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Abstract: Based on the data from January 2007 to December 2021, this paper selects 14
representatives from four levels of the extreme risk of financial institutions, the contagion effect
between financial systems, volatility and instability of financial markets, liquidity, and credit risk
systemic risk. By constructing a Savitzky-Golay-TCN deep convolutional neural network, the systemic
risk indicators of China’s financial market are predicted, and their accuracy and reliability are analyzed.
The research found that: 1) Savitzky-Golay-TCN deep convolutional neural network has a strong
generalization ability, and the prediction effect on all indices is stable. 2) Compared with the three
control models (time-series convolutional network (TCN), convolutional neural network (CNN), and
long short-term memory (LSTM)), the Savitzky-Golay-TCN deep convolutional neural network has
excellent prediction accuracy, and its average prediction accuracy for all indices has increased. 3)
Savitzky-Golay-TCN deep convolutional neural network can better monitor financial market changes
and effectively predict systemic risk.

Keywords: financial market; systemic risk forecasting; deep learning; Savitzky-Golay-TCN neural
network model

1. Introduction

The global financial crisis in 2008 triggered a rethinking of systemic risks by international
organizations, financial regulators, and scholars in various countries. At the same time, financial risk
contagion has become increasingly normalized, including extreme risk events such as “money
shortage” and “circuit breaker mechanism,” which have caused the spread of online public opinion,
making systemic risks spread rapidly in the capital market. In addition, China is pursuing a
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sustainable transition and undergoing supply-side reform, and the deep-seated contradictions of
stakeholders in the society and financial industry have become more prominent [1, 2]. The Chinese
central government emphasizes the need to “keep the bottom line of preventing systemic risks”. Such
national resolve in preventing and resolving systemic risks prioritizes the stability and soundness of
economic development. Due to rigorous risk monitoring and control, China has yet to experience a
large-scale systemic financial crisis. However, the increasingly interconnected international financial
market and policy uncertainties urge the decision-makers to pay attention to reforming and innovating
the domestic financial market [3]. An effective systemic risk prediction model is thus necessary to
predict and alleviate systemic risks and ensure high-quality economic development in the future.

In early research, systemic risk was defined as a financial phenomenon within the financial system.
Academics described any situation that threatens the financial system or macroeconomy or undermines
public confidence in the financial system as a systemic risk [4–7]. However, the global financial crisis
that broke out in 2008 caused severe damage to the world economy and made academia and regulatory
authorities realize that systemic risks affect the real economy from multiple levels. As a result, a new
concept of systemic risk is considered a contagion risk; that is, the collapse of one financial institution
will lead to the failure of other financial institutions [8, 9] . The European Central Bank pointed out
that systemic risk is a widespread risk of financial instability. It undermines the essential functions of
the financial system and affects economic growth, and causes severe losses to the welfare of the entire
society [10]. In 2011, the International Monetary Fund and the Financial Stability Board described the
systemic risk as the risk of disrupting financial services and having a severe negative impact on the real
economy due to partial or total damage to the financial system [11]. Therefore, systemic risk has two
dimensions, horizontal and vertical. On the one hand, within the financial system, due to the direct or
indirect connection between various institutions, there is risk contagion among financial institutions,
and any institution has debt repayment or liquidity risk [12]. Its affiliated institutions were also strongly
impacted, resulting in a liquidity crunch across the system. On the other hand, as risks continue
accumulating within the financial system, financial institutions’ intermediary efficiency and resource
allocation efficiency gradually decrease, causing massive damage to the real economy [13–15].

Systemic risk prediction and prevention has been a hot research topic in academic circles recently,
and traditional financial risk prediction methods are mainly studied through linear models. The early
prediction method is the earliest method applied to systemic risk prediction. This method selects
dependent variables that reflect financial risks and independent variables related to them and
establishes a conditional equation to fit the relationship between them [16]. These include the Frankel
and Rose (FR) probability model [17], the Sachs, Tornell and Velasco (STV) model [18], and the
Kaminsky, Lizondo and Reinhart (KLR) signal prediction model [19]. The premise of applying the
early forecasting method is that the target country accurately defines a financial crisis or systemic risk
event. Still, early forecasting has significant limitations for countries like China that have never
experienced a financial crisis. Although some scholars have proposed setting the critical value of
financial crisis risk indicator data [20, 21] or constructing financial crisis indicators and setting certain
thresholds for crisis indicators to define financial crises [22]. But, when the indicator exceeds the
threshold or critical value, the prior prediction methods are in gridlock for a nuanced explanation of
whether systemic risk or financial crisis will occur.

In recent years, nonlinear models have gradually replaced the application of time series and other
linear models in financial forecasting and forecasting because of their ability to mine nonlinear
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relationships between variables, which can effectively improve the performance of financial
forecasting. Yun and Moon [21] proposed a multi-range neural network model based on the empirical
mode decomposition (EMD) method. Their empirical results show that the model has higher
prediction accuracy than the traditional neural network model. Iturriaga and Sanz [23] combined
multi-layer perceptrons and self-organizing maps to build a neural network model to study the bank
failure problem in the United States. The model can predict the probability of bank failure three years
in advance, and compared with the traditional model, it has higher prediction accuracy. Cao et al. [24]
predicted the global stock index by establishing a LSTM prediction model of EMD and Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) feature sequences.
There are also many studies on stock price forecasting and futures forecasting through neural
network models [25–29].

