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Abstract: Fluid flow through a free-fluid region and the adjacent porous medium has been studied in
various problems, such as water flow in rice fields. For the problem with self-propelled solid phases,
we provide a generalized Stokes equation for the free-fluid domain and the Brinkman equation in a
macroscopic scale due to the movement of self-propelled solid phases rather than a single solid in
the porous medium. The model is derived with the assumption that the porosity is not a constant.
The porosity in the mathematical model varies depending on the propagation of the solid phases.
These two models can be matched at the free-fluid/porous-medium interface and are developed for
real world problems. We show the proof of the well-posedness of the discretized form of the weak
formulation obtained from applying a mixed finite element scheme to the generalized Stokes-Brinkman
equations. The proofs of the continuity and coercive property of the linear and bilinear functionals in
the discretized equation are illustrated. We present the existence and uniqueness of the generalized
Stokes-Brinkman equations for the numerical problem in two dimensions. The system of equations
can be applied to fluid flow propelled by moving solid phases, such as mucus flow in the trachea.

Keywords: generalized Stokes-Brinkman equations; finite element approach; well-posedness; varied
porosity; permeability tensor

1. Introduction

Fluid flow problems have considerable attention from researchers and appear in many applications
such as engineering, industry, biomedical sciences and other areas. The fluid flow problems are
investigated in both theoretical and applied research, among which is the study of flow through a
free-fluid domain and an adjacent porous medium. For example, Basirata et al. [1] studied the CO2

gas flow in a porous medium and free air above it. Oangwatcharaparkan and Wuttanachamsri [2]
studied the fluid flow in a periciliary layer (PCL) in the human respiratory system where the mucus
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layer was on the top of a porous layer. In this research, we focus on fluid flow problems in which the
fluid is moved by self-propelled solid phases rather than a pressure gradient. That is, the movement of
solids affects the fluid flow whether the fluid is in the same layer as the solid phases or above the solid
phases. An example domain that illustrates the regions of interest is represented in Figure 1.

Figure 1. Sample layers of a free-fluid region residing above an adjacent porous medium.

Figure 1 shows a sampling domain consisting of two regions: the layer composed of fluid and
self-propelled solid phases, which is considered as a porous medium, Ωp, and a free-fluid region, Ω f ,
residing on the porous medium. In this study, we consider a macroscopic flow where a bundle of
solid phases is considered instead of a single self-propelled solid. The locomotion of solids affects the
movement of fluids in the nearby areas. If fluid flows through different domains, then mathematical
models are also distinct. That is, the equations for the flow above the porous medium and flow in the
porous domain are different.

There are several mathematical models used to describe problems of this type [3–11]. Khanafer et
al. [3] used Darcy’s Law and Brinkman-extended Darcy to investigate the fluid flow inside the hollow
fiber bundle of an artificial lung and applied the Navier-Stokes equation for the fluid flow outside the
fiber bundle. Ly et al. [4] investigated the problem of fluid flow in coupling a free fluid domain and a
porous medium using the Stokes and Darcy equations, respectively. Wuttanachamsri and Schreyer [5]
used the Stokes-Brinkman equations to compute the fluid velocities due to the self-propelled solid
phases in a three-dimensional domain. Poopra and Wuttanachamsri [6] considered the fluid flow in the
periciliary layer (PCL) in human lungs by using the Stokes-Brinkman equations with the Beavers and
Joseph boundary condition. Wuttanachamsri [7] used Stokes-Brinkman equations in one dimension
with the Stefan problem to estimate the free interface between a porous medium and an adjacent free-
fluid region. The well-posedness of the system of the Stokes-Brinkman equations is also provided for
both moving or static solid phase [12–16]. For the study of a static solid phase, Ingram [12] applied a
finite element discretization to the Brinkman equation and demonstrated that the discretized problem
was well-posed. Angot [13] studied the well-posedness of the Stokes-Brinkman and Stokes-Darcy
with new jump interface conditions. Chamsri [14] showed the well-posedness of the Stokes-Brinkman
model for the case of moving solid phase, while the porosity was assumed to be a constant.

Unlike the usual problems, in this research, we use generalized Stokes-Brinkman equations, where
the Brinkman model is developed from the Hybrid Mixture Theory (HMT) [17]. The HMT is a
technique for upscaling a multiphase flow by applying an averaging theorem to a microscale equation
to obtain a macroscale equation [18, 19]. The macroscopic Brinkman equation is distinct from the
models in the above literature because it is derived from the conservation of momentum, where the
porosity in the equation is considered as a function of space. Therefore, the porosity is subject to a
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derivative operator, while the porosity in the Brinkman model in the available research is outside the
derivative, although the porosity has been used as a function of space. Our model, the macroscopic
Brinkman model, can be used for a bundle of self-propelled solid phases instead of a single solid for
fluid flow in a porous medium. In addition, we derive the generalized Stokes equation to apply to the
incompressible slow flow in the domain of the free-fluid region next to the porous medium. Extra
terms appearing in the generalized Stokes and macroscale Brinkman equations aid to match shear
stress at the free-fluid/porous-medium interface. Since our model differs from typical
Stokes-Brinkman equations in available research, the well-posedness of the generalized
Stokes-Brinkman equations in a macroscopic scale when the fluid is moved by self-propelled solid
phases is provided, and the permeability in the model is considered as a second-order tensor, not just a
constant.

In Section 2, we derive the generalized Stokes-Brinkman equations. In order to present the well-
posedness of the discretized form of the mathematical model using a mixed finite element technique, in
Section 3, we present the weak formulation of the governing equations as well as the discretized form
of the generalized Stokes-Brinkman equations. In Section 4, the continuity and coercivity of linear and
bilinear functionals in the discretized system of equations are presented. The well-posedness of the
generalized Stokes-Brinkman equations is illustrated in Section 5. The conclusion is drawn in Section
6. The fundamental definitions, theorems and lemmas proved in available literature and books, which
are used in the proof of the well-posedness of the discretized equations, are provided in the Appendix.

2. Generalized Stokes-Brinkman equations

In this section, we present the derivation of our governing equations. For the generalized Stokes
equation, we start with the generalized Navier-Stokes equation and then use a nondimensionalization
method to obtain the generalized Stokes equation. This is shown in Section 2.1. To derive the Brinkman
equation, we begin with a momentum equation obtained from Hybrid Mixture Theory (HMT) [19], an
upscaling technique, and then use a nondimensionalization approach to have a macroscopic model in a
porous medium, which is illustrated in Section 2.2. We rewrite our governing equations in Section 2.3
in order to summarize and use them in the next sections.

