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1. Introduction

Let ϕ : Mn
r → E

n+p
s be an isometric immersion of a submanifold Mn

r into the pseudo-Euclidean
space En+p

s . Denoted by ∆ and H⃗ the Laplace-Beltrami operator and the mean curvature vector field of
Mn

r , respectively. It is well known that the position vector of Mn
r satisfies

∆ϕ = −nH⃗.

A submanifold Mn
r is called biharmonic if and only if

∆H⃗ = 0.

It is easy to see that minimal submanifolds (i.e., H⃗ = 0) are automatically biharmonic. Naturally,
we consider the problem to determine if there exist biharmonic submanifolds of En+p

s , other than the
minimal ones. Concerning this problem, B. Y. Chen in 1991 proposed the following

Chen’s conjecture: any biharmonic submanifold in a Euclidean space En+p is minimal.
The conjecture was proved to be true in the low dimension. We refer to [1, 2] for n = 3, [3, 4] for

n = 4 and [5] for n = 5. For higher dimensional cases, the conjecture is still true under additional
geometric conditions, and we refer the reader to [6–8] for a review, [9] with references therein for
recent progress. We need to point out that Chen’s conjecture is still open widely.

When the ambient space is pseudo-Euclidean, Chen’s conjecture is not necessarily true. B. Y. Chen
and S. Ishikawa gave some nonminimal biharmonic space-like surfaces in E4

s(s = 1, 2) (cf. [10]), and
nonminimal biharmonic pseudo-Riemannian surfaces in E4

s(s = 1, 2, 3) (cf. [1]).
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However, the minimality of biharmonic hypersurfaces in pseudo-Euclidean spaces is still one of the
central topics in this area, and many important signs of progress have been made during the last four
decades. For example, B. Y. Chen and S. IshiKawa (cf. [1, 10]) proved that any biharmonic surface
in E3

s (s = 1, 2) is minimal. Later, F. Defever, G. Kaimakamis, V. Papantoniou in [11] proved that
the hypersurface M3

r with diagonalizable shape operator in E4
s is minimal. Y. Fu showed in [12] that

such hypersurfaces M4
r in E5

s are minimal. More generally, it is shown in [13] that hypersurfaces Mn
r

with diagonalizable shape operator and at most three distinct principal curvatures in En+1
s are minimal.

The same conclusion holds for the hypersurfaces in En+1
s provided that the number of distinct principal

curvatures ≤ 6. We refer to [14] for details.
In this paper, we will continue to focus on the minimality of biharmonic hypersurfaces in En+1

s with
no restriction for the number of distinct principal curvatures and prove the following.

Main theorem Let Mn
r be a biharmonic hypersurface with a diagonalizable shape operator in a

pseudo-Euclidean space. If one among the Ricci operator, the curvature operator, the Jacobi operator
or shape operator of Mn

r is recurrent, then Mn
r must be minimal.

2. Preliminaries

Let En+1
s , 0 < s < n + 1, be a pseudo-Euclidean space with metric given by

g = −
s∑

i=1

dy2
i +

n+1∑
j=s+1

dy2
j ,

where (y1, y2, . . . , yn+1) is the natural coordinate system of En+1
s .

Let Mn
r be an n-dimensional hypersurface in En+1

s . Denote by ∇ and ∇ the Levi-Civita connections
of Mn

r and En+1
s , respectively. Let ξ be a local unit normal vector field to Mn

r in En+1
s , and we denote

ε = ⟨ξ, ξ⟩ = ±1, then the Gauss and Weingarten formulas are given, respectively, by (cf. [15])

∇XY = ∇XY + h(X,Y)

and
∇Xξ = −Aξ(X),

where h denotes the second fundamental form, and Aξ denotes the shape operator with respect to ξ. As
it is well known, h and Aξ are related by

⟨h(X,Y), ξ⟩ = ⟨Aξ(X),Y⟩. (2.1)

The mean curvature vector is given by H⃗ = Hξ, with H = ⟨ξ,ξ⟩n traceAξ the mean curvature of Mn
r in

En+1
s .

