+
∂

∂x j

(
eθki j(ξ)

∂Φ1

∂ξk
+ eθki j(ξ)

∂Φ0

∂xk

)
+ fi(x)θ(x), (A.17)

−
∂

∂ξi
bθi j(ξ)

∂Φ2

∂ξ j
+
∂

∂ξi
eθi jk(ξ)

∂u2
k

∂ξ j
=
∂

∂ξi

(
bθi j(ξ)

∂Φ1

∂x j
− eθi jk(ξ)

∂u1
k

∂x j

)
+
∂

∂xi

(
bθi j(ξ)

∂Φ1

∂ξ j
+ bθi j(ξ)

∂Φ0

∂x j

)
−
∂

∂xi

(
eθi jk(ξ)

∂u1
k

∂ξ j
− eθi jk(ξ)

∂u0
k

∂x j

)
+ ρ(x)θ(x). (A.18)

For Eqs (A.17) and (A.18), you average the integral over Y , according to the definition (A.14) of
Φ1(x) and u1

k(x), and the Y periodicity ofΦ2(x) and u2
k(x) on ξ, Eqs (A.17) and (A.18) can still be written

as:

−
∂

∂x j

{ 1
|Y |

∫
Y

(
Cθi jlm(ξ)

∂(Nhk(ξ))l

∂ξm
+Cθi jhk(ξ) + eθli j(ξ)

∂Ghk(ξ)
∂ξl

)
dξ
∂u0

k(x)
∂xh

+
1
|Y |

∫
Y

(
Cθi jlm(ξ)

∂(Mk(ξ))l

∂ξm
+ eθli j(ξ)

∂Hk(ξ)
∂ξl

+ eθi jk(ξ)
)

dξ
∂Φ0(x)
∂xk

}
= fi(x)θ(x), in Ω, (A.19)

−
∂

∂xi

{ 1
|Y |

∫
Y

(
bθi j(ξ) + bθik(ξ)

∂H j(ξ)
∂ξk

− eθilm(ξ)
∂(M j(ξ))m

∂ξl

)
dξ
∂Φ0(x)
∂x j

−
1
|Y |

∫
Y

(
eθi jk(ξ) + eθilm(ξ)

∂(Nk j(ξ))m

∂ξl
− bθil(ξ)

∂Gk j(ξ)
∂ξl

)
dξ
∂u0

k(x)
∂x j

}
= ρ(x)θ(x), in Ω. (A.20)

Therefore, the homogenization equations are defined as:

−
∂

∂x j

(
Ĉθi jkl

∂u0
k (x)
∂xl

+ êθki j
∂Φ0(x)
∂xk

)
= fi (x) θ (x) , −

∂

∂xi

(
b̂θi j
∂Φ0 (x)
∂x j

− êθi jk

∂u0
k(x)
∂x j

)
= ρ (x) θ (x) , in Ω,

where Ĉθi jkl, ê
θ
ki j and b̂θi j are homogenization coefficients, which can be expressed as:

Ĉθi jhk =
1
|Y |

∫
Y

[
Cθi jhk (ξ) +Cθi jlm (ξ)

∂(Nhk(ξ))m

∂ξl
+ eθli j (ξ)

∂Ghk(ξ)
∂ξl

]
dξ,

êθi jk =
1
|Y |

∫
Y

[
eθi jk (ξ) +Cθi jlm (ξ)

∂(Mk(ξ))m

∂ξl
+ eθli j (ξ)

∂Hk(ξ)
∂ξl

]
dξ,

b̂θi j =
1
|Y |

∫
Y

[
bθi j(ξ) − eθilm (ξ)

∂(M j(ξ))m

∂ξl
+ bθik (ξ)

∂H j(ξ)
∂ξk

]
dξ.

(A.21)

Substituting (A.1) and (A.2) into (2.3) of the objective function, the minimization of mechanical-
electrical coupling problem (2.3) can be rewritten as:
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min
θ

J(θ) =
∫
Ω

fi(x)
[
u0

i (x, ξ) + εu1
i (x, ξ) + ε2u2

i (x, ξ) + o(ε2)
]
θ(x) dx

+

∫
Bt

ti(x)
[
u0

i (x, ξ) + εu1
i (x, ξ) + ε2u2

i (x, ξ) + o(ε2)
]

ds

−

∫
Ω

ρ(x)
[
Φ0(x, ξ) + εΦ1(x, ξ) + ε2Φ2(x, ξ) + o(ε2)

]
θ(x) dx

−

∫
Bϕ

q(x)
[
Φ0(x, ξ) + εΦ1(x, ξ) + ε2Φ2(x, ξ) + o(ε2)

]
ds.

Assume that ε → 0, because of u0
k(x, ξ) and Φ0(x, ξ) are independent of ξ, the objective function of

homogenization can be defined as:

min
θ

J (θ) =
∫
Ω

fi(x)u0
i (x)θ(x) dx +

∫
Bt

ti(x)u0
i (x) ds −

∫
Ω

ρ(x)Φ0(x)θ(x) dx −
∫

Bϕ
q(x)Φ0(x) ds.

The homogenization solution of Φ0(x) and u0
k(x) satisfies the homogenization problem (2.5), so

Theorem 2.1 is proved.
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