2.1. Derivation of generalized Stokes equation

To obtain the generalized Stokes equation, we start with the generalized Navier-Stokes equation,
which is attained from substituting a stress tensor, developed from entropy inequality holding near
equilibrium for a viscous fluid, into a momentum equation. The generalized Navier-Stokes equation
is [20]

ρ
∂u
∂t
+ ρ(u · ∇u) + ∇p − (λ + µ)∇(∇ · u) − µ∇ · ∇u − ρg = 0, (2.1)

where ρ is density, t is time, u is the velocity, p is pressure, λ is a constant, µ is the dynamic viscosity,
and g is gravity. The generalized Navier-Stokes equation, Eq (2.1), is normalized with dimensionless
variables, and we get

ρu0 f
∂û
∂̂t
+
ρu2

0

L
(̂u · ∇̂û) +

p0

L
∇̂ p̂ −

(λ + µ)u0

L2 ∇̂(∇̂ · û) −
µu0

L2 ∇̂ · ∇̂û − ρg0̂g = 0, (2.2)
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where the characteristic parameter L is the characteristic length; f is the characteristic frequency; u0 is
the characteristic speed; p0 is the reference pressure; g0 is the gravitational acceleration. Multiplying

Eq (2.2) by
L2

µu0
on both sides, we have

ρ f L2

µ

∂û
∂̂t
+
ρu0L
µ

(̂u · ∇̂û) +
p0L
µu0
∇̂ p̂ −

(λ + µ)
µ
∇̂(∇̂ · û) − ∇̂ · ∇̂û −

ρg0L2

µu0
ĝ = 0. (2.3)

Next, we calculate the coefficients in Eq (2.3), where the values of the characteristic variables and
other variables in International System (SI) units are shown in Table 1. The characteristic length is the
highest length of cilia in the respiratory system [21], the reference f is the frequency of cilia beat in
the human respiratory tract [22], the characteristic velocity u0 is the maximum speed of cilia for the
effective stroke at temperature 37◦C, the reference pressure p0 is the pressure in the human respiratory
tract, which is about one [23], g0 is the Earth’s gravity, and ρ and µ are the density of water and dynamic
viscosity at 37◦C, respectively. The constant λ is set equal to zero. The values of the coefficients are
shown in Table 2.

Table 1. The values of characteristic and constant variables in Eq (2.3) in International
System units.

Variables L f u0 p0 g0 ρ µ

SI Units m 1/s m/s kg/(m·s2) m/s2 kg/m3 kg/(m·s)
Values 7 × 10−6 10 2.5 × 10−4 1 9.807 993.3 0.6913 × 10−3

Table 2. The values of the coefficients in Eq (2.3).

Coefficients
ρ f L2

µ

ρu0L
µ

p0L
µu0

λ + µ

µ

ρg0L2

µu0
Values 7.0406 × 10−4 2.5 × 10−3 40.5034 1 2.7619

From Table 2, the coefficients of the first two terms in Eq (2.3) are comparatively small compared
with the others. Therefore, the unsteady and nonlinear terms in the equation are neglected, and then
Eq (2.3) becomes

∇p − (λ + µ)∇(∇ · u) − µ∇ · ∇u − ρg = 0. (2.4)

In this work, we assume that the velocity u in two dimensions is smooth enough that the order of the

derivative can be interchanged, that is,
∂

∂x
∂u
∂y
=
∂

∂y
∂u
∂x

. Then, we obtain

∇(∇ · u) = ∇ · (∇u)T . (2.5)

Substituting Eq (2.5) into the second term of Eq (2.4), we have

∇p − λ∇(∇ · u) − µ∇ · (∇u)T − µ∇ · ∇u − ρg = 0, (2.6)

or
∇p − λ∇(∇ · u) − µ∇ · (∇u + (∇u)T ) − ρg = 0. (2.7)
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Since the rate of deformation for the liquid phase d =
1
2

(∇u + (∇u)T ), we rewrite Eq (2.7) as

∇p − λ∇(∇ · u) − ∇ · (2µd) − ρg = 0. (2.8)

Notice that if λ = 0, then Eq (2.8) becomes

∇p − ∇ · (2µd) − ρg = 0, (2.9)

which is the generalized Stokes equation. If the matrix ∇u is symmetric, then Eq (2.9) is the following
Stokes equation:

∇p − 2µ∆u − ρg = 0. (2.10)

2.2. Derivation of the Brinkman equation

In this section, we show the derivation of the Brinkman equation in a macroscopic scale derived
using Hybrid Mixture Theory (HMT). HMT is an upscaling technique used to derive multiphase
equations such as the combination of solid and liquid phases. This method uses the averaging theorem
to upscale equations from a microscale equation to a macroscale equation [19]. In this study, we focus
on developing a model for fluid flow due to the movement of self-propelled solid phases. Here, we
follow the procedure provided in [18]. We begin with the multiphase equation upscaled from the
conservation of momentum [18] when the porosity is a function, not a constant:

εlρl D
lul

Dt
+ εl∇p + p∇εl − ∇ · (εl2µdl) − εlρlgl = p∇εl − εlR · (ul − us), (2.11)

where l and s mean the liquid and solid phases, respectively. The function εl is the porosity, which is a
variable in space; dl = 0.5

(
∇ul + (∇ul)T

)
is the rate of deformation tensor; R is a second-order tensor;

ul and us are the velocities of liquid and solid phases, respectively. Substituting R = µεlk−1, where k−1

is the inverse of the permeability tensor, and taking
Dlul

Dt
=
∂ul

∂t
+ ul · ∇ul into Eq (2.11), subtracting

from both sides by p∇εl and dividing by εl on both sides, we have

ρ

(
∂ul

∂t
+ ul · ∇ul

)
+ µk−1 · (εlul − εlus) + ∇p −

µ

εl∇ · (2ε
ldl) = ρg. (2.12)

Then, we normalize Eq (2.12). We use the same characteristic parameters as in the previous subsection.
The dimensionless form of Eq (2.12) is

kρ f
µ

∂ûl

∂̂t
+

kρu0

µL
(̂ul · ∇̂ûl) + (εl̂ul − εl̂us) +

kp0

µu0L
∇̂p̂ −

k
εlL2 ∇̂ · (2ε

l̂dl) =
kρg0

µu0
ĝ. (2.13)

Using the values in Table 1 to calculate the coefficients in Eq (2.13) with the permeability k = 10−14 m2

and porosity εl = 1, which are the maximum values employed from [24], we obtain the values of the
coefficients as illustrated in Table 3.

Table 3. The values of the coefficients in Eq (2.13).