Then the Guass and Codazzi equations are given by

R(X,Y)Z = ⟨A(X),Z⟩A(Y) − ⟨A(Y),Z⟩A(X),
(∇XA)Y = (∇Y A)X,

where
R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z,
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(∇XA)Y = (∇X)A(Y) − A(∇XY). (2.2)

Let T be a tensor on the pseudo-Riemannian manifold Mn
r . Then T is said to be recurrent if there

exists a certain 1-form η on Mn
r satisfying ∇XT = η(X)T for any X ∈ T Mn

r . Thus, the recurrent
(1,1)-tensor can be considered as an extension of the parallel one.

A hypersurface is said to be biharmonic if

∆H⃗ = 0.

The condition is equivalent to

∆H⃗ = 2AgradH + nεHgradH + (∆⊥H + εHtraceA2)ξ = 0.

By comparing the vertical and horizontal parts, the above equation is equivalent to the following
two equations: ∆⊥H + εHtraceA2 = 0,

2AgradH + nεHgradH = 0,
(2.3)

where A and ∆⊥ denote by the Weingarten operator and the Laplace operator in the normal bundle of
Mn

r in En+1
s , respectively.

Finally, we give a useful lemma to complete our main theorem.
Lemma 2.1. Let Mn

r be a biharmonic hypersurface with a diagonalizable shape operator in En+1
s .

Assume that the mean curvature H is not constant, then

∇e1ei =

n∑
k=1

εkω
k
1iek = 0, i = 1, 2, . . . , n,

∇eie1 = εiω
1
iiei, i , 1,

(2.4)

where {ei}
n
i=1 is a local orthonormal frame with εi = ⟨ei, ei⟩ = ±1, and ωk

i j, i, j, k = 1, 2, . . . , n, are
called connection forms.

Proof. Since H is not a constant, there exists a point p ∈ U, where U is an open subset of Mn
r such

that gradH , 0 on U. We know from (2.3) that gradH is a principal direction corresponding to the
principal curvature −nε

2 H. Without loss of generality, we denote by

λ1 =
−nε

2
H. (2.5)

We choose a local orthonormal frame field {e1, e2, . . . , en} such that e1 is parallel to gradH, where
gradH =

∑n
i=1 εiei(H)ei, and A takes the following form

A(ei) = λiei, (2.6)

which means that ei is a principal direction of A with the principal curvature λi, i = 1, 2, . . . , n. Then

e1(H) , 0, ei(H) = 0, i = 2, 3, . . . , n. (2.7)

Meanwhile, it follows from (2.1) that, for i, j = 1, 2, . . . , n,

h(ei, ei) = εεiλiξ,

h(ei, e j) = 0, ∀i , j.
(2.8)
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We write

∇eie j =

n∑
k=1

εkω
k
i jek. (2.9)

Then, using the Codazzi equation (∇ei A)ek = (∇ek A)ei, we obtain

ei(λk)ek + (λk − λ j)ε jω
j
ike j = ek(λi)ei + (λi − λ j)ε jω

j
kie j,

which implies, for distinct i, j, k = 1, 2, . . . , n,

ei(λ j) = ε j(λi − λ j)ω
j
ji. (2.10)

ω
j
ik(λk − λ j) = ω

j
ki(λi − λ j). (2.11)

Note that (2.5) and (2.7) lead to

e1(λ1) , 0, ei(λ1) = 0, i = 2, 3, . . . , n.

Then it is easy to compute that

0 = [ei, e j](λ1) = ε1(ω1
i j − ω

1
ji)e1(λ1), 2 ≤ i , j ≤ n,

which means

ω1
i j = ω

1
ji, 2 ≤ i , j ≤ n. (2.12)

Taking j = 1 and 2 ≤ i, k ≤ n, (2.11) becomes

ω1
ik(λk − λ1) = ω1

ki(λi − λ1),

together with (2.12), we see

ω1
i j = ω

1
ji = 0, 2 ≤ i, j ≤ n, i , j. (2.13)

Applying compatibility condition to calculate ∇ek⟨ei, e j⟩ = 0, we conclude

ωi
ki = 0, ωi

k j + ω
j
ki = 0, i , j, i, j, k = 1, 2, . . . , n. (2.14)

It follows from the first equation in (2.14) that ω1
k1 = 0. Also, it follows from (2.10) and (2.14) that

ω1
1i = 0 and ωi

11 = 0, which together with (2.13), we get

ω1
i j = ω

1
ji = 0, 1 ≤ i , j ≤ n. (2.15)