However, financial forecasting based on artificial neural networks suffers from the following
problems: first, overfitting deteriorates the predictive power of the model outside the training set;
second, there is gradient disappearance or gradient explosion during the optimization process, which
prevents the neural network from learning effectively; and third, the local extremum problem, which
makes it impossible to find the optimal global solution. Although a large number of studies have
demonstrated the superiority of artificial neural networks in financial time series
forecasting [4, 16, 30], each step of the artificial neural network model relies on the hidden state of the
previous step for prediction, which is less parallel and has problems such as long training time and
easy loss of information when processing long sequences. In recent years, TCNs have been proposed
to provide new ideas for time-series modeling. TCNs can obtain exponentially growing sensory fields
using inflated convolution, which is highly suitable for application scenarios requiring more
comprehensive historical information. Deng et al. [31] adopted the KDTCN model to predict and
explain stock price movements. Dai et al. [30] added an attention mechanism to the TCN model to
model the time-varying distribution of stock price change data. The Savgol-TCN deep convolutional
neural network model is based on the original TCN model by adding the prediction of the error and
introducing the Savitzky-Golay filter to smooth the error. The Savitzky-Golay filter is a digital filter
that can be applied to smoothen data. Its advantage is that it can improve the data accuracy without
changing the signal’s trend and width to increase prediction accuracy.

Given this, this paper constructs the Savgol-TCN deep convolutional neural network, predicts 14
systemic risk indicators in four dimensions of China’s financial market, and analyzes its accuracy
and reliability. Through the comparative analysis of the constructed Savgol-TCN deep convolutional
neural network and TCN, CNN, and LSTM models, the predictability and generalization ability of the
Savgol-TCN deep convolutional neural network model for systemic risk are studied. In summary, the
main contributions of this paper are listed below.

1) The Savitzky-Golay filter is introduced into the TCN model, and the Savgol-TCN deep
convolutional neural network model is proposed for financial forecasting with time series for the
first time.

2) Based on the same Savgol-TCN deep convolutional neural network, the predictability and
generalization ability in systemic risk prediction are proved.

3) The 14 systemic risk indices based on the Savgol-TCN deep convolutional neural network were
compared with the TCN, CNN, and LSTM models, and the proposed model reflects
superior prediction capability.
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The rest of the paper is organized as follows. Section 2 presents the problem description and
research hypotheses. The quantum game analysis is unfolded in Section 3. Section 4 displays
numerical analysis and explains the theoretical results. Finally, Section 5 concludes the paper and
gives corresponding policy recommendations.

2. Research design

2.1. Model building/ description

2.1.1. Savitzky-Golay filtering algorithm

The Savitzky-Golay (Savgol, hereafter for brevity) filtering algorithm is widely used in data stream
smoothing and denoising. It is a filtering method based on regional polynomial least squares fitting
in the time domain. Its biggest feature is to remove signal noise while keeping the shape and width
of the signal unchanged [32]. And on the same curve, different window widths can be selected at any
position to meet the needs of different smoothing and filtering. Especially when dealing with time
sequence data, it has obvious advantages for sequence processing in different stages. Noise samples
from aperiodic and nonlinear sources also work well.

Define a width window n = 2m + 1 to measure the original curve from left to right. Consider a set
of data with 2m+ 1 points centered on the data point yt, and fit this set of data points based on a degree
of k − 1 polynomial, as shown in Eq (1).

y = a0 + a1x + a2x2 + · · · + ak−1xk−1. (1)

To make the equation have a solution, generally, let n ≥ k. For a given data set with 2m+1 data points,
there are 2m+1 equations, respectively. The fitting equation can therefore be expressed in matrix form.
Let the data value vector be Y , the coefficient matrix be A, the independent variable matrix is X, and
the residuals be ε. The equation can be expressed as follows.

Y = AX + ε. (2)

The matrix A is solved by the least squares method as Â; its value is shown in the formula (3). The
predicted value of the fitted data is Ŷ , and its value is shown in the formula (4).

Â = (XT X)−1XT Y, (3)

Ŷ = XÂ = X(XT X)−1XT Y. (4)

The window slides from left to right until all data points are fitted. The fitted curve has the original
high-frequency components removed.

2.1.2. Temporal Convolutional Networks

The Temporal Convolutional Network (TCN) model is based on the CNN model, using Causal
Convolution, Dilated Convolution, and Residual block to improve CNN; compared with CNN, LSTM,
and GRU, TCN has a lighter network structure, and can change the receptive field of the network
according to the filter size, which is more conducive to the prediction of time series. The principle of
the TCN model is as follows.
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Set filter F = { f1, f2, · · · , fk}, The input sequence is S = {s1, s2, · · · , st}, The output sequence
information is Y = {y1, y2, · · · , yt}, where si(i = 1, 2, · · · , t) are column vectors. At time t, the dilated
convolution of st is defined as

F(st) = (S ∗d F(st) =
K∑

i=1

fi · st−d(K−i), (5)

where d is the inflation factor, and K is the filter size. The formula for the receptive field is

RF = (K − 1)d + 1.