Coefficients
kρ f
µ

kρu0

µL
kp0

µu0L
k
εlL2

kρg0

µu0
Values 1.4369 × 10−7 5.1316 × 10−7 8.3 × 10−3 2.0408 × 10−4 5.6365 × 10−4
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From the calculation demonstrated in Table 3, we neglect the first two terms in Eq (2.13), the time-
dependent and nonlinear terms, because these expressions are significantly small in comparison with
others. Therefore, Eq (2.12) becomes

µk−1 · (εlul − εlus) + ∇p −
µ

εl∇ · (2ε
ldl) = ρg, (2.14)

which is called the Brinkman equation in a macroscopic scale. Notice that the macroscale Brinkman
equation is distinct from the Brinkman in literature such as in [25],

µk−1 · εlul + ∇p − µ∆ul = ρg, (2.15)

because our model starts with the momentum equation that the porosity is a function and cannot be
moved out of the derivative as a constant, as usually used in research. The porosity in the parentheses
in the third term in Eq (2.14) cannot be canceled out with the denominator. Moreover, the first-order
derivative of the rate of deformation times the porosity in Eq (2.14) cannot be changed to be the second-
order derivative of the velocity as shown in Eq (2.15). It may seem that the difference is not much, but
finding the numerical results of Eq (2.14) is more complicated than for Eq (2.15), including the proof
of the well-posedness of the equation.

Notice that the Brinkman equation in the macroscopic scale, Eq (2.14), has a good engagement with
the generalized Stokes equation, Eq (2.9). Because there are no solid phases in the adjacent free-fluid
domain, the porosity becomes one, and the permeability tends to infinity in this region. Therefore, the
first term in Eq (2.14) disappears, and then the Brinkman equation, Eq (2.14), becomes generalized
Stokes equation, Eq (2.9). Thus, the solutions in these two layers can be matched in the transition
zone at the free-fluid/porous-medium interface by using the generalized Stokes-Brinkman model. The
mathematical model is summarized in the next section.

2.3. Governing equations

The models for a problem of this kind are summarized in this section. The models in both free-
fluid layer and porous medium consist of two unknowns, which are the velocity ul and the pressure p.
Therefore, in each region, we need one more equation, which is a continuity equation obtained from
conservation of mass. Since a bundle of self-propelled solid phases effects the fluid flow, we employ
the continuity equation for two-phase flow in the porous medium derived by HMT [26, 27], which is

∇ · (εlul) = f , (2.16)

where f = −ε̇l/(1− εl)+∇ · (εlus) and ε̇l = ∂εl/∂t + us · ∇εl. Let Ω = Ωp ∪Ω f be our domain, and ∂Ω
is the boundary of the domain. Define the vectors

u = εlul and f = ρg + µk−1 · εlus. (2.17)

From Eqs (2.14), (2.16) and (2.17), the system of equations used in domain Ωp is

µk−1 · u −
µ

εl∇ · (2ε
ldl) + ∇p = f in Ωp, (2.18)

∇ · u = f in Ωp. (2.19)
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For the free-fluid domain Ω f , the flow is considered incompressible. Then, the divergence of velocity
is zero. Therefore, in domain Ω f , we have the system of equations

−µ∇ · (2εldl) + ∇p = 0 in Ω f , (2.20)
∇ · u = 0 in Ω f . (2.21)

Before we prove the well-posedness of the generalized Stokes-Brinkman equations, Eqs (2.18) and
(2.19), in the next section we provide the discretized form of the governing equations by using a finite
element method.

3. Discretized model

In this section, we first formulate the weak formulation of the generalized Stokes-Brinkman
equations, Eqs (2.18) and (2.19), by using a mixed finite element method. To obtain the weak form of
Eq (2.18), we multiply a weight function w ∈ H1

0(Ω) and integrate Eq (2.18) over the domain Ω on
both sides, and we have∫

Ω

µ(k−1 · u) · w −
∫
Ω

µ

εl

(
∇ · (2εldl)

)
· w +

∫
Ω

∇p · w =
∫
Ω

f · w. (3.1)

Applying Green’s first identity to the second and third terms on the left hand side of Eq (3.1) and using
the property that the weight function is zero at the boundary, we have∫

Ω

µ(k−1 · u) · w +
∫
Ω

2µεldl : ∇
(w
εl

)
−

∫
Ω

(∇ · w)p =
∫
Ω

f · w. (3.2)

Substituting dl = 0.5
[
∇

( u
εl

)
+

(
∇

( u
εl

))T
]

into Eq (3.2), we obtain the weak formulation of Eq (2.18),

which is∫
Ω

µ(k−1 · u) · w +
∫
Ω

µεl∇

( u
εl

)
: ∇

(w
εl

)
+

∫
Ω

µεl
(
∇

( u
εl

) )T
: ∇

(w
εl

)
−

∫
Ω

(∇ · w)p =
∫
Ω

f · w. (3.3)

Similarly, multiplying both sides of Eq (2.19) by another weight function q ∈ L2
0(Ω) and integrating

both sides, we obtain the weak formulation of Eq (2.19):∫
Ω

(∇ · u) q =
∫
Ω

f q. (3.4)

The weak formulation of the generalized Stokes-Brinkman equations can be written in linear and
bilinear functionals as follows.

Problem 1. The weak form of the generalized Stokes-Brinkman equations is to find u ∈ H1
s (Ω) and

p ∈ L2
0(Ω) such that

a (u,w) + b (w, p) = c1 (w) , ∀w ∈ H1
0(Ω), (3.5)

b (u, q) = c2 (q) , ∀q ∈ L2
0(Ω), (3.6)
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where the linear and bilinear functionals are defined as

a (u,w) =

∫
Ω

µ(k−1 · u) · w +
∫
Ω

µεl∇

( u
εl

)
: ∇

(w
εl

)
+

∫
Ω

µεl
(
∇

( u
εl

) )T
: ∇

(w
εl

)
, (3.7)

b (u, q) = −

∫
Ω

(∇ · u) q, (3.8)

c1 (w) = ⟨f,w⟩H−1(Ω)×H1
0 (Ω), (3.9)

c2 (q) = −

∫
Ω

f q, (3.10)

where the space H1
s (Ω) = {w ∈ H1(Ω) : w|∂Ω = s}, and ⟨·, ·⟩ is the duality pairing.

Notice that the space L2
0(Ω) is used instead of L2(Ω) because the system of Eqs (2.18) and (2.19)

demonstrates pressure up to an additive constant; see [28] on page 157 for details. The linear and
bilinear functionals in Problem 1 can be written in the form of a linear operator as in Problem 2 (the
definition of the linear operator is in the Appendix).

