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Abstract: Indices recommendation is a long-standing topic in stock market investment. Predicting
the future trends of indices and ranking them based on the prediction results is the main scheme for
indices recommendation. How to improve the forecasting performance is the central issue of this study.
Inspired by the widely used trend-following investing strategy in financial investment, the indices’
future trends are related to not only the nearby transaction data but also the long-term historical data.
This article proposes the MSGraph, which tries to improve the index ranking performance by modeling
the correlations of short and long-term historical embeddings with the graph attention network. The
original minute-level transaction data is first synthesized into a series of K-line sequences with varying
time scales. Each K-line sequence is input into a long short-term memory network (LSTM) to get the
sequence embedding. Then, the embeddings for all indices with the same scale are fed into a graph
convolutional network to achieve index aggregation. All the aggregated embeddings for the same
index are input into a graph attention network to fuse the scale interactions. Finally, a fully connected
network produces the index return ratio for the next day, and the recommended indices are obtained
through ranking. In total, 60 indices in the Chinese stock market are selected as experimental data. The
mean reciprocal rank, precision, accuracy and investment return ratio are used as evaluation metrics.
The comparison results show that our method achieves state-of-the-art results in all evaluation metrics,
and the ablation study also demonstrates that the combination of multiple scale K-lines facilitates the
indices recommendation.

Keywords: indices recommendation; Chinese stock market; graph attention network; indices
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1. Introduction

Stock market investment is a topic that has been around for decades. As a single stock is vulnerable
to business conditions and public sentiment, investing in stocks carries huge risks. A stock index is
composited with multiple stocks to reflect the overall trends of the stock market or a specific industry,
and indices are significantly less volatile than stocks. Investing in exchange traded funds (ETF) that
follow stock indices is a very popular investment method these days. There are thousands of indices
that can be invested in the Chinese stock market. However, not all of these indices are profitable over a
period of time. Among these indices, choosing a certain number of indices which are worth investing
in is a topic of great significance. This article focuses on the indices recommendation issue, which
provides investors with the top-K profitable indices based on future trends prediction.

Machine learning and deep learning are the mainstream methods for this research field. They use
the historical transaction data to predict future trends and select optimal indices for recommendation.
Numerous models have been used to recommend stocks, ranging from the early days of technical
analysis [1] and autoregressive models (ARIMA) [2] to the rise of convolutional neural networks
(CNN) [3] and graph convolutional networks (GCN) [4] in recent years. These studies focus on
identifying the temporal-spatial relationships between past transaction data from various indices and
future patterns. Most of these studies [5–7] used the 1-day K-line sequence as the basic experimental
data, and few studies [8] applied the minute level trading data. However, the trading data with a fixed
time interval cannot yield sufficient characteristics for the index trend.
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Figure 1. The correlation of multi-scale K-line sequences. The index K-line can be presented
on different time scales, such as 5-minute, 10-minute, 1-month, etc. Minute-level K-lines
may indicate nearby characteristics, whereas month-level data always contains long-term
trends. The future trend is determined by both nearby and long historical K-lines.

According to the widely used trend-following strategies in the technical analysis of the financial
market, the future trends of index points are determined by both long-term and short-term trends. As
shown in Figure 1, long-term data would be the month-level K-line sequence, which covers a period
of several months. The short-term data are the minute-level data, which occurs in recent days. In a
long-term upward trend, a short-term downtrend would imply the end of a long-term uptrend. On the
other hand, a short-term upward trend contained within a long-term negative trend frequently indicates
the beginning of a long-term upward trend. These K-line sequences with different time scales contain
complex correlations. It is possible to predict the index’s future more precisely by fusing historical
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data with various time scales in the stock market. However, current popular models cannot model this
characteristic.

This paper proposes MSGraph, which abstracts the K-line sequences with different scales into a
graph and applies the graph attention network to extract scale correlations. To sum up, the contributions
of this article are as follows.

• We originally put forth the methodology of forecasting an index’s future trend using multi-scale
historical data, which was inspired by the trend-following strategy in financial investment. The
graph attention network is employed in this approach to combine the influences of various scale
historical sequences.
• Following our first innovative idea, we propose an index recommendation framework named

MSGraph. This method first synthesizes minute-level historical K-lines into multi-scale
sequences, and it uses LSTM to obtain sequential embeddings. Next, the index graph and scale
graph are respectively applied to fuse the influences between different indices and different
scales. Finally, the fully connected layer is utilized to map the fused embeddings to index
fluctuation, and the recommended indices are obtained via the ranking.
• MSGraph is fully verified with the Chinese stock market indices. The evaluation results show that

our method obtains state-of-the-art results with multiple evaluation metrics, such as reciprocal
rank, precision, accuracy and return ratio. At the end of the experimental section, the effect of
each component of our method is also analyzed.

This paper is organized as follows. The related work will be introduced in Section 2. The proposed
MSGraph will be presented in Section 3. Section 4 presents comparison experiments, including
experimental design, performance comparison, market backtesting and ablation studies. Section 5
gives a summary and further research directions.

2. Related works

In the last few decades, artificial intelligence has been used a lot in the field of investing in the
financial market. Common applications include stock trend prediction, stock recommendation, etc.
From the perspective of research models, it has gone through several stages such as technical analysis,
classic machine learning, deep learning and graph convolution.

2.1. Technical analysis

Technical analysis is a method that emerged during the early days of stock market investment.
It focuses on predicting future trends by analyzing technical indicators in stock trading data [1, 9].
Some classical technical indicators include the moving average, the Chande momentum oscillator, the
Williams indicator, the relative strength index, etc. These technical indicators are simple and easy to
obtain, and they are still widely used in the stock market. These indicators, on the other hand, are so
simple that they cannot show the complex relationship between past transaction data and future trends.
Instead, some time series models are presented. The two most famous methods are the Kalman filter
[10] and the autoregressive integrated moving average model (ARIMA) [2]. These two methods are
also commonly adopted in stock market investment because of their simplicity and good explanation.
However, their disadvantages are also obvious. They cannot handle the non-linear correlation between
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the historical and future data and also cannot express the non-Euclidean spatial correlation between
multiple stocks. Another recent work is [11], which tries to capture the mutual exciting activities
through a multi-dimensional Hawkes model. This approach provides a spatial correlation view on
multiple stock investments, and it would be a promising research direction for technical analysis.