The TCN model introduces a residual module to solve the problems of gradient explosion and
network degradation in deep traditional neural networks. Figure 1 presents the residual module of the
TCN model. This residual structure can avoid losing more information in the feature extraction process
and improve the model’s accuracy.

Output Sequence

DroputDroput

Weight InitializationWeight Initialization

Causal Dilated ConvolutionsCausal Dilated Convolutions

Input Sequence

ReLu Function ReLu Function

Figure 1. The residual module of the TCN model.

2.2. Systemic risk prediction model

The algorithm flow chart of the Savgol-TCN error correction systemic risk prediction method
proposed in this paper is shown in Figure 2, and the specific steps are as follows.
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Figure 2. The algorithm flow chart of the Savgol-TCN error correction systemic risk
prediction method.

The specific steps are as follows. First, all the original systemic risk sequences P before the input
time t are preprocessed. Then, the convolution kernel in the spatial dimension of TCN is used to
extract the spatial characteristics of each component of the systemic risk. Next, the convolution kernel
in the time dimension is used to extract the features of the change of the systemic risk over time. The
mapping relationship between the input sequence and the systemic risk is established. Then, the initial
prediction output result is obtained at the moment t. Then, use the prediction model trained in the
previous step to take all the historical data before time t as the input set, get the prediction result and
calculate the error set E of all systemic risks before time t. Then use Savitzky-Golay smoothing to
smooth the prediction error set to obtain a less volatile and more stable error sequence. Finally, the
initial prediction output results and the error sequence are integrated, and the model prediction result
evaluation index is output.

2.3. Model checking

During the network training process, the mean square error (MSE) is used as the loss function to
calculate the Euclidean distance between the model-predicted value and the actual value. As shown in
formula (6),

MS E =
1
n

n∑
i=1

(yi − ŷi)2, (6)
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where yi is the test value, ŷ is the real value, and n is the number of samples. This paper selects the root
mean square error (RMSE)

RMS E =

√√
1
n

n∑
i=1

(ŷi − yi)2, (7)

and the mean absolute percentage error (MAPE) as the evaluation indicators for the prediction results:

MAPE =
1
n

n∑
i=1

|
yi − ŷi

yi
| × 100%. (8)

RMSE is consistent with the unit of the predicted variable, the error results are more intuitive and easy
to interpret, and RMSE is very sensitive to the situation where the predicted value deviates from the
actual value and is widely used in prediction evaluation. Furthermore, compared with RMSE, MAPE
is not affected by dimensions, which is conducive to the direct comparison between different models
and is an important indicator to measure the prediction accuracy of models.

Besides, the mean absolute error (MAE) is also used. MAE measures the average magnitude of the
errors in a set of predictions without considering their direction. It is the average of the absolute
differences between prediction and actual observation over the test sample, where all individual
differences have equal weight. Using the two indicators at the same time can more comprehensively
evaluate the prediction accuracy of the model. The calculation formulas are expressed as follows:

MAE =
1
n

n∑
i=1

|yi − ŷi| × 100%, (9)

We ran the model 30 replicates to avoid chance and calculated the average metric as the final
comparison criterion.

3. Data sources and sample selection

3.1. Data sources

In order to more comprehensively and accurately evaluate the applicability of the Savgol-TCN
deep convolutional neural network model to China’s systemic risk prediction, this paper considers the
selection of large, medium, and small institutions from the three sectors of banking, insurance, and
securities. A total of 52 listed companies were selected as samples of Chinese financial institutions,
including 23 banks, 25 securities companies, and four insurance companies. Referring to the research
of Giglio et al. [33], the systemic risk indicators of 14 sub-categories and four categories of extreme
risk, contagion effect, volatility and instability, liquidity, and credit risk of individual institutions were
selected. The data range is from January 2007 to December 2021, and the CSI 300 index is chosen to
measure financial market returns. The book leverage and market leverage are calculated from the total
assets, total liabilities, and other data provided by the quarterly reports of listed companies. Finally,
the weight of each institution in the overall calculation is measured by the proportion of the company’s
market value. The data comes from the Cathay Pacific and Wind databases. In the demonstration, 80%
of the data is used as the training set, and the remaining 20% is used as the test set. In order to preserve
the relationship between the time series data, the method of using time series cross-validation is used
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for verification. Construct a feature set with the time window as December, and predict the index value
of the following month.

3.2. Variable definitions

3.2.1. Institutional extremum risk

Institutional extreme risk focuses on the change of extreme characteristics of institutional returns.
This paper selects four indicators: conditional value at risk, conditional value at risk, marginal expected
loss (MES), and financial system catastrophe risk to describe the extreme risk of financial institutions.

1) Conditions Value-at-Risk (CoVaR). Adrian and Brunnermeier [34] put forward the basis of VaR,
which focuses on reflecting the risk spillover of a single financial institution to other institutions or the
entire financial market. Under the confidence level, the CoVaR level of the institution in the future
period is:

Pr(Xi < VaRi) = q.

The CoVaR level of the financial system in the event of a financial institution crisis is:

Pr(Xsyst < CoVaRi|Xi = VaRi) = q,

where Xsyst represents the rate of return of the financial system, and CoVaR can measure the impact
of a single institution on the financial system as a whole when a crisis occurs, thereby quantifying the
importance of a single institution to the financial system. In this paper, when estimating CoVaR, the
confidence level is set to 0.05, and the Dynamic Conditional Corelational Autoregressive Conditional
Heteroscedasticity (DCC-GARCH) model is used to calculate the dynamic CoVaR.