Problem 2. Let A : H1
0(Ω) → H−1(Ω) and B : H1

0(Ω) → L2
0(Ω) be linear operators. Find u ∈

H1
s (Ω), p ∈ L2

0(Ω) such that

Au + B′p = f in H−1(Ω), (3.11)
Bu = f in L2

0(Ω), (3.12)

where

∥f∥H−1(Ω) = sup
w∈H1

0 (Ω),w,0

⟨f,w⟩H−1(Ω)×H1
0 (Ω)

∥w∥H1(Ω)
, (3.13)

the norm ∥ · ∥H1(Ω) denotes the standard norm on the space H1(Ω), and the function us in f is a bounded
continuous function.

Next, we show that the linear and bilinear functionals in Problem 1 are continuous and coercive, and
that will be used to prove the existence and uniqueness of the generalized Stokes-Brinkman equations
in Section 5.

4. Continuity and coercivity of linear and bilinear functionals

In this section, we show that the linear and bilinear functionals in Problem 1 are continuous and
coercive. These properties are necessary to prove the existence and uniqueness of the governing
equations. We first proof the continuity as shown in Theorem 4.1.

Theorem 4.1. The linear functionals c1 (w) , c2 (q) and bilinear functionals a (·, ·), b (·, ·) are
continuous. In particular,

c1 (w) ≤ ∥f∥H−1(Ω)∥w∥H1(Ω), ∀w ∈ H1(Ω), (4.1)
c2 (q) ≤ ∥ f ∥L2(Ω)∥q∥L2(Ω), ∀q ∈ L2(Ω), (4.2)

b (u, q) ≤
√

n|u|H1(Ω)∥q∥L2(Ω), ∀u ∈ H1(Ω),∀q ∈ L2(Ω), (4.3)
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a (u,w) ≤ Qa∥u∥H1(Ω)∥w∥H1(Ω), ∀u,w ∈ H1(Ω), (4.4)

where n is the dimensional number, and

Qa = max{
√

6µ max
1≤i, j≤2

|k−1
i j |, 2µ/∥εl∥H1(Ω)}.

Proof. It is obvious that c1 (w) and c2 (q) are linear functionals, and a (u,w) and b (u, q) are bilinear
functionals. Next, we show the continuity of c1 (w). Let w ∈ H1(Ω). Then,

|c1 (w) | =
∣∣∣∣⟨f,w⟩H−1(Ω)×H1

0 (Ω)

∣∣∣∣
=

∣∣∣∣∣∣⟨f,w⟩H−1(Ω)×H1
0 (Ω)

∥w∥H1(Ω)
∥w∥H1(Ω)

∣∣∣∣∣∣
≤ ∥f∥H−1(Ω)∥w∥H1(Ω),

where we apply the definition of norm on the space H−1(Ω), Eq (3.13), at the inequality. The proof of
the continuities of c2 (q) and b (u, q) has been shown in [16]. Next, we show the continuity of a (u,w)
in a two-dimensional domain. Define u = (u1, u2) and w = (w1,w2). Then, from Eq (3.7), we have

|a (u,w)| =
∣∣∣∣∣ ∫
Ω

µ(k−1 · u) · w +
∫
Ω

µεl∇

( u
εl

)
: ∇

(w
εl

)
+

∫
Ω

µεl
(
∇

( u
εl

))T
: ∇

(w
εl

) ∣∣∣∣∣
≤

∣∣∣∣∣∫
Ω

µ(k−1 · u) · w
∣∣∣∣∣ + ∣∣∣∣∣∫

Ω

µεl∇

( u
εl

)
: ∇

(w
εl

) ∣∣∣∣∣ + ∣∣∣∣∣∫
Ω

µεl
(
∇

( u
εl

) )T
: ∇

(w
εl

) ∣∣∣∣∣
≤ µ

∥∥∥k−1 · u
∥∥∥

L2(Ω) ∥w∥L2(Ω) + µ

∥∥∥∥∥εl∇

( u
εl

)∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∇ (w
εl

)∥∥∥∥∥
L2(Ω)

+ µ

∥∥∥∥∥εl
(
∇

( u
εl

))T∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∇ (w
εl

)∥∥∥∥∥
L2(Ω)

≤
√

6µ max
1≤i, j≤2

∣∣∣k−1
i j

∣∣∣ ∥u∥L2(Ω) ∥w∥L2(Ω) + µ
∥∥∥εl

∥∥∥
L2(Ω)

∥∥∥∥∥∇ ( u
εl

)∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∇ (w
εl

)∥∥∥∥∥
L2(Ω)

+ µ
∥∥∥εl

∥∥∥
L2(Ω)

∥∥∥∥∥(∇ ( u
εl

))T∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∇ (w
εl

)∥∥∥∥∥
L2(Ω)

=
√

6µ max
1≤i, j≤2

∣∣∣k−1
i j

∣∣∣ ∥u∥L2(Ω) ∥w∥L2(Ω) + 2µ
∥∥∥εl

∥∥∥
L2(Ω)

∥∥∥∥∥∇ ( u
εl

)∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∇ (w
εl

)∥∥∥∥∥
L2(Ω)

≤
√

6µ max
1≤i, j≤2

∣∣∣k−1
i j

∣∣∣ ∥u∥H1(Ω) ∥w∥H1(Ω) + 2µ
∥∥∥εl

∥∥∥
L2(Ω)

∥∥∥∥∥ u
εl

∥∥∥∥∥
H1(Ω)

∥∥∥∥∥w
εl

∥∥∥∥∥
H1(Ω)

=
√

6µ max
1≤i, j≤2

∣∣∣k−1
i j

∣∣∣ ∥u∥H1(Ω) ∥w∥H1(Ω) + 2µ
∥∥∥εl

∥∥∥
L2(Ω)

∥u∥H1(Ω)∥∥∥εl
∥∥∥

H1(Ω)

∥w∥H1(Ω)∥∥∥εl
∥∥∥

H1(Ω)

≤
√

6µ max
1≤i, j≤2

∣∣∣k−1
i j

∣∣∣ ∥u∥H1(Ω) ∥w∥H1(Ω) +
2µ∥∥∥εl
∥∥∥

H1(Ω)

∥u∥H1(Ω) ∥w∥H1(Ω)

≤ max

√6µ max
1≤i, j≤2

∣∣∣k−1
i j

∣∣∣ , 2µ∥∥∥εl
∥∥∥

H1(Ω)

 ∥u∥H1(Ω) ∥w∥H1(Ω)

= Qa ∥u∥H1(Ω) ∥w∥H1(Ω) ,
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where Qa = max

√6µmax1≤i, j≤2

∣∣∣k−1
i j

∣∣∣ , 2µ∥∥∥εl
∥∥∥

H1(Ω)

 and the inequality [14]

∥∥∥k−1 · u
∥∥∥

L2(Ω)
≤
√

6 max
1≤i, j≤2

∣∣∣k−1
i j

∣∣∣ ∥u∥L2(Ω) (4.5)

is applied to the third inequality. For the fifth inequality, we use the fact that ∥ · ∥L2(Ω) ≤ ∥ · ∥H1(Ω), so
∥ · ∥L2(Ω)

∥ · ∥H1(Ω)
≤ 1. Therefore, a (u,w) is continuous.