2.2. Machine learning

With the advancement of machine learning, more and more researchers are using machine learning
models to predict stock trends and recommend profitable stocks [12]. At this stage, various machine
learning models are applied to financial investments. Some typical studies include autoregressive
conditional heteroskedasticity (GARCH) [13], decision trees [14], support vector machines
(SVM) [15], artificial neural networks (ANN) [16], etc. On top of that, some boosting
methods [17, 18] are also proposed to improve the prediction’s robustness. These machine learning
models are still widely used in stock market investment.

However, these models have a common characteristic, which is that their performances are always
related to pre-extracted features. As these features are usually extracted with the experience of
investors, and the number of features is limited, these machine learning methods cannot utilize the
deep non-intuitive features. However, it is precisely these non-intuitive features that are more
representative of the transaction data. This leads to the natural defects of classical machine learning
models. To overcome this disadvantage, deep learning is adopted for financial investment issues.

2.3. Deep learning

The technology of deep learning has developed rapidly in the past ten years. It has achieved
breakthrough results in many fields [19]. Lots of studies have applied the deep learning model to
financial market issues [20]. The advantage of deep learning models is that they do not need to
manually extract features, and they always use an end-to-end architecture. In these models, the
historical data are taken as input, and the features are automatically extracted through the deep
networks. These networks are always optimized with the gradient descent algorithm, such as
AdaGrad [21], AdaDelta [22], Adam [23]. In early research, the multi-layer neural network [24] was
the most widely used model. As this model contains multiple feedforward layers, it is difficult to train
the optimal parameters. With the development of the convolution mechanism, many works have
applied the CNN to the stock market [3, 25]. The convolutional neural network obtains promising
results, and it is also widely used in financial investment.

The other most commonly used model is the sequence model, such as recurrent neural networks
(RNN) [26], LSTM [27, 28], the deep transformer model [29], etc. Also, some hybrid models which
combine the convolutional and sequence models are also put forward, such as [30–32]. Although
deep learning models are powerful methods for the stock market, they also have deficiencies. The
most obvious problem is that they cannot use correlations between different stock transaction data.
However, these correlations are always important to model historical data and future trends. Thus, an
improved deep model named graph neural network is proposed.

2.4. Graph neural network

The graph-based neural network was first proposed to model data with graph structure, and it has
undergone rapid development in the past few years [4]. It has also been applied in many research
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fields, such as traffic forecasting [33], natural language processing [34], power systems [35], etc. In the
financial area, some studies [36, 37] regarded the historical K-lines as visual graphs and extracted the
features for stock trend prediction. However, most works modeled the stocks as the graph nodes, and
the graph convolutional network was mainly used to model the relationship between different stocks. It
can capture both spatial and temporal correlations in historical transaction data of multiple stocks when
combined with the time series model. Some studies using graph networks for stocks recommendation
are as follows.

The Relation Stock Ranking (RSR) [5] is pioneering research for stock recommendation ranking.
It utilized the sequence model to learn a stock-wise sequential embedding, and the temporal graph
convolution was applied to fuse the deep features of multiple stocks. Chen et al. [9] proposed the
graph convolutional feature based convolutional neural network (GC-CNN), which can simultaneously
capture both stock market and individual stock features. Cheng et al. [38] proposed the attribute-
driven graph attention network (AD-GAT), which introduced the attribute-driven mechanism to the
graph convolution for modeling momentum spillovers. The model named graph attention long short-
term memory (GALSTM) [39] was put forward to predict the future prices of stocks. Li et al. [40]
proposed the LSTM relational graph convolutional network (LSTM-RGCN) to predict the overnight
stock movement between the previous close price and the open price. Feng et al. [41] focused on the
high return ratio stocks recommendation with the relation-aware dynamic attributed graph attention
network (RA-AGAT). Xu et al. [42] aimed to predict the price-limit-hitting stocks with the hierarchical
graph neural network. Hsu et al. [6] and Ma et al. [7] utilized the graph attention network and the
attribute-driven fuzzy hypergraph network for profitable stocks recommendation, respectively. Wang
et al. [43] combined the transformer and the graph attention network for stock investment selection.

Currently, graph-based neural networks are an emerging method for stock market prediction.
However, the current study’s inputs are all fixed time scale transaction data, such as 1-day K-lines,
etc. Since both short-term and long-term historical data affect how a stock will move in the future,
modeling the multi-scale historical data would be an interesting area of research. Meanwhile, each
scale’s data is influenced by the same scale data of other indices. Thus, integrating the multiple scale
data of all stocks for the current index prediction is a problem that needs to be solved. This paper
proposes the multi-scale graph attention network for profitable indices recommendation, and
extensive experiments show that our method can obtain state-of-the-art results.

3. The proposed model

In this section, we will give the details of the proposed model. First, the problem formulation and
model framework are introduced in Section 3.1. Then, each part of the proposed model is put forward
in Section 3.2 to Section 3.5.