2) The difference between the CoVaR (∆CoVaR ). It represents the difference between the
financial system CoVaR when the institution is in an extreme state and the financial system CoVaR in
a normal state.

∆CoVaRi = CoVaRi(q) −CoVaRi(0.5),

Referring to Adrian and Brunnermeier [34], here, the extreme state of the institution is set at the 0.05th
percentile of its rate of return, the normal state is set at the 0.5th percentile of the rate of return, and the
financial system conditions of the financial institution in the two states are calculated at Poor risk.

3) MES Acharya et al. [8] proposed based on expected loss ES, which reflects the marginal
contribution of a single institution to systemic financial risk when the yield of the entire financial
market drops significantly. The expression for the MES is

MES i = E[Ri|Rm < q],

where Rm represents the financial market rate of return, the confidence is set to 0.05, and the dynamic
MES is calculated using the DCC-GARCH model.

4) The financial system catastrophe risk (Catfin). Allen et al. [35] proposed calculating the extreme
tail at-risk value VaR of the cross-section through the generalized Pareto distribution, the biased
generalized error distribution, and the nonparametric method, respectively, and then calculating the
average value to obtain the Catfin index value.
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3.2.2. Contagion effects

The contagion effect reflects the transfer and diffusion of systemic financial risks among financial
institutions by analyzing the degree of correlation between institutions. This paper selects the
absorption ratio, absorption ratio difference, and average correlation mean to measure the contagion
effect of systemic financial risk.

1) Absorption rate. Kritzman et al. [36] extracted the first k(k < N) principal components from
N financial institutions and calculated the variance contribution rate of principal components. The
calculation formula is

Abs(k) =
∑k

i=1 Var(PCi)∑N
i=1 Var(PCi)

.

This paper calculates the absorption ratio from the 252-day long-term moving window by establishing
a moving window. This indicator represents the degree of interpretation of a certain amount of variance
to the total variance of the original variable. The larger the value, the greater the correlation of each
institution. The faster the contagion, the higher the systemic monetary risk.

2) Absorption rate difference. Construct an indicator reflecting systemic monetary risk from the
difference between the absorption ratio of the short-term moving window and the long-term moving
window, and its expression is

∆Abs = Abs(k)short − Abs(k)long.

This paper sets the moving window from the perspective of year and month, the long-term moving
window is 252 days, and the short-term moving window is 22 days to obtain the absorption
ratio difference.

3) Average correlation means. Pollet and Wilson [37] obtained the average correlation mean of
financial institutions by calculating the correlation coefficient between financial institutions and taking
the average value. The calculation formula is:

ρ =
N
∑

xiyi −
∑

xi ·
∑

yi√
N
∑

x2
i − (
∑

xi)2 ·

√
N
∑

y2
i − (
∑

yi)2
.

ρ represents the average correlation mean between institutionsthe larger the average correlation means,
the greater the systemic financial risk in the financial market.

3.2.3. Volatility and instability

High financial leverage contributes to volatility, instability, and systemic financial risk. Therefore,
we select four indicators: return volatility, book leverage, market leverage, and scale concentration to
reflect market volatility and fluctuation.

1) Return volatility. The monthly standard deviation of the average daily returns of individual
stocks of 45 institutions is calculated to construct the individual fluctuation sequence of financial
institutions. Then the overall return volatility is obtained by weighting the market value ratio of a
single financial institution.

2) Book leverage, an indicator of the total book leverage of 45 financial institutions, is constructed
from the ratio of total liabilities to total assets, which reflects the repayment ability of the institutions
and predicts the impact on the macroeconomy when the market is highly leveraged.
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3) Market leverage. A market leverage index measuring 45 financial institutions is constructed
from the ratio of total liabilities to total market capitalization, which reflects the repayment ability of
the institutions to predict the impact on the macroeconomy when the market is highly leveraged. When
the economy is stable, appropriate leverage can help solve the shortage of funds in the real economy,
promote enterprise production, and drive consumer demand. Still, excessive debt is prone to debt risks
and crises.

4) Scale concentration. This indicator reflects the size distribution of financial enterprises by
constructing the Herfindahl index

Her f indahl = n
∑N

i=1 ME2
i(∑N

i=1 MEi

)2
to reflect the size distribution of financial enterprises.

3.2.4. Liquidity and credit risk

Since the second half of 2012, China’s liquidity and credit risk have increased significantly.
Therefore, we select individual stock liquidity, credit spread, and term spread to characterize liquidity
and credit risk.

1) Individual stock liquidity. It is usually expressed by the turnover rate, which reflects the stock’s
liquidity. This indicator is calculated by the ratio of the daily trading volume to the number of tradable
shares in a certain period in the stock market.

2) Credit spreads. Calculating the credit spread based on the spread between the Shanghai Interbank
Offered Rate (SHIBOR) and government bond yields is an essential measure of financial market risks.
When the credit spread expands, it means that the financial market is tight, which leads to an increase
in institutional borrowing costs and increased financial market risks.