Putting this all together, we obtain the claim.
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3. Proof of main theorem

Proof of main theorem The idea of the proof is the following. First, we prove that the mean
curvature H of Mn

r is a constant by using a proof by contradiction. Then, combining with (2.3), we
show that H = 0, i.e., Mn

r is minimal.
Now we start to prove that H is a constant.
Suppose on the contrary that gradH , 0. Recalled, from (2.3) that gradH is a principal direction

corresponding to the principal curvature −nε
2 H. We choose a local orthonormal frame field

{e1, e2, . . . , en}, such that e1 is parallel to gradH, and (2.6) holds.
Case 1: When the Ricci operator is recurrent.
According to [15], we know

Ric(Y,Z) = n⟨H⃗, h(Y,Z)⟩ −
n∑

i=1

εi⟨h(Y, ei), h(Z, ei)⟩,

and so

Ric(e j, e j) = n⟨Hξ, h(e j, e j)⟩ −
n∑

i=1

εi⟨h(e j, ei), h(e j, ei)⟩. (3.1)

Thus, a short calculation together with (2.6) and (2.8) shows

Ric(e j) = Ric(e j, e j) = α je j,

where
α j = nHε jλ j − εε jλ

2
j , j = 1, 2, . . . , n. (3.2)

Because the Ricci operator is recurrent, i.e.,

(∇XRic)Y = η(X)Ric(Y),

for any X,Y ∈ T Mn
r , we have from (2.9) that

∇eiRic(e j) = η(ei)α je j +

n∑
k=1

εkω
k
i jαkek, i, j = 1, 2, . . . , n. (3.3)

Using (2.9) again, it follows from (3.1) that

∇eiRic(e j) = ei(α j)e j + α j

n∑
k=1

εkω
k
i jek, i, j = 1, 2, . . . , n. (3.4)

When α j = 0, for some j = 1, 2, . . . , n, then, (3.3) and (3.4) show

n∑
k=1

εkω
k
i jαkek = 0,

which tells us that αk = 0, for k = 2, 3, . . . , n. Then it follows from (3.2) that λk = 0 or λk = εnH.
Thus, Mn

r has three distinct principal curvatures 0, εnH and −nε
2 H.
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When α j , 0, for all j = 1, 2, . . . , n, then (2.15), (3.3) and (3.4) give, for fix indexes i, j,

n∑
k=2,k, j

εkω
k
i j(αk − α j)ek + (η(ei)α j − ei(α j))e j = 0, (3.5)

which implies η(ei)α j = ei(α j), i , j,

αk = α j, k , j.
(3.6)

It follows the first equation of (3.6) that

η(ei) = ei ln |α j|, j = 1, 2, . . . , n, j , i.

Taking j = 1 in the above equation, we have

η(ei) = ei ln |α1|.

The above facts show that ei ln |α j| = ei ln |α1|, which implies that ln |α j

α1
| = constant. Further, we

get that α j = cα1 (c is a constant), for any j , 1. Thus, we get that Mn
r has at most three principal

curvatures.
In conclusion, Mn

r has at most three distinct principal curvatures. We know from [13] or [14] that
H is a constant, then gradH = 0. It is a contradiction.

Case 2: When the curvature operator is recurrent.
Since the curvature operator R is recurrent, there exists a 1-form η such that

(∇XR(Y,Z))W = η(X)R(Y,Z)W,

for any X,Y,Z,W ∈ T Mn
r . Note that R(ei, e j)ek = 0, for distinct i, j, k, and so

(∇eiR(e j, ek))el = η(ei)R(e j, ek)el = 0.

Meanwhile, according to the Guass equation, we have from (2.6) and (2.9) that

0 = (∇eiR(e j, ek))el = ei(R(e j, ek)el) − R(e j, ek)∇eiel

= ⟨A(ek),∇eiel⟩A(e j) − ⟨A(e j),∇eiel⟩A(ek)

= λkλ jω
k
ile j − λ jλkω

j
ilek.

Since the linear independent of {ei}
n
i=1, it follows from (2.15) that, for distinct i, j, k, l = 2, 3, . . . , n,

λkλ jω
k
il = 0,

which means that ωk
il = 0 (otherwise, Mn

r has two distinct principal curvatures), then it follows from
(2.11) that

(λl − λk)ωk
il = (λi − λk)ωk

li = 0.