3.1. Formulation and framework

This section will first give some symbol definitions for our model and then introduce the model
framework. The inputs of our model are historical data from N indices. For index i, the inputs are
the minute-level K-line sequence, which is denoted as Hi = [h1, h2, · · · hT ], where ht is the t-th K-line
and T is the sample length. In our model, the inputs ht = (ht1, · · · , ht5) are the 5-minute K-line data,
and 5 elements are the opening point, highest point, lowest point, closing point and trading volume at
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this timestamp. Since our model needs to span multiple months, the value of T would be much larger
than that of existing methods. The purpose of this article is as follows: given the historical data H
of N indices for each day, predicting their movements for the next day and recommending k worth
of invested indices based on prediction results. The architecture of the proposed prediction model is
shown in Figure 2.
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Figure 2. The framework of our prediction model. The inputs are the historical data of
all indices. These data are first synthesized into multiple sequences with different scales.
Then, the sequential embeddings for the same scale are modeled with an index graph. Third,
the aggregated embeddings for the same index are structured as a graph attention network
to embody the effect of different scales. Finally, the movement for each index is obtained
through a fully connected network.

The inputs are the 5-minute K-line data for all indices, and they are first synthesized into multiple
sequences with different time scales. Each scale stands for a specific time interval, such as 5-minute,
10-minute, etc. The j-th scale is represented by s j, the scale number is written as N, and the detailed
data description will be introduced in the experimental section. The K-line synthesis algorithm will be
introduced in Section 3.2. After the synthesis, the K-line sequence at scale s j for index i is represented
by Hs j

i = [hs j

1 , h
s j

2 , · · · , h
s j

T j
], where T j is the sequence length for scale s j. As long sequences would

cause gradient vanishing for the following sequence model, T j is much smaller than the initial length
T . Each synthesized sequence will be input into the LSTM model to get the sequential embedding,
which is denoted by es j

i , where i and s j represent index and scale, respectively.
As all indices’ data at the same scale are always trends correlated, the index graph aggregation is

conducted for each scale. This step contains N graphs, corresponding to N scales, and it will be put
forward in Section 3.3. In these graphs, the node represents index, and the edge is index correlation.
After index graph aggregations, the embeddings that combine index correlations are obtained. Each
index contains N embeddings, and the j-th embedding for index i is written as ês j

i . According to our
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motivation, the future trends of index i are determined by both long-term and short-term historical
data. We utilize the graph attention network to model correlations between multiple scales, which
will be brought forward in Section 3.4. This step contains N graphs corresponding to N indices. For
each graph, the node depicts scale embedding, and the edge is scale relation. After the graph attention
network, we can finally get the embeddings ēi, which fused the features of different indices and scales.
These outputs will be input into fully connected networks to produce the movements for the next day.
The output for the i-th index is denoted as eout

i . The recommended k indices can be acquired by ranking
the predicted results. The objective function for the prediction model and the recommendation scheme
will be introduced in Section 3.5.

3.2. Data synthesis

Algorithm 1 The K-line synthesis algorithm.
Input:

H = [H1, · · · ,HN]: The sample data consisting of 5-minute K-line sequences for N indices;
n = [ns1 , · · · , nsN]: The 5-minute numbers are contained in different scales;
T = [T1, · · · ,TN]: Sequence lengths for various scales;

Output:
Hs = [[Hs1

1 , · · · ,H
sN
1 ], · · · , [Hs1

N , · · · ,H
sN
N ]]: K-line sequences for all indices and scales;

1: Initialize Hs to ∅;
2: for i = 1 to N do
3: Initialize Hs

i to ∅;
4: for j = 1 to N do
5: Initialize Hs j

i to ∅;
6: for k = T j to 1 do
7: tmp = Hi[T − kns j + 1 : T − (k − 1)ns j];
8: hs j

i [1] = tmp[1][1];
9: hs j

i [2] = max(tmp[:][2]);
10: hs j

i [3] = min(tmp[:][3]);
11: hs j

i [4] = tmp[T j][4];
12: hs j

i [5] = sum(tmp[:][5]);
13: Hs j

i = append(Hs j

i , h
s j

i );
14: end for
15: Hs

i = append(Hs
i ,H

s j

i );
16: end for
17: Hs = append(Hs,Hs

i );
18: end for
19: Hs = normalize(Hs);
20: return Hs;

As described in Section 3.1, our model uses the historical 5-minute K-lines of all indices as input.
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The first phase of our model is to synthesize the initial data into K-line sequences with different scales.
The synthesis method is shown as Algorithm 1, which takes three parameters as input. In addition to
the raw data H, there are another two parameters. n stores numbers of the 5-minute K-line contained
in different scales. For example, if s j is the scale of 1-hour, ns j equals 12, as 1 hour contains 12 5-
minute intervals. The third parameter T saves sequence lengths for various scales. For each scale, all
sequences share the same length. These values are much smaller than the input length T , and they
will be introduced in the experimental section. The output of Algorithm 1 is all the K-line sequences,
where Hs j

i is the sequence of index i scaled by s j.
Steps 5–14 are used to obtain the K-line sequences for index i scaled by s j. Step 7 obtains a

temporary 5-minute K-line sequence, which will be mapped into one K-line at scale s j. Steps 8–12
indicate the synthesis method. According to the definitions of K-line, hs j

i [1] equals the opening point
of the first K-line in the current temporary sequence. hs j

i [2] and hs j

i [3] are the maximum and minimum
values during this period, respectively. hs j

i [4] is the closing point of the last K-line. hs j

i [5] is the total
volume of all K-lines in this temporary sequence. At the end of this algorithm, Step 19 normalizes
these sequences with Eqs (3.1) and (3.2).

(hs j

i )
′

tk =
(hs j

i )tk − htmp

htmp
(3.1)

(hs j

i )
′′

tk = 2Sigmod
 (hs j

i )
′

tk − (h̄s j

i )
′

k

pre(β) − pre(100 − β)

 − 1 (3.2)

In Eq (3.1), htmp = (hs j

i )(t−1)4, if k ∈ {1, 2, 3, 4}. Otherwise, htmp = (hs j

i )(t−1)5. This formula is used to
convert the index point to the fluctuation. The first four elements are calculated based on the previous
closing point, and the fifth is determined on the basis of trading volume. As the fluctuations vary
greatly from time to time, Eq (3.2) normalizes these values to a specific range. β is a value between
0 and 100, and pre(β) is the β-th percentile of sequence (Hs j

i )
′

k. (h̄s j

i )
′

k is the average of (Hs j

i )
′

k. After
normalization, all values in Hs fall between -1 and 1.