3) Term spread. Calculated from the yield spread between the 10-year Treasury bond and the
3-month Treasury bond, the narrowing of the term spread means that the possibility of economic
depression and more significant market risk increases, which is an important measure of financial
market risk. The relevant variable settings are shown in Table 1.

Figure 3 shows the changes of four representative indicators, MES, Average-Cor, Volatility, and
AIM, from January 2007 to December 2021, representing the individual risks, linkage, and contagion
effects, volatility, and instability of financial institutions, respectively as well as liquidity and credit
profiles. To facilitate the observation of the time series characteristics of each indicator, we
standardized the four indicators. We found that, in general, the changes in the four indicators were
similar, and they appeared in the stage of the global financial crisis in 2008 and the stage of China’s
stock market boom and busted in 2015. The subprime mortgage crisis broke out in the United States
in August 2007. Due to the severe disconnection between the virtual and real economies, the Internet
bubble, and other reasons, the crisis spread to the world, triggering the global financial crisis.
Therefore, the financial crisis from 2007 to 2008 had the most extensive impact and violent
fluctuations. In 2015, the stock market crisis saw a sharp drop in the index in just 53 trading days, and
the limit of 1,000 shares occurred many times. Compared with the financial crisis, the outbreak
occurred faster, the scope of influence was small, and the impact time was relatively short, showing an
apparent peak shape. However, observing the specific change trend of each indicator, there are certain
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differences between indicators. Judging from the fluctuation trend when the financial crisis broke out
in 2008, AIM and Volatility showed a clear downward trend, while MES and Average Correlation
showed an upward trend; from the sequence of the peaks of various indicators of the stock market
crash in 2015, AIM and Volatility peaked earlier, MES is relatively late, and the Average Correlation
peak is not apparent. It can be seen that a single indicator has its trend characteristics and may only
reflect systemic financial risks in a particular aspect. Therefore, it is necessary to consider multiple
indicators to reflect systemic financial risks accurately.

Table 1. Descriptive statistics of systemic risk indicators/systemic risk metrics.

Indicators category Variable name Variable meaning Variable definition

Institutional extremum risk CoVaR Conditions CoVaR Pr(Xsyst < CoVaRi |Xi = VaRi) = q

∆CoVaR The difference between the CoVaR ∆CoVaRi = CoVaRi(q) −CoVaRi(0.5)

MES MES MES i = E[Ri |Rm < q]

Catfin financial system catastrophe risk
A Nonparametric Method to Calculate the

Tail Value at Risk of a Section

Contagion effects Ab. Absorption rate Abs(K) =
∑K

i=1 Var(PCi)∑N
i=1 Var(PCi )

∆Abs Absorption rate difference ∆Abs = Abs(K)short − Abs(K)long

Average Cor Mean correlation coefficient ρ =
N
∑

xiyi−
∑

xi ·
∑

yi√
N
∑

x2
i −(
∑

xi )2 ·
√

N
∑

x2
i −(
∑

yi )2

Volatility and instability Volatility Return volatility
The monthly standard deviation of the daily

average return of individual stocks

Book lev Book leverage Total Liabilities/Total Assets

Market lev Market leverage Total liabilities/Total market value

Size concen Scale concentration Herfindahl=N
∑N

i=1 ME2
i

(
∑N

i=1 MEi )2

Liquidity and credit risk AIM Individual stock liquidity stock turnover ratio

Credit spread Credit spreads SHIBOR and Treasury Bond Yield Spread

Term spread Term spread 10-year and 3-month Treasury bond yield spread
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Figure 3. The changes of four representative indicators.

4. Empirical tests

4.1. Variable descriptive statistics

Through the calculation of the monthly data of 52 financial institutions, the data of each single
systemic financial risk measurement indicator is obtained. The statistical description of each indicator
is shown in Table 2.

Table 2. Descriptive statistics of systemic risk indicators.

Indicators category Variable name Variable meaning Min. Max. Mean Std. Dev.

Institutional extremum risk CoVaR Conditions Value at Risk 0.015 0.249 0.033 0.021

∆CoVaR The difference between the CoVaR 0.006 0.058 0.024 0.012

MES MES 0.011 0.077 0.033 0.015

Catfin Catastrophe risk in the financial system 0.044 0.212 0.099 0.040

Contagion effects Abs Absorption rate 0.622 0.931 0.823 0.070

∆Abs Absorption rate difference -0.119 0.207 0.082 0.057

Average Cor Mean correlation coefficient 0.264 0.856 0.594 0.123

Volatility and instability Volatility Return volatility 0.009 0.215 0.026 0.031

Book lev Book leverage 0.716 0.941 0.919 0.035

Market lev Market leverage 3.612 21.220 13.070 4.413

Size concen Scale concentration 2.342 4.073 3.145 0.362

Liquidity and credit risk AIM Individual stock liquidity 5.534 115.400 33.420 23.310

Credit spread Credit spreads 0.106 3.002 1.170 0.592

Term spread Term spread -0.557 2.414 1.017 0.597

There are specific differences in the values of different systemic risk indicators. Among them, the
market leverage and individual stock liquidity calculated from total liabilities and market capitalization
have the largest mean and standard deviation. Their value fluctuations are relatively large, ranging from
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3.612 to 21.220 and 5.534 to 115.400, respectively. The value of the return volatility has the smallest
fluctuation range, and the fluctuation range is between 0.009 and 0.215. The values of systemic risk
indicators of the same category are relatively close. The three indicators of extreme institutional risk are
calculated from each institution’s daily rate of return. Therefore, the three indicators of MES , CoVaR,
and ∆CoVaR have the most similar fluctuations.