Then λi = λk or ωk
li = 0, for i , k. In particular, if ωk

li = 0, then we have from (2.11) that λl = λk.
Thus, Mn

r has at most two distinct principal curvatures. The same situation happens as above, and it
should be modified.
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Case 3: When the Jacobi operator is recurrent.
Because the Jacobi operator is recurrent, i.e.,

(∇YRX)Z = η(Y)RX(Z),

where RX(Z) = R(Z, X)X, for any X,Y,Z ∈ T Mn
r . Then using the Guass equation, and combining with

(2.6) and (2.9), we get

∇eiRe j(ek) =η(ei)Re j(ek) + Re j(∇eiek)
=η(ei)R(ek, e j)e j + R(∇eiek, e j)e j

=η(ei)(⟨A(ek), e j⟩A(e j) − ⟨A(e j), e j⟩A(ek))
+ (⟨A(∇eiek), e j⟩A(e j) − ⟨A(e j), e j⟩A(∇eiek))

= − η(ei)ε jλ jλkek − ε jλ j

n∑
l=1, l, j

εlω
l
ikλlel.

Similarly, it follows that

∇eiRe j(ek) =∇eiR(ek, e j)e j

=ei(R(ek, e j)e j) − R(ek, e j)∇eie j

=ei(⟨A(ek), e j⟩A(e j) − ⟨A(e j), e j⟩A(ek))
− (⟨A(ek),∇eie j⟩A(e j) − ⟨A(e j),∇eie j⟩A(ek))

= − ei(ε jλ jλk)ek − ε jλ jλk

n∑
l=1

εlω
l
ikel.

By comparing the above two equations, we obtain

ε jλ j

n∑
l=1, l, j

εlω
l
ikλlel = ε jλ jλk

n∑
l=1

εlω
l
ikel.

When λ j = 0, then it is obvious to see that Mn
r has two distinct principal curvatures.

When λ j , 0, then
n∑

l=2

(λl − λk)εlω
l
ikel − ε jλ jω

j
ike j = 0. (3.7)

• If λl = λk, then it follows from (2.11) that

(λi − λ j)ω
j
ki = 0,

which means λi = λ j. So Mn
r has two distinct principal curvatures.

• If λl , λk, we will make the inner product of the two sides of (3.7) with e j and

(λ j − λk)ω
j
ik − λ jω

j
ik = 0.

Then, we have
λkω

j
ik = 0.
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Since λk , 0, then it follows that ω j
ik = 0. This together with (2.11), we have

(λi − λ j)ω
j
ki = 0.

Hence λi = λ j, i , j. To sum up, we know that Mn
r has at most two distinct principal curvatures.

Applying the same arguments as in Case 2, we obtain that H is a constant.
Case 4: When the shape operator is recurrent.
Since the shape operator is recurrent, i.e., (∇XA)Y = η(X)A(Y), we have from (2.6) that

⟨(∇ei A)e j, ek⟩ = η(ei)⟨A(e j), ek⟩ = 0.

Then, we have from (2.2) that

0 = ⟨(∇ei A)e j, ek⟩ = ⟨(∇ei)A(e j), ek⟩ − ⟨A(∇eie j), ek⟩

= (λ j − λk)ωk
i j, 2 ≤ i, j, k ≤ n,

which shows that λ j − λk = 0 or ωk
i j = 0.

We claim that λ j = λk.
Suppose on contrary that λ j , λk, then ωk

i j = 0. Together with (2.11), it reduces to

ωk
i j(λ j − λk) = ωk

ji(λi − λk) = 0,

which means that λi = λk, it is impossible. So, Mn
r has two distinct principal curvatures. By making

use of the similar methods in Case 3, we know that H is a constant.
Summarizing the above four cases, we obtain that H is a constant.
Next, we prove that Mn

r is minimal.
Since H is a constant, it follows from (2.3) and (2.6) that

H
n∑

i=1

λ2
i = 0,

which implies that H = 0 or λi = 0, i = 1, 2, . . . , n. Note that H = εn
∑n

i=1 λi, then, Mn
r must be minimal.

We complete the proof of main theorem.
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