3.3. Index graph aggregation

The K-line sequences with different scales for all indices are obtained through Algorithm 1. These
data contain N × N sequences. The following step is modeling these sequences to get sequence
embeddings. The LSTM is the most popular model for mining the time dependency, and it is adopted
in our model. The sequence embedding for Hs j

i is denoted as es j

i , and these embeddings are input into
the index graph aggregation.

The purpose of the index graph aggregation is to integrate the characteristics between indices. Our
model constructs N index graphs, and each graph indicates the correlations for a specific time scale.
For the index graph, the node represents index, and the edge embodies relation. The first step for
index graph aggregation is constructing the index graph adjacency matrix. According to [43, 44], the
multi-dimensional Dynamic Time Warping (DTW) is applied to calculate the sequence similarity, and
this value is regarded as the index correlation. The DTW is shown as Algorithm 2. The inputs are the
K-line sequences for all indices at scale sk and their length. The output is the corresponding adjacency
matrix. In this algorithm, step 3 is used to calculate the cosine similarity between any two K-lines, and
steps 5–8 are applied to obtain the similarity between two sequences using dynamic programming. The
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similarities for all sequences in Hs j are regarded as the adjacency matrix. On the basis of the adjacency
matrix, the index graph aggregation is as

êsk = σ(AskeskW sk
0 ), (3.3)

where esk ∈ RN×m0 is the matrix of sequential embedding for scale sk, and W sk
0 is a hyperparameter

matrix size of m0 × m1. The output êsk is the features that fused the sequence embeddings for scale sk,
and it would be input to the scale graph attention network.

Algorithm 2 The adjacency matrix construction method for index graph.
Input:

Hsk = {Hsk
1 , · · · ,H

sk
N }: K-line sequences at scale sk for all indices;

Tk: Sequence length for scale sk;
Output:

Ask : The adjacency matrix for index graph at scale sk;
1: for i, j ∈ [1,N] do
2: for m, n ∈ [1,Tk] do
3: Dmn =

(Hsk
i )m·(Hsk

j )
n

|(Hsk
i )m ||(Hsk

j )
n
|

4: end for
5: for m, n = 1 to Tk do
6: D̂mn = Dmn +max(D̂(m−1)n, D̂m(n−1), D̂(m−1)(n−1))
7: end for
8: Ai j = D̂TkTk ;
9: end for

10: Ask = normalize(A);
11: return Ask ;

3.4. Scale graph aggregation

Since different scales of data have different implications for the future trends, the graph attention
network is utilized to model these correlations and produce the scale aggregation. Our model contains
N graphs, and each graph represents the scale relationships for one index. In each graph, the node
represents scale embedding, and the edge employs the attention weight. Taking the i-th graph for
example, the node j is the embedding of scale s j for index i, and the edge will be calculated through
the attention mechanism. Without loss of generality, the input for the i-th graph is denoted as êi =

[ês1
i , · · · , ê

sN
i ], where ês j

i ∈ R
m1 is the feature vector for scale sk. The output is vector ēi ∈ R

m3 . The
graph attention network is shown as Figure 3.
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Figure 3. The graph attention network. It is a directed complete graph, and each edge
consists of L attention weights. ēs j

i is obtained through multi-head attention aggregation. The
output ēi is acquired through the concatenation operator.

The scale graph is a directed complete graph. The first step for scale graph aggregation is
calculating the aggregation weights. Each edge contains L weights. For the l-th weight in graph i, two
hyperparameters named Wl

i ∈ R
m2×m1 and αl

i ∈ R
2m2 are introduced. The i-th aggregation weight ( Âi)l

jk
from node sk to s j is calculated with

(Âi)
tmp
jk = LeakyReLU((αl

i)
T
[Wl

i ê
s j

i ||W
l
i ê

sk
i ]) (3.4)

and

(Âi)l
jk =

exp((Âi)
tmp
jk )∑N

g=1 exp((Âi)
tmp
jg )
. (3.5)

Equation (3.4) is used to calculate a temporary weight, where || is the vector concatenation operator,
and (αl

i)
T is the transpose of αl

i. Equation (3.5) is utilized to normalize the temporary weight matrix.
After normalizing the attention weights of all nodes, the node features can be aggregated through the
graph attention layer, shown as

ēs jl
i =
∑N

k=1
(Âi)

l
jkW

l
i ê

sk
i . (3.6)

To enhance the robustness of the model, the multi-head attention aggregation is applied based on
Eq (3.6), which is shown as

ēs j

i = σ(
1
L

∑L

l=1
ēs jl

i ), (3.7)

where L is the attention number. The output is the embedding for scale s j. As each graph represents
an index, and our goal is to obtain the features of this index, we should merge these embeddings into
one, shown as

ēi =∥
N
j=1 ēs j

i . (3.8)

The vector ēi would be the input for the task specific layer, and its dimension is m3 = m2 × N.
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3.5. Prediction layer

This section defines the prediction tasks and gives the objective function for optimization. The
output ēi of the graph attention network is first input to a fully connected network, shown as

ŷi = wiēi + bi, (3.9)

where wi ∈ R
1×m3 is the hidden parameter in the task specific layer, and bi is the bias term. The output

ŷi is the prediction result. Since income is the most important evaluation metric for selecting profitable
indices, the index return ratio for the next day is regarded as the prediction label. The label of the t-th
day for index i can be acquired with

(yi)t =
(H1−day

i )(t+1)4 − (H1−day
i )t4

(H1−day
i )t4

, (3.10)

where H1−day
i is the 1-day K-line sequence for index i, and the label is calculated with the closing point.