To show that the bilinear form a(·, ·) is coercive, we first proof Lemma 4.2, which will be used in
the proof of coercivity presented in Theorem 4.3.

Lemma 4.2. Let w ∈ H1(Ω). Then,∫
Ω

µεl∇

(w
εl

)
: ∇

(w
εl

)
+

∫
Ω

µεl
(
∇

(w
εl

))T
: ∇

(w
εl

)
≥
µ
√
|V |

2n2
r

∥∥∥∥∥∇ (w
εl

)
+

(
∇

(w
εl

))T∥∥∥∥∥2

L2(Ω)
, (4.6)

for some natural number nr.

Proof. Let w ∈ H1(Ω). Since the porosity εl > 0 is a real number, by the Archimedean property, there

exists nr ∈ N such that εl ≥
1
nr

. Given W =
w
εl , then,

∫
Ω

µεl∇

(w
εl

)
: ∇

(w
εl

)
+

∫
Ω

µεl
(
∇

(w
εl

) )T
: ∇

(w
εl

)
=

∫
Ω

µεl∇W : ∇W +
∫
Ω

µεl (∇W)T : ∇W

=

∫
Ω

µεl
[
∇W : ∇W + (∇W)T : ∇W

]
=

∫
Ω

µεl
[
∇W + (∇W)T

]
: ∇W

=

∫
Ω

2µεl 1
2

[
∇W + (∇W)T

]
: ∇W

=

∫
Ω

2µεlD : ∇W

=

∫
Ω

2µεlDi j
∂Wi

∂x j

=

∫
Ω

2µεl

(
D11
∂W1

∂x1
+ D12

∂W1

∂x2
+ D21

∂W2

∂x1
+ D22

∂W2

∂x2

)
=

∫
Ω

2µεl

(
D2

11 + D12

(
∂W1

∂x2
+
∂W2

∂x1

)
+ D2

22

)
=

∫
Ω

2µεl

(
D2

11 + 2D12
1
2

(
∂W1

∂x2
+
∂W2

∂x1

)
+ D2

22

)
=

∫
Ω

2µεl
(
D2

11 + 2D2
12 + D2

22

)
=

∫
Ω

2µεl
(
D2

11 + D2
12 + D2

21 + D2
22

)
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≥ 2µ
∫
Ω

(
εl
)2 (

D2
11 + D2

12 + D2
21 + D2

22

)
= 2µ

(∫
Ω

(εlD11)2 +

∫
Ω

(εlD12)2 +

∫
Ω

(εlD21)2 +

∫
Ω

(εlD22)2
)

= 2µ
(∥∥∥εlD11

∥∥∥2

L2(Ω)
+

∥∥∥εlD12

∥∥∥2

L2(Ω)
+

∥∥∥εlD21

∥∥∥2

L2(Ω)
+

∥∥∥εlD22

∥∥∥2

L2(Ω)

)
≥ 2µ

(∥∥∥(εlD11)2
∥∥∥

L2(Ω)
+

∥∥∥(εlD12)2
∥∥∥

L2(Ω)
+

∥∥∥(εlD21)2
∥∥∥

L2(Ω)
+

∥∥∥(εlD22)2
∥∥∥

L2(Ω)

)
≥ 2µ

∥∥∥(εlD11)2 + (εlD12)2 + (εlD21)2 + (εlD22)2
∥∥∥

L2(Ω)

= 2µ

∥∥∥∥∥∥∥
2∑

i=1

2∑
j=1

∣∣∣εlDi j

∣∣∣2∥∥∥∥∥∥∥
L2(Ω)

≥ 2µ
∥∥∥∥(σmax

(
εlD

))2∥∥∥∥
L2(Ω)

= 2µ
(∫
Ω

(
σmax

(
εlD

))4
dΩ

) 1
2

= 2µ
((
σmax

(
εlD

))4
∫
Ω

1 dΩ
) 1

2

= 2µ
((
σmax

(
εlD

))4
|V |

) 1
2

= 2µ
√
|V |

(
σmax

(
εlD

))2

= 2µ
√
|V |

∥∥∥εlD
∥∥∥2

L2(Ω)

= 2µ
√
|V |

∥∥∥∥∥∥εl

2

(
∇W + (∇W)T

)∥∥∥∥∥∥2

L2(Ω)

≥ 2µ
√
|V |

∥∥∥∥∥ 1
2nr

(
∇W + (∇W)T

)∥∥∥∥∥2

L2(Ω)

=
µ
√
|V |

2n2
r

∥∥∥∇W + (∇W)T
∥∥∥2

L2(Ω)

=
µ
√
|V |

2n2
r

∥∥∥∥∥∇ (w
εl

)
+

(
∇

(w
εl

))T∥∥∥∥∥2

L2(Ω)
,

where D =
1
2

(∇W + (∇W)T ) is symmetric with the indicial notation Di j =
1
2

(
∂Wi

∂x j
+
∂W j

∂xi

)
. The

variable Di j is considered to be a real number for all i, j = 1, 2, and |V | is the volume of the domain Ω.
For the first inequality, we use the fact that the porosity εl ≤ 1. For the second and third inequalities,
we apply Hölder’s inequality and the triangle inequality, respectively. For the fourth inequality, we
apply the spectral norm of a matrix E [29], i.e.,

∥E∥L2(Ω) = σmax (E) ≤

 m∑
i=1

s∑
j=1

∣∣∣ai j

∣∣∣2
1
2

, (4.7)
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where σmax (E) represents the largest singular value of a matrix E, and s and m are the dimensional
numbers. For the last inequality, we use the Archimedean property [30]. Therefore,∫

Ω

µεl∇W : ∇W +

∫
Ω

µεl (∇W)T : ∇W ≥
µ
√
|V |

2n2
r

∥∥∥∇W + (∇W)T
∥∥∥2

L2(Ω)
. (4.8)

Hence, the proof is complete.

Next, we show the coercivity of the bilinear functional a(·, ·).