4.2. Empirical results analysis

Fourteen Systemic risk indicators were added to the Savgol-TCN deep convolutional neural network
model constructed in this paper for training and prediction. In addition, three evaluation indicators,
MSE, MAE, and MAPE, were used for evaluation. The empirical results are shown in Tables 2-4.

To verify the superiority of the Savgol-TCN deep convolutional neural network model constructed
in this paper, this paper compares and analyzes the TCN, CNN, and LSTM in the table and the
Savgol-TCN deep convolutional neural network model of this method and compares the errors of
each experiment. For indicators estimated by statistical methods such as CoVaR and MES , Catfin,
and average correlation mean to refer to the studies of Acharya et al. [8], Adrian and
Brunnermeier [34], Allen et al. [35], and Patro et al. [38]. The commonly used systemic risk index
can represent the level of systemic risk, so this paper uses it to predict the systemic risk level.

Table 3. Systemic risk index forecast results (MSE)

Index Savgol-TCN TCN LSTM CNN

CoVaR 0.0003 0.0006 0.0003 0.0005

∆CoVaR 0.0003 0.0007 0.0003 0.0005

MES 0.0003 0.0008 0.0007 0.0006

Catfin 0.0009 0.0015 0.0014 0.0016

Abs 0.0010 0.0035 0.0022 0.0031

∆Abs 0.0021 0.0034 0.0026 0.0030

Average Cor 0.0052 0.0084 0.0066 0.0079

Volatility 0.0004 0.0006 0.0004 0.0005

Book lev 0.0017 0.0036 0.0011 0.0025

Market lev 0.0502 0.1474 0.0822 0.1682

Size con 0.0072 0.0264 0.0091 0.0219

AIM 0.6935 0.8942 1.2121 1.0290

Credit spread 0.0143 0.0399 0.0147 0.0264

Term spread 0.0264 0.0318 0.0094 0.0293

Tables 3–5 report the prediction effect evaluation results of the systemic risk indicator test set,
respectively. As can be seen from Tables 2–4, the prediction accuracy of the Savgol-TCN deep
convolutional neural network model is significantly improved compared with the TCN, CNN, and
LSTM models. Compared with the TCN model, only the Savgol-TCN deep convolutional neural
network model is used. The prediction accuracy of all systemic risk indicators has been steadily
improved. The LSTM neural network prediction accuracy for AIM is not as good as that of the TCN
model. TCN, LSTM, and CNN cannot show advantages in predicting systemic risk indicators, and the
prediction accuracy is uncertain. Based on the 14 Systemic risk indicators, the Savgol-TCN deep
convolutional neural network model, compared with other models (TCN, LSTM, CNN), decreases
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MSE, MAE, and MAPE in 14 prediction indices, indicating that The Savgol-TCN deep convolutional
neural network model predicts better.

Table 4. Systemic risk index forecast results (MAE).

Index Savgol-TCN TCN LSTM CNN

CoVaR 0.0027 0.0062 0.0028 0.0048

∆CoVaR 0.0025 0.0074 0.0028 0.0054

MES 0.0032 0.0078 0.0059 0.0059

Catfin 0.0079 0.0151 0.0120 0.0151

Abs 0.0104 0.0369 0.0207 0.0320

∆Abs 0.0196 0.0335 0.0243 0.0296

Average Cor 0.0527 0.0827 0.0686 0.0811

Volatility 0.0040 0.0064 0.0042 0.0050

Book lev 0.0155 0.0369 0.0079 0.0233

Market lev 0.4501 1.4929 0.7224 1.8080

Size con 0.0722 0.2768 0.0899 0.2212

AIM 5.6736 7.6389 9.9136 8.9762

Credit spread 0.1277 0.3870 0.1344 0.2767

Term spread 0.2577 0.3136 0.0916 0.2832

Table 5. Systemic risk index forecast results (MAPE).

Index Savgol-TCN TCN LSTM CNN

CoVaR 9.3594 22.4996 9.2321 16.5611

∆CoVaR 12.2127 42.7474 13.1731 27.2812

MES 11.4593 29.1350 18.7904 20.0723

Catfin 7.9786 17.8557 12.0536 16.3645

Abs 1.2267 4.4140 2.5754 3.9078

∆Abs 32.9638 57.8988 54.4398 62.6208

Average Cor 9.1944 15.7485 12.5664 15.0082

Volatility 22.6790 36.4395 22.5920 27.7508

Book lev 1.8858 4.3950 0.9524 2.7449

Market lev 3.7125 12.2193 5.4504 16.7460

Size con 2.2927 8.8114 2.8612 7.1962

AIM 21.0094 31.0727 30.8383 36.2269

Credit spread 12.7113 41.0228 13.4683 30.5531

Term spread 79.3981 94.1137 22.2828 74.2717

Table 6 reports the average predictive effect evaluation results on the systemic risk indicator test set.
It can be seen from the table that the prediction accuracy of the Savgol-TCN deep convolutional