In this paper, we focus on the indices selection topic, in which the ranking score of each index
is the essential prediction target. According to [5] and [7], the objective function, which combines
regression loss and pairwise ranking-aware loss, is utilized to optimize this model. Equation (3.11)
shows the objective function, where y consists of the ground-truth labels for all indices, and ŷ contains
the prediction values.

l(y, ŷ) =
∑N

i=1
(yi − ŷi)2+

α
∑N

i=1

∑N

j=1
max(0,−(ŷi − ŷ j)(yi − y j))

(3.11)

The first part in Eq (3.11) is the regression loss, which illustrates the difference between the ground-
truth and prediction values. The second part is the pairwise max-margin loss proposed in [45] to
measure the risk of ranking. α is a parameter to balance these two losses. The total loss takes into
account two factors. The ranking error considered the relative order of indices, which will facilitate
the top-k indices recommendation. The regression error reduces the difference between predicted and
actual values, which will help the investment decisions. For each investment day, we first predict the
return ratios of the next day for all indices with this model and then rank them from high to low. The
top-k indices would be the profitable ones to recommend.

4. Experiment

This section gives evaluations of our model. We compared our model with the current popular
methods and also analyzed the effect of different model components. Section 4.1 describes data
preparation, including dataset selection, data processing, etc. Section 4.2 lays out the experimental
design, including evaluation metrics, comparison methods, parameter setting, etc. Sections 4.3 and
4.4 show the comparison results for different evaluation metrics. Section 4.5 gives the ablation study.

4.1. Data preparation

According to the design of our model, minute-level historical data should be acquired as evaluation
data. Although stock market data is publicly available, minute-level data is hard to obtain. The datasets

Electronic Research Archive Volume 31, Issue 5, 2626–2650.



2637

used in the related works include Taiwan Stocks [6], shares from S&P 500, NASDAQ and NYSE [5],
stocks in TOPIX-100 Index [40], Chinese stocks [9], etc. All these easily obtained data are daily-
level. In order to meet our experimental needs, we bought the data interface for Chinese stock indices
from a third party. This interface can provide minute-level K-lines for over 500 indices in real time.
However, not all these indices are suitable for our experiments. We selected the used indices with the
following rules. First, the indices which were compiled after 2005-01-04 are deleted to ensure a large
number of samples. Then, we keep only one index among similar ones, as similar indices may hold
comparable trends. For example, there are six indices about information technology, and we just keep
the CSI Information Technology Index (SH000935). Third, some infrequently used indices such as
the Equally Weighted Index (SH000971), the Cninfo 100 Index (SZ399313), etc. are removed as it
is hard to find the corresponding ETFs for these indices. After filtering, we selected 60 indices for
our experiment. The index list can be found in Table 1, where ”SH” and ”SZ” represent the Shanghai
Stock Exchange and the Shenzhen Stock Exchange, respectively.

Table 1. Index list for our evaluations. It contains 60 indices. These indices were all
compiled before 2005-01-04. We also delete some similar or infrequently used indices.

Number Code Number Code Number Code Number Code
1 SH000001 16 SH000903 31 SH000943 46 SZ399233
2 SH000005 17 SH000904 32 SH000944 47 SZ399234
3 SH000006 18 SH000905 33 SH000949 48 SZ399235
4 SH000009 19 SH000922 34 SH000958 49 SZ399236
5 SH000016 20 SH000925 35 SH000961 50 SZ399237
6 SH000044 21 SH000928 36 SH000962 51 SZ399248
7 SH000046 22 SH000929 37 SH000963 52 SZ399300
8 SH000047 23 SH000930 38 SH000964 53 SZ399320
9 SH000063 24 SH000931 39 SH000967 54 SZ399344
10 SH000064 25 SH000932 40 SH000972 55 SZ399348
11 SH000065 26 SH000933 41 SH000980 56 SZ399351
12 SH000102 27 SH000934 42 SZ399001 57 SZ399701
13 SH000130 28 SH000935 43 SZ399004 58 SZ399967
14 SH000132 29 SH000936 44 SZ399231 59 SZ399972
15 SH000300 30 SH000937 45 SZ399232 60 SZ399986

The 5-minute K-line data that ranges from 2005-01-04 to 2022-10-31 is adopted for our model. We
first split these data into prediction samples with a one-day step sliding window. Each sample contains
12, 000 = 250 × 48 K-lines, where 250 is the number of trading days for about one year, and 48 is the
number of 5-minute K-lines for each trading day. Comparing to the previous works, our input length
is extremely long, and such long data cannot be efficiently handled by a single sequence model. The
return ratio for the next day is considered as the prediction label.

After sample splitting, we obtain 4080 samples. These samples are divided into training, validation
and testing sets in the ratio of 6:2:2. After the sample is input to the model, it is first synthesized
into different scale sequences using Algorithm 1. The scale list and the corresponding parameters are
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shown in Table 2. The first row in this table shows the scales, where (m, h, d, w, mon) are abbreviations
of (minute, hour, day, week, month), respectively. Taking 1 h for example, it means each K-line covers
one hour of trading data in the synthesized K-line sequence. As it contains 10 scales, the parameter
N equals 10 in the model. The second row shows the number of 5-minute K-lines included in each
synthesized K-line, which is the second input of Algorithm 1. Still taking the scale of 1 h as an
example, as one hour consists of 12 5-minute segments, the corresponding value in the second row is
12. The third row shows the sequence length for different scales, which is the third input for Algorithm
1. The fourth row indicates the total time span for different scales. As the sequence length is 8 for the
scale of 1 h, it covers 1 h × 8 = 8 h, which equals the trading time of two days in the Chinese stock
market.