Theorem 4.3. The bilinear functional a (·, ·) is coercive, such that

a (w,w) ≥ Qc∥w∥2H1(Ω), ∀w ∈ H1(Ω), (4.9)

where Qc = min
{
µQk,

µ
√
|V |

n2
r K

(N − 1)2
}

and Qk is a positive number.

Proof. Let w ∈ H1(Ω). Then,

a (w,w) =
∫
Ω

µ
(
k−1 · w

)
· w +

∫
Ω

µεl∇

(w
εl

)
: ∇

(w
εl

)
+

∫
Ω

µεl
(
∇

(w
εl

) )T
: ∇

(w
εl

)
=

∫
Ω

µ
(
k−1 · w

)
· w +

∫
Ω

µεl∇W : ∇W +

∫
Ω

µεl (∇W)T : ∇W

≥ µQk ∥w∥2L2(Ω) +
µ
√
|V |

2n2
r

∥∥∥∇W + (∇W)T
∥∥∥2

L2(Ω)

= µQk ∥w∥2L2(Ω) +
µ
√
|V |

2n2
r

( ∥∥∥∇W + (∇W)T
∥∥∥2

L2(Ω)
+

∥∥∥∇W − (∇W)T
∥∥∥2

L2(Ω)

−
∥∥∥∇W − (∇W)T

∥∥∥2

L2(Ω)

)
≥ µQk ∥w∥2L2(Ω) +

µ
√
|V |

2n2
r

[
2 ∥∇W∥2L2(Ω) + 2

∥∥∥(∇W)T
∥∥∥2

L2(Ω)
−

(
∥∇W∥2L2(Ω) +

∥∥∥(∇W)T
∥∥∥2

L2(Ω)

) ]
= µQk ∥w∥2L2(Ω) +

µ
√
|V |

2n2
r

(
∥∇W∥2L2(Ω) +

∥∥∥(∇W)T
∥∥∥2

L2(Ω)

)
≥ µQk ∥w∥2L2(Ω) +

µ
√
|V |

n2
r
∥∇W∥2L2(Ω)

= µQk ∥w∥2L2(Ω) +
µ
√
|V |

n2
r
|W|2H1(Ω)

= µQk ∥w∥2L2(Ω) +
µ
√
|V |

n2
r

∣∣∣∣∣wεl

∣∣∣∣∣2
H1(Ω)

≥ µQk ∥w∥2L2(Ω) +
µ
√
|V |

n2
r K

∥∥∥∥∥w
εl

∥∥∥∥∥2

H1(Ω)

≥ µQk ∥w∥2L2(Ω) +
µ
√
|V |

n2
r K
∥(N − 1) w∥2H1(Ω)

= µQk ∥w∥2L2(Ω) +
µ
√
|V |

n2
r K

(N − 1)2
∥w∥2H1(Ω)
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≥ min
{
µQk,

µ
√
|V |

n2
r K

(N − 1)2
} (
∥w∥2L2(Ω) + ∥w∥

2
H1(Ω)

)
≥ min

{
µQk,

µ
√
|V |

n2
r K

(N − 1)2
}
∥w∥2H1(Ω)

= Qc ∥w∥2H1(Ω) ,

where Qc = min
{
µQk,

µ
√
|V |

n2
r K

(N − 1)2
}
> 0. The property [14]

∫
Ω

(
k−1 · w

)
· w ≥ Qk ∥w∥2L2(Ω) where Qk > 0 (4.10)

and inequality (4.8) are used in the first inequality. Parallelogram law [31] ∀u,w ∈ U, ∥u+w∥2 + ∥u−
w∥2 = 2

(
∥u∥2 + ∥w∥2

)
and the fact that ∥u − w∥2 ≤ ∥u∥2 + ∥w∥2 are applied to the second inequality.

Poincaré inequality [31] ∃K > 0 such that |w|Hm(Ω) ≥
1
K
∥w∥Hm(Ω) , ∀w ∈ Hm

0 (Ω) where m ≥ 0, is
applied to the fourth inequality. For the fifth inequality, we apply Archimedean property [30] ∀r ∈
R, ∃N ∈ N such that N − 1 ≤ r ≤ N and use the fact that εl is a positive real number. Hence, the proof
of the coercivity of the bilinear form a (w,w) is complete.

5. The existence and uniqueness of the generalized Stokes-Brinkman model

In this section, we provide the proof of the existence and uniqueness of the generalized Stokes-
Brinkman equations. Before illustrating the proof of the well-posedness, we present the following
proposition.

Proposition 5.1. Let f ∈ L2(Ω) and s ∈ H1/2(∂Ω). Then, there exist us ∈ H1(Ω) and a unique u0 ∈ V⊥

such that

∥us + u0∥H1(Ω) ≤
1
β
∥ f ∥L2(Ω) +

(
1 +
√

n
β

)
Qs∥s∥H1/2(∂Ω), (5.1)

where n is the dimensional number, and β and Qs are positive constants.

Proof. Let f ∈ L2(Ω), and s ∈ H1/2(∂Ω). Therefore, there exist us ∈ H1(Ω), a unique u0 ∈ V⊥ ⊂ H1
0(Ω)

and Qs > 0 such that us|∂Ω = s, f − ∇ · us ∈ L2
0(Ω), ∇ · u0 = f − ∇ · us,

∥us∥H1(Ω) ≤ Qs∥s∥H1/2(∂Ω), (5.2)

and there exists β > 0 such that

∥u0∥H1(Ω) ≤ β
−1∥ f − ∇ · us∥L2(Ω). (5.3)

See Lemma A.4 for the details. Next, we show that us + u0 is bounded, as follows.

∥us + u0∥H1(Ω) ≤ ∥us∥H1(Ω) + ∥u0∥H1(Ω)

≤ Qs∥s∥H1/2(∂Ω) +
1
β
∥ f − ∇ · us∥L2(Ω)
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≤ Qs∥s∥H1/2(∂Ω) +
1
β
∥ f ∥L2(Ω) +

1
β
∥∇ · us∥L2(Ω)

≤ Qs∥s∥H1/2(∂Ω) +
1
β
∥ f ∥L2(Ω) +

√
n
β
∥us∥H1(Ω)

≤
1
β
∥ f ∥L2(Ω) +

(
1 +
√

n
β

)
Qs∥s∥H1/2(∂Ω),

where the fact that [16] ∥∇ · ϕ∥L2(Ω) ≤
√

n|ϕ|H1Ω, where n is the dimensional number, is applied to the
fourth inequality.

Next, we show the theorem of the well-posedness of the generalized Stokes-Brinkman equations.