neural network model is improved compared with the TCN, CNN, and LSTM models. Detailed
discussions are given below. The average MSE and MAE of the Savgol-TCN deep convolutional
neural network model of the institutional extreme risk group and MAPE values are 0.0005, 0.0040,
and 10.2005, respectively, compared to TCN, LSTM, and CNN models, the MSE is reduced by
0.0004, 0.0003 and 0.0003, MAE decreased by 0.0043, 0.003, and 0.0037, and MAPE decreased by
13.4303, 5.1801, and 9.4458. The average MSE, MAE, and MAPE values of the contagion effect
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group were 0.0031, 0.0284, and 17.4564, respectively. Compared with the TCN, LSTM, and CNN
models, the MSE decreased by 0.0026, 0.0011, and 0.0019, the MAE decreased by 0.0234, 0.0101,
and 0.0174, and the MAPE decreased by 10.7217, 8.5365 and 12.1746. The mean MSE, MAE, and
MAPE values of the fluctuation and instability groups were 0.0159, 0.1267, and 12.6412,
respectively. Compared with the TCN, LSTM, and CNN models, the MSE decreased by 0.0462,
0.0272, and 0.0367, the MAE decreased by 0.4471, 0.2297, and 0.3569, and the MAPE decreased by
14.0672, 5.9906 and 10.3368. The average MSE, MAE, and MAPE values of the liquidity and credit
risk groups were 0.2872, 2.3072, and 25.9849, respectively. Compared with the TCN, LSTM, and
CNN models, the MSE decreased by 0.1235, 0.2572, and 0.151, the MAE decreased by 1.0997,
2.0038, and 1.4134, and the MAPE decreased by 32.6766, 7.1083 and 31.3725.

Table 6. Comparison of systemic risk index prediction results.

Institutional extremum risk Contagion effects Volatility and instability Liquidity and credit risk

Panel A: The average MSE

Savgol-TCN 0.0005 0.0031 0.0159 0.2872

TCN 0.0009 0.0057 0.0621 0.4107

LSTM 0.0008 0.0042 0.0431 0.5444

CNN 0.0008 0.0050 0.0526 0.4382

Panel B: The average MAE

Savgol-TCN 0.0040 0.0284 0.1267 2.3072

TCN 0.0083 0.0518 0.5738 3.4069

LSTM 0.0070 0.0385 0.3564 4.3110

CNN 0.0077 0.0458 0.4836 3.7206

Panel C: The average MAPE

Savgol-TCN 10.2005 17.4564 12.6412 25.9849

TCN 23.6308 28.1781 26.7084 58.6615

LSTM 15.3806 25.9929 18.6318 33.0932

CNN 19.6463 29.6310 22.9780 57.3574

Overall, the average MSE, MAE, and MAPE of the Savgol-TCN deep convolutional neural network
model for all 14 indicators are 0.1251, 0.6275, and 18.4742, respectively, and the MSE is 0.0471,
0.0737 and 0.0506 lower than that of the TCN, LSTM, and CNN models, respectively. Compared
with TCN, LSTM, and CNN models, MAE is reduced by 0.4312, 0.5810, and 0.4779, respectively,
and MAPE is reduced by 20.0154, 7.6348, 17.481 compared with TCN, LSTM, and CNN models,
respectively. Therefore, in terms of systemic risk prediction, the Savgol-TCN deep convolutional
neural network model’s prediction accuracy outperforms the other three models. The reason is that the
causal convolution and the null convolution introduced by the TCN model could widen the sensory
field. Thus, the model is conducive to mining the indicators’ variation characteristics and improving
the indicators’ prediction accuracy.

Moreover, adding the Savitzky-Golay filter for error correction can effectively reduce the MAE and
MSE of TCN model prediction results. As a result, the combined prediction model with Savitzky-
Golay significantly improved MAE improvement compared with the single prediction model without
Savitzky-Golay. Its improvement in the accuracy and stability of forecasting performance mainly relies
on its efficiency in extracting the temporal characteristics of the forecasting errors.
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4.3. Effective visualization of models

The 14 Systemic risk index series selected in this paper show a long-term trend, which provides
a specific basis for model prediction. In addition, systemic risk indicators have the characteristics
of high volatility, high noise, and nonlinearity, and it is challenging to obtain high-precision forecast
results by constructing traditional linear forecasting models for them. Deep learning is more suitable
for processing this kind of data.

Figure 4 is a comparison chart of the prediction effect of Savgol-TCN, TCN, CNN, and LSTM
models on the risk of individual institutions. As seen in Figure 4, the Savgol-TCN deep convolutional
neural network model constructed in this paper fits better than the TCN, CNN, and LSTM models
and can better predict the trend of systemic risk. The overall trend of the LSTM model for CoVaR,
CoVaR, MES, and Catfin is close to the actual value, and the hysteresis is better than that of the CNN
model. Still, the subtle local performance is insufficient, and the prediction is too flat. The nonlinear
fitting ability of the CNN model is excellent, which can reflect not only the subtle changes in the risk of
individual institutions but also the overall trend, but the prediction accuracy is low. The overall trend of
the prediction effect of the TCN model is close to the actual value, and the lag is better than that of the
CNN model, but the subtle local prediction is insufficient and too smooth. Therefore, the Savgol-TCN
deep neural network model proposed in this paper can achieve a good prediction effect on the risk of
individual institutions.
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Figure 4. CoVaR, ∆CoVaR, MES and Catfin.