Table 2. Scale list and the corresponding parameters. The second row is the number of 5-
minute K-lines in each synthesized K-line, and the third row is the length of the synthesized
sequence. They are the second and third parameters of Algorithm 1, respectively. The fourth
row is the total time that each sequence covers, and it equals the first row multiplied by the
third row.

scale 5 m 10 m 30 m 1 h 2 h 1 d 2 d 1 w 2 w 1 mon
K-line number 1 2 6 12 24 48 96 240 480 960
sequence length 12 12 8 8 10 10 10 8 12 12
time span 1 h 2 h 1 d 2 d 1 w 2 w 1 mon 2 mon 6 mon 1 y

4.2. Experimental design

The PyTorch framework was adopted to implement our model. The training and validation sets were
first applied to train the model, and then the prediction results of the testing set were obtained. We used
the grid search strategy to determine the optimal hyperparameters. The final optimal parameters are
as follows. The dimensions of embeddings m0, m1 and m2 are set to 30, 25 and 20, respectively. The
batch size is set to 128, and the learning rate and the drop rate are set to 0.001 and 0.2, respectively.
The number of attention heads L is set to 5. The loss weight α is set to 4. The Adam [23] optimizer is
applied to train our model.

When the return ratios for each day are predicted, the indices are first ranked, and the top-k indices
are obtained. In order to facilitate comparison with other methods, some evaluation metrics such as
mean reciprocal rank (MRR), precision (Pre) and accuracy (Acc) are adopted. The mean reciprocal
rank is shown as

MRRk =
1
k

∑
ini∈Îk

i
rank(ini)

, (4.1)

where Îk is the set that contains recommended top-k indices, i is the predicted rank of index ini, and
rank(ini) is the ground-truth rank of index i. This indicator measures the difference between the
predicted and the ground-truth index set, and it ranges from 1

k

∑k−1
j=0

j+1
N− j to 1. The precision is shown as

Prek =
|Îk ∩ Ik|

k
, (4.2)

where Ik is the actual top-k index set. This metric ranges from 0 to 1. The accuracy (Acc) is the correct
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ratio for predicting ups and downs, shown as

Acc =
T P + T N

T P + T N + FP + FN
, (4.3)

where T P, T N, FP and FN stand for true positive, true negative, false positive and false negative,
respectively. For all three of these metrics, the larger the indicator is the better the results.

In addition, we employ the market backtesting comparison, which is closer to actual investment. In
these evaluations, some money is supposed to be invested in index funds. For each trading day, the
model predicts the top-k indices for the next day. The investment operation is performed based on the
prediction results. We first sell all the shares of the indices that are not in the top-k set. Then, the
indices that do not hold in the top-k set are brought in. The total money is divided into k equal parts.
Each purchase costs one part. It should be noted that some investment details are ignored. First, we use
the closing point as the trading price in the evaluation. However, indices in the Chinese stock market
cannot be traded directly. The investor should select the corresponding ETF for investment. Second, we
suppose the stock market is liquid enough, and the trading commissions are also not considered. This
backtesting evaluation just adopts the simplest trading strategy. In practice, some additional strategies
should be taken into account, such as quantitative timing, position management, etc. The commonly
used metric is the total return ratio (Trr), shown as

Trr =
total − initial

initial
× 100%, (4.4)

where initial and total are the money before and after the investment. We compared the proposed
model with several related classical works.

• LSTM [46], which inputs the daily features to the classical LSTM model. It is the simplest
method.
• SFM [47], which decomposed the historical sequence into multiple frequency components in

memory cells. Future stock trends are predicted by combining these components.
• RSR [5], a state-of-the-art method that applied the LSTM to model the sequence, and utilized the

graph convolution network to obtain the relational embeddings.
• AFHGN [7], which used the attribute-driven fuzzy hypergraph network to conduct the stock

recommendation issue. It applied fuzzy clustering to generate the stock matrix and eliminated
the industry-belonging hypergraph as the indices have no such information.
• FinGAT [6], a model which first used a hierarchical learning component to learn sequential

patterns, and then used two fully-connected graphs to learn the interactions between indices.
• RA-AGAT [41], which first used the attention LSTM to get the feature matrix, and the attributed

graph attention network was then applied to analyze the connections behind the finance. The
mutual information and the cross-correlation analysis coefficient are adopted to construct the
adjacent matrix.
• ALSP-TF [43], a model that uses Transformer to capture the sequential embeddings, and focuses

on overcoming the limitations of canonical self-attention including context and being position
agnostic.

It should be known that our selected indices have no background data such as sector-industry
relations. We use dynamic time warping to construct the indices’ relations in re-implementing RSR
and FinGAT. The corresponding graph aggregation method is also modified.
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4.3. Performance comparison

This section presents comparison results. Figures 4 and 5 give the results of different methods
using the metrics MRR and Pre. We give results for different recommendation numbers, which are
5, 10 and 20. These figures show that our proposed MSGraph significantly outperforms the other
methods. When the number of recommended indices is 5, our method improves by 1.2% and 2.5%
with evaluation metrics MRR and Pre. However, when the recommended number is 10, our method
improves by about 4.6% and 3.5%. As the recommended number rises to 20, our method still performs
better than other methods, and the metrics improve by 1.9% and 0.9%, respectively. These results show
that our method performs best when recommending 10 indices. Figure 6 plots the prediction accuracy
for all indices. The main bar shows the average accuracy, and the error bar indicates the range of
prediction accuracy. It indicates our method also obtains the best result and improves the accuracy by
about 2.1%. The reasons for the better performance are analyzed as follows.
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Figure 4. The comparison results for metric MRR with k = 5, 10 and 20. For all three
figures, our method obtained state-of-the-art results, and improved about 1.2%, 4.6% and
1.9%, respectively.
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Figure 5. The comparison results for metric Pre with k = 5, 10 and 20. For these three
figures, our method performs best, and improved about 2.5%, 3.5% and 0.9%, respectively.
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Figure 6. The comparison results for the metric of prediction accuracy. Our method is
56.2%, and improved about 2.1% more than the current best method.