Theorem 5.2. Let f ∈ H−1(Ω), f ∈ L2(Ω) and s ∈ H1/2(∂Ω). There exist a unique u ∈ H1
s (Ω) and

p ∈ L2
0(Ω) satisfying Problem 1. Moreover,

∥u∥H1(Ω) ≤
1

Qc
∥f∥H−1(Ω) +

(
1 +

Qa

Qc

)
∥û∥H1(Ω), (5.4)

∥p∥L2(Ω) ≤
1
β
∥f∥H−1(Ω) +

1
β

Qa∥u∥H1(Ω), (5.5)

where û = us + u0, β > 0, as presented in Proposition 5.1, and Qa and Qc are defined in Theorem 4.1
and Theorem 4.3, respectively.

Proof. Let f ∈ H−1(Ω), f ∈ L2(Ω) and s ∈ H1/2(∂Ω). From Proposition 5.1, we have us ∈ H1(Ω) and
u0 ∈ V⊥ ⊂ H1

0(Ω) such that us|∂Ω = s and ∇·u0 = f −∇·us. Let û = us+u0 and L (w) = c1(w)−a (û,w)
for any w ∈ V . By adopting the linearity and continuity of c1 (·) and bilinearity and continuity of a (·, ·)
along with the coercivity of a (·, ·), we have that L (·) is a linear and continuous function. Then, from the
Lax-Milgram theorem, there exists a unique ũ ∈ V ⊂ H1

0(Ω) such that a (ũ,w) = L (w). Let u = ũ + û.
Then,

u|∂Ω = ũ|∂Ω + us|∂Ω + u0|∂Ω

= 0 + s + 0
= s.

Therefore, u ∈ H1
s (Ω). Next, we show the uniqueness of u. Since a (ũ,w) = L (w) = c1 (w) − a (û,w),

by using the bilinear property of a(·, ·), we have

a (u,w) = a (ũ + û,w) = c1 (w) . (5.6)

Suppose that u1 and u2 are two such solutions satisfying

a (u1,w) = c1 (w) and a (u2,w) = c1 (w) . (5.7)

Then, substituting w = u1 − u2 in Eq (5.7) and subtracting one equation from another equation, we get

0 = a (u1 − u2,u1 − u2) ≥ Qc∥u1 − u2∥
2
H1(Ω) ≥ 0,
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where we apply the coercivity of a (·, ·), Theorem 4.3, at the first inequality. Since the constant Qc > 0,
it implies that ∥u1 − u2∥H1(Ω) = 0. Then, u1 = u2. Therefore, u is unique, satisfying a (u,w) = c1 (w),
for all w ∈ V .

Next, we show that u = ũ + us + u0 satisfies the continuity equation. Since ũ ∈ V , ∇ · ũ = 0. Then,

∇ · u = ∇ · (ũ + us + u0)

= ∇ · ũ + ∇ · us + ∇ · u0

= 0 + ∇ · us + f − ∇ · us

= f ,

where ∇ · u0 = f − ∇ · us is applied at the third equality. Hence, u satisfies the continuity equation.
We prove the existence and uniqueness of p ∈ L2

0(Ω). Define L1 such that ⟨L1,w⟩ = ⟨f,w⟩ = c1(w).
Then, from Eq (5.6), we have

a (ũ,w) + a (û,w) − ⟨L1,w⟩ = 0, ∀w ∈ V. (5.8)

By the definition of the linear operator, seen in Appendix A, we can rewrite Eq (5.8) in operator notation
as Aũ+ Aû− L1 = 0. Then, Aũ+ Aû− L1 ∈ V0, where V0 is the polar set of V; see Appendix A for the
definition. Given that B′ : L2

0(Ω) → V0 is an isomorphism grad operator, from Theorem A.2 and the
property of isomorphism, there exists a unique p ∈ L2

0(Ω) such that B′p = Aũ + Aû − L1 = Au − L1.
Then,

Au + B′p = L1 = f.

Therefore, there exist a unique u ∈ H1
s (Ω) and p ∈ L2

0(Ω) satisfying Problems 1 and 2.
Next, we show the variables u and p are bounded. We first illustrate that ũ ia bounded. Employing

Eq (4.9), we have

Qc∥ũ∥2H1(Ω) ≤ a (ũ, ũ)

= c1 (ũ) − a (û, ũ)

≤ ∥f∥H−1(Ω)∥ũ∥H1(Ω) + Qa∥û∥H1(Ω)∥ũ∥H1(Ω), (5.9)

where the second inequality is obtained from Theorem 4.1. Dividing both sides of Eq (5.9) by ∥ũ∥H1(Ω)

and Qc, we get

∥ũ∥H1(Ω) ≤
1

Qc
∥f∥H−1(Ω) +

Qa

Qc
∥û∥H1(Ω). (5.10)

Thus,

∥u∥H1(Ω) = ∥ũ + û∥H1(Ω)

≤ ∥ũ∥H1(Ω) + ∥û∥H1(Ω)

≤
1

Qc
∥f∥H−1(Ω) +

(
1 +

Qa

Qc

)
∥û∥H1(Ω).

To show that p is bounded, we first employ Eq (3.5):

b (w, p) = c1 (w) − a (u,w)
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≤ ∥f∥H−1(Ω)∥w∥H1(Ω) + Qa∥u∥H1(Ω)∥w∥H1(Ω), (5.11)

where inequalities (4.1) and (4.4) are applied to the inequality. Since

sup
w∈H1

0 (Ω)

b (w, p)
∥w∥H1(Ω)∥p∥L2(Ω)

is independent of p, from Eq (A.11),

∥p∥−1
L2(Ω) sup

w∈H1
0 (Ω)

b (w, p)
∥w∥H1(Ω)

= sup
w∈H1

0 (Ω)

b (w, p)
∥w∥H1(Ω)∥p∥L2(Ω)

≥ inf
p∈L2

0(Ω)
sup

w∈H1
0 (Ω)

b (w, p)
∥w∥H1(Ω)∥p∥L2(Ω)

≥ β > 0. (5.12)

Rearranging Eq (5.12), we obtain that

∥p∥L2(Ω) ≤
1
β

sup
w∈H1

0 (Ω)

b (w, p)
∥w∥H1(Ω)

=
1
β

sup
w∈H1

0 (Ω)

c1 (w) − a (u,w)
∥w∥H1(Ω)

≤
1
β

sup
w∈H1

0 (Ω)

(
∥f∥H−1(Ω)∥w∥H1(Ω) + Qa∥u∥H1(Ω)∥w∥H1(Ω)

∥w∥H1(Ω)

)
=

1
β

sup
w∈H1

0 (Ω)

(
∥f∥H−1(Ω) + Qa∥u∥H1(Ω)

)
.