Figure 5 is a comparison chart of the prediction effect of Savgol-TCN, TCN, CNN, and LSTM
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models in the contagion effect. As can be seen from Figure 5, the Savgol-TCN deep convolutional
neural network model constructed in this paper has a better fitting effect than the TCN, CNN, and
LSTM models. Among them, the LSTM model has a better prediction effect than the TCN and CNN
models, but there needs to be more local effect prediction. On the other hand, the Savgol-TCN model
constructed in this paper coincides with the actual data curve and has a better prediction effect at the
turning point of the data trend. This shows that the Savgol-TCN deep neural network model proposed
in this paper can achieve a good prediction effect in the contagion effect.
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Figure 5. Abs, ∆Abs and Average Cor.

Figure 6 is a comparison chart of the prediction effect of Savgol-TCN, TCN, CNN, and LSTM
models in fluctuation and instability. As seen in Figure 6, the Savgol-TCN deep convolutional neural
network model constructed in this paper has a better fitting effect than the TCN, CNN, and LSTM
models, and the prediction effect of LSTM in the Volatility indicator is similar to the Savgol-TCN
deep convolutional neural network. The models are close and are not as good as the Savgol-TCN deep
convolutional neural network model in Book lev, Market lev, and Size con, but the prediction effect
is significantly better than the TCN and CNN models. This shows that the Savgol-TCN deep neural
network model proposed in this paper can achieve a good prediction effect in fluctuation and instability.

Figure 7 compares the prediction effect of Savgol-TCN, TCN, CNN, and LSTM models in liquidity
and credit risk. As can be seen from Figure 7, the Savgol-TCN deep convolutional neural network
model constructed in this paper has a better fitting effect than the TCN, CNN, and LSTM models. The
prediction effect of the TCN model in AIM, Credit spread, and Term spread is significantly better than
that of the CNN and LSTM models, but the prediction effect is not as good as the Savgol-TCN deep
convolutional neural network model. The possible reason is that the overall trend of the prediction
effect of the TCN model is close to the actual value and lags. The performance is better than that
of the CNN model. Still, the subtle local prediction is insufficient and too flat, resulting in a lower
prediction effect than the Savgol-TCN deep convolutional neural network model. This shows that the
Savgol-TCN deep neural network model proposed in this paper can achieve a good prediction effect in
liquidity and credit risk.
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Figure 6. Volatility, Book lev, Market lev and Size con.
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Figure 7. AIM, Credit spread and Term spread.

5. Conclusions and future work

Based on the monthly data from January 2007 to December 2021 in Chinas financial market, this
paper established the Savgol-TCN deep convolutional neural network to predict 14 systemic risk
indicators in 4 dimensions and analyzes its accuracy and reliability. It selects the extreme risk of
financial institutions, the contagion effect between financial systems, the volatility, and instability of
financial markets, liquidity, and systemic credit risk.
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By constructing a Savgol-TCN deep convolutional neural network, the systemic risk indicators of
China’s financial market are predicted, and their accuracy and reliability are analyzed. The constructed
Savgol-TCN deep convolutional neural network is compared with TCN, CNN, and LSTM models, and
the prediction ability and generalization ability of the Savgol-TCN deep convolutional neural network
model to systemic risk are studied. Conclusions are remarked as follows:

1) The Savgol-TCN deep convolutional neural network has a strong generalization ability, and the
prediction effect for all indices is stable.

2) The Savgol-TCN deep convolutional neural network model can be used to predict various
systemic risk indicators. Compared with TCN, CNN, and LSTM models, the Savgol-TCN deep
convolutional neural network has superior predictive performance in predicting systemic risk. Its
average prediction accuracy for all indices has increased.

3) The Savgol-TCN deep convolutional neural networks can better monitor financial market changes
and effectively predict systemic risk states.

Given that the Savgol-TCN deep convolutional neural network has strong learning ability and
model adaptability, it has substantial advantages in systemic risk prediction ability, so deep learning
technology is applied to financial forecasting and forecasting in financial intelligence. In addition to
systemic risk forecasting, the Savgol-TCN deep convolutional neural network model proposed in this
paper can also be applied to other fields to solve complex forecasting problems, including crude oil
price forecasting, stock price forecasting, etc. Although the forecasting model proposed in this paper
has high forecasting accuracy, the model only takes historical data as input. Since the systemic risk
indicator is affected by multiple complex factors, future work can consider introducing these factors
into the proposed method.

Based on the conclusions of this study, we give the following policy recommendations. Firstly, it
is necessary to strengthen the monitoring and early warning of systemic financial risk state variables,
monitor various indicators and monitor systemic risk. Secondly, we should fully consider various
factors affecting financial risks, build scientific and reasonable risk impact indicators and early warning
methods, and accelerate the construction of early warning and prevention mechanisms in the financial
industry. Finally, although this paper’s systemic risk prediction model can better predict systemic risk,
financial risk prediction is only the first step of financial risk supervision. To achieve effective financial
risk prevention, we must also rely on macro-prudential measures and micro-risk control to achieve
good prevention effects.
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