The LSTM performs the worst since it does not take into account index correlations and multiple
scale K-lines. The SFM considers the multiple frequencies of input data, but it loses sight of
correlations between indices. It performs slightly better. These two results also indicate that utilizing
the correlations between indices can significantly improve ranking performance. The RSR is the most
similar scheme to our method. However, it just uses the daily level data for prediction, and it loses
sight of multiple frequency data. FinGAT, RA-AGAT and ALSP-TF outperform RSR by improving
the sequential embedding method with attentive RNN and Transformer. This also implies that the
attention mechanism is an effective strategy for raising prediction performance. In the original article,
the AFHGN tries to model the stock correlations with hypergraph. However, for the index prediction
task, the hypergraph cannot be built, and it is similar to RSR. It consequently performs badly.
However, these four methods do not take into account the K-line data with multiple time scales, and
the scale correlations are also not considered. Thus, these methods all perform worse than our
method. The result also indicates that interactions between indices and correlations between
multi-scale trading data are very effective for improving the forecasting effect.

4.4. Market backtesting

This section presents the backtesting comparison results. Backtesting runs from 2020-08-03 to
2022-10-31. In these evaluations, the prediction methods are first used to get the recommended k
indices for each day. If the recommended indices have already been held, we hold them still.
Otherwise, we changed the indices that were held to the newly recommended ones. For each trading
day, we calculate the corresponding amount of each index that is held, and the total amount is used to
fetch the return ratio. Due to the randomness of the backtesting curve, we repeat the evaluation 100
times to obtain the average curves.

Figure 7 shows the investment return ratio curves for different prediction methods, in which five
indices are recommended as investment targets. As AFHGN and RA-AGAT are similar to RSR and
FinGAT, respectively, we did not draw this method’s curve in order to simplify this figure. It is clear
that our method performs much better than others and gets a 25.6% return ratio. FinGAT produced the
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best results among current methods, with a return ratio of 18.4%. The proposed MSGraph improved
the return ratio by about 7.2%. The worst-performing method is still the LSTM, as it takes neither
index correlations nor scale associations into account. Apart from LSTM and FinGAT, the other three
models produce similar curves.
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Figure 7. The backtesting curves for different methods. The current best method FinGAT
yields 18.4% return ratio, and our MSGraph obtained 25.6%. Our method improves by about
7.2%.

Figure 8 shows the backtesting curves for a number of stock market indices, as well as the results
of comparing different methods to make predictions. We chose five indices for comparison. The
SH000001 and SZ399001 are the SSE Composite Index and SZSE Component Index, which are
compiled by the Shanghai Stock Exchange and the Shenzhen Stock Exchange, respectively. The full
name of SH000300 is the CSI 300 Index, which is produced by the China Securities Index Company.
These three indices are the standard benchmarks, reflecting the overall trends of the Chinese stock
market. SH000928 and SZ399248 are the CSI Energy Index and SZSE Culture Index, respectively,
which are the best and worst performing indices in our 60 experimental data. The MSGraph5,
MSGraph10 and MSGraph20 are our methods, which take the top 5, 10 and 20 indices as the
investment targets, respectively.

We can acquire the following results. First, our prediction methods obviously outperform the stock
market’s overall trends. The composite indices are -14.1%, -25.5% and -26.5% of income, respectively.
The worst performance index is a negative 46.8% return. However, our methods obtain a return of over
10%. This reveals that the indices recommendation can benefit index investment. Second, the total
return ratio of our method is lower than the best index (SH000928), but our maximum drawdown
ratio is also small. This demonstrates that our methods are more stable. The reason is as follows.
Our investment targets contain multiple indices, and the curves are less affected by fluctuations in a
single index. It is for this reason that we cannot obtain the highest income. However when it comes to
investing money, a steady growth curve is more important than a curve that changes a lot. Third, among
the three curves of our methods, MSGraph5 performs better than MSGraph10 and MSGraph20, which
can be explained as follows. Most indices are trending downward during this backtesting period. As the
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number of indices invested goes up, more downward indices are chosen, which makes the investment
return ratio go down.
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Figure 8. Comparison results with different stock market indices. SH000928 (63.7%)
and SZ399248 (-46.8%) are the best and worst-performing indices in our 60 experimental
data sets, respectively. SH000001 (-14.1%), SZ399001 (-25.5%) and SH000300 (-26.5%)
represent the overall market trends. Although our method performs worse than the top-
performing index, it significantly outperforms the overall market return.

4.5. Ablation study

This section will give the ablation study of our model in order to in-depth analyze the effectiveness
of the model. Some influencing factors need to be analyzed, including various model components,
different data scales and the balance parameter α in the loss function.

4.5.1. Effects of various model components

The previous sections present the results of a comparison between our method and current methods.
This section will analyze the effectiveness of different components of our method. Our method contains
several critical components, such as index aggregation introduced in Section 3.3, scale aggregation and
multi-head attention mechanism which are put forward in Section 3.4. We eliminate these parts from
our model and perform the index ranking evaluation. These modified methods are denoted as follows.