Since ∥f∥H−1(Ω) + Qa∥u∥H1(Ω) is independent of w ∈ H1
0(Ω),

sup
w∈H1

0 (Ω)

(
∥f∥H−1(Ω) + Qa∥u∥H1(Ω)

)
= ∥f∥H−1(Ω) + Qa∥u∥H1(Ω).

Therefore,

∥p∥L2(Ω) ≤
1
β

(
∥f∥H−1(Ω) + Qa∥u∥H1(Ω)

)
.

Hence, the proof of existence and uniqueness of the generalized Stokes-Brinkman equations is
complete.

6. Conclusions

In this research, we focus on the fluid movement in a porous medium induced by self-propelled solid
phases and the adjacent free-fluid region. In the porous medium, we employ a macroscale equation
derived from an upscaling technique called Hybrid Mixture Theory (HMT) because we consider a
bundle of solid phases. Then, we apply a non-dimensionalization scheme to the macroscale equation to
obtain the Brinkman equation. Our model is more general than the Brinkman equation in the literature
because the porosity in our equation is considered as a function since the beginning of the derivation.
Then, our model in the porous medium conserves the reality of the problem. In the free-fluid region, we
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start with the generalized Navier-Stokes equation and use the non-dimensionalization method to derive
the generalized Stokes equation. Our Brinkman and generalized Stokes equations can be matched at
the free-fluid/porous-medium interface. We name them as the generalized Stokes-Brinkman equations.
We also show that the discretized form of the mathematical model is a well-posed system with the
use of a mixed finite element method. The weak formulation of the generalized Stokes-Brinkman
equations is rewritten in linear and bilinear functional structures. We show that the bilinear form a (·, ·)
is continuous and coercive. Then, we present the well-posedness of the generalized Stokes-Brinkman
equations in the last theorem. The system of equations can be useful for more complexity of a real
problem in a macroscopic scale than a typical Stokes-Brinkman equation and can be applied to the fluid
flow through the regions where fluid is driven by the moving solid phases such as hairlike structures
and animal hair. The numerical research will be presented in the next study.
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Appendix

A. Fundamental definition and theorems

In this Appendix, we provide notations, definitions, theorems and lemmas used in the proof of
the well-posedness of the generalized Stokes-Brinkman equations. They are all presented and proved
in [14, 32–34].
Notations and spaces

In this section, we introduce some notations and spaces used in the proof of the well-posedness of
the governing equations [14]. Define

L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

qdΩ = 0}, (A.1)

H1
0(Ω) = {w ∈ H1(Ω) : w|∂Ω = 0}, (A.2)

H1
s (Ω) = {w ∈ H1(Ω) : w|∂Ω = s}, (A.3)
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H−1(Ω) = (H1
0(Ω))

′

, the dual of H1
0(Ω), (A.4)

V = {w ∈ H1(Ω) : w|∂Ω = 0 and ∇ · w = 0}, (A.5)

V⊥ = {w⊥ ∈ H1
0(Ω) :

∫
Ω

w⊥ · w = 0 ∀w ∈ V}, (A.6)

V0 = {w′ ∈ H−1(Ω) : ⟨w′,w⟩H−1(Ω)×H1
0 (Ω) = 0 ∀w ∈ V}, (A.7)

where ⟨·, ·⟩H−1(Ω)×H1
0 (Ω) denotes the duality pairing between H−1(Ω) and H1

0(Ω). Notice that for n
dimension, w ∈ H1(Ω)n and ∇w ∈ H1(Ω)n×n. In any case, for the sake of simplicity, we write
w ∈ H1(Ω), and the implication comes from the context of the surrounding sentences.

Next, we provide the fundamental definition, theorems and lemma used in the proof of the existence
and uniqueness of Problems 1 and 2 [12, 14, 31–35].

Definition A.1. Let u,w ∈ H1(Ω) and q ∈ L2
0(Ω). Define linear operators A : H1

0(Ω) → H−1(Ω) and
B : H1

0(Ω)→ L2
0(Ω) by

⟨Au,w⟩H1
0 (Ω)×H−1(Ω) := a (u,w) , ∀u,w ∈ H1

0(Ω), (A.8)

⟨Bu, q⟩H1
0 (Ω)×L2

0(Ω) := b (u, q) , ∀u ∈ H1
0(Ω),∀q ∈ L2

0(Ω). (A.9)

Let B′ ∈ L
(
L2

0(Ω); H−1(Ω)
)

be the dual operator of B. Then,

⟨B′q,u⟩ = ⟨q, Bu⟩ := b (u, q) , ∀u ∈ H1
0(Ω),∀q ∈ L2

0(Ω), (A.10)

where the dual spaces of L2
0(Ω) =

(
L2

0(Ω)
)′

and the dual spaces of H−1(Ω) =
(
H1

0(Ω)
)′

.

Theorem A.2. Let Ω be connected. Then,

1. the operator grad is an isomorphism of L2
0(Ω) onto V0,

2. the operator div is an isomorphism of V⊥ onto L2
0(Ω).

Therefore, there exists β > 0 such that

inf
q∈L2

0(Ω)
sup

w∈H1
0 (Ω)

b (w, q)
∥w∥H1(Ω)∥q∥L2(Ω)

≥ β > 0 (A.11)

and for any q ∈ L2
0(Ω), there exists a unique u ∈ V⊥ ⊂ H1

0(Ω) satisfying

∥u∥H1(Ω) ≤ β
−1∥q∥L2(Ω). (A.12)

Theorem A.3. There exist positive constants Qt and Qs such that, for each v ∈ H1(Ω), its trace on ∂Ω
belongs to H1/2(∂Ω), and

∥v∥H1/2(∂Ω) ≤ Qt∥v∥H1(Ω). (A.13)

Conversely, for each given function s ∈ H1/2(∂Ω), there exists us ∈ H1(Ω) such that its trace on ∂Ω
coincides with s and

∥us∥H1(Ω) ≤ Qs∥s∥H1/2(∂Ω). (A.14)
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Lemma A.4. Suppose that f ∈ H−1(Ω), f ∈ L2(Ω) and s ∈ H1/2(∂Ω). Then, there exist us ∈ H1(Ω),
Qs > 0 and β > 0 such that

us|∂Ω = s and ∥us∥H1(Ω) ≤ Qs∥s∥H1/2(∂Ω), (A.15)

∃!u0 ∈ V⊥ ⊂ H1
0(Ω) satisfying ∇ · u0 = f − ∇ · us, (A.16)

and
∥u0∥H1(Ω) ≤ β

−1∥ f − ∇ · us∥L2(Ω). (A.17)
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