• MSGraph, our proposed model with all components.
• MSGraph-I, eliminating the index aggregation from MSGraph. In other words, the sequence

embeddings es j

i for various scales are fed directly into the scale graph attention network.
• MSGraph-S, eliminating the scale aggregation from MSGraph. That is, the 1-day level K-lines

are input into the sequence model and index graph aggregation. The aggregated embeddings ês j

i
are fed into the fully connected network directly.
• MSGraph-A, eliminating the multi-head attention in the scale graph attention network, which

uses just one attention weight to perform scale aggregation.
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The ablation study results for different methods are shown in Table 3. The columns k = 5, k = 10
and k = 20 contain the ranking results. The Acc involves the classification results for all indices, where
three columns represent the average, the best and the worst accuracy, respectively. From this table,
we can see that all three modified methods perform worse than the original model. This means the
reduced three components are all beneficial to ranking prediction. By observing the detailed results
of three methods, MSGraph-S performs basically the worst. According to the design of this method,
the scale aggregation is removed, and this method is essentially equivalent to RSR in Section 4.2. It
also means the scale graph attention network is the most important component of our proposed model.
Compared with MSGraph-S, MSGraph-I performs slightly better, but it is also significantly worse
than our method. It means that the relationships between the indices are also a key part of making
better predictions. In addition, MSGraph-A performs best in these three methods. The reason is that
it includes both the index and scale aggregation. However it is also slightly worse than MSGraph. It
implies that the multi-head attention can also facilitate prediction performance.

Table 3. Results on ablation study for the proposed MSGraph.

k = 5 k = 10 k = 20 Acc
MRR Pre MRR Pre MRR Pre Aver Best Worst

MSGraph 0.250 0.0956 0.391 0.2940 0.493 0.4650 0.5622 0.6325 0.4771
MSGraph-I 0.231 0.0925 0.357 0.2668 0.459 0.4396 0.5510 0.6348 0.4595
MSGraph-S 0.213 0.0901 0.332 0.2520 0.464 0.4400 0.5410 0.6192 0.4504
MSGraph-A 0.247 0.0944 0.374 0.2761 0.478 0.4595 0.5602 0.6315 0.4731

4.5.2. Analysis on data scales

This section will address another topic: which scale is more important for ranking prediction. The
previous sections used all 10 data scales introduced in Table 2. This part selects a subset of Table 2 for
evaluation. Table 4 shows the best MRR10 results and their corresponding scale lists for different scale
numbers. Taking MSGraph-5 for example, it means we select 5 scales to construct the scale graph
attention network. Since there are C5

10 combinations to generate the subset, we traverse all of them and
train the prediction model for each combination. The best prediction result and its corresponding scale
list are the final results.

From the table, we can see that the MRR10 increases significantly as the scale number changes from
1 to 7. Then, it generally stays the same. This reveals that multi-scale transaction data can facilitate
future predictions. As the scale number is large, the expression ability of some scales becomes the
same. Thus, the indicator does not improve. From the column of scale lists, we can get several
recurring scales, which are 1 mon, 1 d, 2 h, 10 m, etc. Observing the MSGraph-5 to MSGraph-7, we
can find the scale list contains both low and high frequency data, which indicates the combination of
long-term and short-term data can substantially enhance the prediction results. This finding also offers
a novel perspective on the field of study.
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Figure 9. The ablation results of balance parameter α with different metrics. The results
show that when α is between 3 and 5, the model can get optimal results.

Table 4. MRR10 for different scale numbers.

MRR10 scale list
MSGraph-1 0.332 1 d
MSGraph-2 0.345 1 d, 10 m
MSGraph-3 0.353 2 w, 2 h, 10 m
MSGraph-4 0.371 1 mon, 2 d, 2 h, 10 m
MSGraph-5 0.382 1 mon, 1 w, 1 d, 2 h, 5 m
MSGraph-6 0.386 1 mon, 1 w, 2 d, 1 d, 1 h, 5 m
MSGraph-7 0.393 1 mon, 2 w, 2 d, 1 d, 2 h, 30 m, 10 m
MSGraph-8 0.388 1 mon, 2 w, 1 w, 1 d, 2 h, 30 m, 10 m, 5 m
MSGraph-9 0.392 1 mon, 2 w, 1 w, 1 d, 2 h, 1 h, 30 m, 10 m, 5 m
MSGraph-10 0.391 1 mon, 2 w, 1 w, 2 d, 1 d, 2 h, 1 h, 30 m, 10 m, 5 m

4.5.3. Selection of balance parameter α

The parameter α in formula (3.11) is used to balance the regression loss and the ranking loss. This
value can also affect the performance of our proposed model. In Section 4.2, this parameter is set to
4. This section will put forward the selection of this parameter. Following the previous studies [5], we
tune α within the set [0.1, 0.2, 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] with the other hyperparameters fixed.
α < 1 indicates that the regression loss dominates the model training, while α > 1 means ranking loss
accounts for a large proportion. The prediction results with metrics MRR and Pre are shown in Figure
9. The results show that the indicators improve first and then decline with α changes. When it comes
to 3–5, we can get relatively good results. For MRR20 and Pre10, α = 5 yielded the optimal results,
while for the rest of the indicators, α = 4 is the best. Thus, we selected α = 4 as the optimal value in
Section 4.2.
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5. Conclusions

Indices recommendation is a long-standing topic in stock market investment. Improving the
prediction performance of future trends is a central issue. This paper focuses on the impacts of
different scales of transaction data on the prediction result. The contributions of this article are as
follows. First, the MSGraph framework is proposed, which considers both index aggregation and
scale aggregation. Second, the data synthesis and index aggregation are detailed. Third, the scale
graph attention network is proposed to model the multi-scale correlations, where each scale is
regarded as a node. In the experiment, 60 Chinese stock market indices are used to demonstrate its
effectiveness, and the effects of different model components are analyzed.

The proposed MSGraph is the first study on correlations between different scales of transaction
data. There are several future research directions. First, the LSTM is used as the sequence embedding
model in our method. Currently, there are some more powerful sequence models that can be utilized,
such as Transformer, Autoformer, etc. This part could be improved. Second, this article recommends
profitable indices based on daily prediction results. Actually, investment returns are determined by
both short and long-term prediction results. Redefining the prediction task and developing the trading
strategy is a promising research direction. In addition, it would be interesting to learn more about how
multi-scale historical data affects long-term prediction tasks.
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