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Abstract: This paper presents a two-stage method combining data envelopment analysis (DEA) and a 
Tobit model to analyze the comprehensive operating efficiency of 28 airports in China in 2016. At the 
first stage, the DEA-BCC (Banker-Charnes-Cooper) model was employed to obtain the comprehensive 
operating efficiency of the combination of flight departure punctuality, non-cancellations, landing 
bridge rates from the perspective of airport infrastructure, surrounding airspace, route layouts, flight 
volume and weather. At the second stage, a Tobit model was used to analyze the influence of nine input 
variables from four aspects on obtained comprehensive operating efficiency, ultimately providing a 
clear and straightforward basis for formulating and testing policies. The comprehensive operating 
efficiency with this combination was further compared with each of the three efficiencies respectively. 
The important findings included the following: (1) The comprehensive operation efficiencies of most 
airports were greater than the individual efficiency; (2) These four types of operation efficiencies for 
most airports did not achieved DEA validity (100% efficiency), except for six airports (i.e., Haikou, 
Dalian, Jinan, Fuzhou, Nanning and Lanzhou); (3) These factors affecting each of the four types of 
operation efficiencies were different in that the number of terminals, duration of impact and average 
daily inbound and outbound flights had a negative impact on airport operational efficiency, while the 
average number of overnight aircraft per day and peak hour sorties had positive effects. 
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1. Introduction 

Airport operating efficiency essentially reflects the airport’s ability to schedule flights when 
operating normally and facing unforeseen conditions. It can be measured by using the data 
envelopment analysis (DEA) approach to calculate the efficiency frontier based on the outputs, which 
consider the available inputs; the goal is to answer the two main questions: (i) Are airports managing 
the inputs used to increase airport operating efficiency, and (ii) which are the factors that promote 
airport operating efficiency? Hence, it is very important for policymakers and researchers to find the 
relationship between inputs, outputs and evaluation results to develop the best promotion strategy [1–3]. 

There are many input factors influencing the DEA efficiency of airport operation. In general, they 
could be divided into four categories, including (1) airport infrastructure, (2) airport service conditions, 
(3) severe weather conditions and (4) flight operation conditions. Although some inputs (i.e., weather 
conditions) are difficult to adjust in quantity, they are the main reasons for the differences in the 
operating efficiency of different airports, and they help each airport to accurately control its adjustable 
inputs to achieve an effective DEA (100% efficiency). To the best of the authors' knowledge, most of 
the attention has been focused on two or three of them, neglecting the contributions of all input factors 
for the four categories to airport operating efficiency [4,5]. 

At present, flight departure punctuality, non-cancellations and landing bridge rates are the most 
common indexes of airport operation evaluation. They have different influencing factors and evaluate 
the operation status of airports from different perspectives. All of them are also often used as outputs 
for calculating airport operating efficiency when using the DEA approach. However, a comprehensive 
operating efficiency encompassing a combination of flight departure punctuality, non-cancellations 
and landing bridge rates has not been evaluated from the perspective of airport infrastructure, airport 
service conditions, severe weather conditions and flight operation conditions [6,7]. 

The main aim of this paper was to present a two-stage DEA-Tobit method by integrating the 
DEA-BCC [8] and Tobit models [9] to reveal a coupling relationship between an airport’s 
comprehensive operating efficiency and influential factors. The most important tasks of this study 
include the following: (1) development of a DEA-BCC model in Stage I to measure the comprehensive 
operating efficiency in consideration of flight departure punctuality, non-cancellation rates and landing 
bridge rates, and under the conditions of nine variables related to airport infrastructure supply and 
demand, the weather environment, etc; (2) creation of the Tobit model in Stage II to analyze the 
regression relationship between these input and output variables. Finally, an illustrative case of 28 
airports in China in 2016 was evaluated to prove the applicability of our model by comparing the 
difference in operating efficiency between the combination of the three factors and each of them 
individually. This study could be used as an effective tool for transit authorities to measure an airport’s 
comprehensive operating efficiency, and to help them design a clear and straightforward management 
strategy for each airport. 

The rest of this study is organized as follows. Section 1 reviews the related literature. Sections 2 
and 3 describe the data preparation and methodology of the two-stage DEA-Tobit method. Section 4 
estimates the operating efficiencies of 28 airports in China in 2016. Finally, the main findings, 
conclusions and future work are provided in Section 5. 

2. Literature review 

To date, many researchers have studied the influence of relevant factors on airport efficiency from 
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the input-output perspective by using DEA approaches, which have been widely used to explore airport 
operations. There are a variety of DEA models, i.e., the DEA-BCC, two-stage DEA three-stage DEA 
models. The DEA-BCC model [2,3] seems to be better able to analyze airport efficiency at a certain 
time point. Two-stage DEA combining a Tobit or OLS (ordinary least squares) model [10,11] was used 
to evaluate the regression relationship between inputs and outputs. Three-stage DEA [12] aims to 
eliminate the influence of this environmental factor on it by using stochastic frontier analysis (SFA). 

As for the outputs, the most frequently used variables found in the literature are aircraft 
movement [11] and passenger/freight throughput [1–4,13-14]. It is worth nothing that [10,15–17] 
considered both of the above-mentioned variables as outputs, while others suggested cancellations [6], 
punctuality [5,7] and flight delays [1,4,6,7,13,14,17,18] as outputs. Specifically, Schultz et al. [6] took 
cancellations and flight delays as outputs for analysis, and Sánchez et al. [7] considered both 
punctuality and flight delays. 

In terms of inputs, the most used indicators for airport inputs are related to airport infrastructure 
and include the number of runways, number of gates, number of employees, etc. [1–4,10,11,13–17]. 
Considering the influence of weather conditions on flight operation, more and more studies are 
focusing on the weather condition and flight plan as inputs to analyze efficiencies [5,6]. Additionally, 
the operating costs [11,16], numbers of takeoffs and landings [14] and aircraft performance 
parameters [5] are all inputs which have been considered. 

Table 1. Input and output perspectives of existing studies on airport operational efficiency. 

 [15] [16] [17] [17] [1] [13] [14] [18] [4] [5] [6] [7] [2] [3] [10] [11]

Number/Length of 
runways 

√ √ √ √ √ √       √ √ √ √ 

Number of gates √  √ √             

Number of 
employees 

√ √ √ √   √ √ √        

Operating/Expensing 
costs 

 √            √  √ 

Terminal space √    √         √ √  

Number of baggage 
belts 

  √ √ √            

Apron capacity   √ √             

Number/Performance 
of aircraft 

      √ √ √ √       

Flight plan        √  √ √ √     

Fuel (tons)       √  √        

Weather condition          √ √      
Number of 
passengers 

√ √ √ √ √ √ √  √    √ √ √  

Cargo throughput  √ √ √ √ √ √  √     √ √  

Aircraft movement √ √ √ √       √  √  √ √ 

Flight delays   √ √ √ √ √ √ √  √ √     

Air navigation 
service capability 

       √         

Punctuality          √  √     

Cancellations           √      

Revenues                √ 

From the perspective of input-output, some scholars have combined airport infrastructure as 
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inputs and passenger/freight throughput as outputs to analyze operating efficiency, such as in [15] 
and [16]. Some others, such as the authors of [5] and [6], used weather condition as input for analysis, 
taking flight status as output. There are also some studies that have applied airport infrastructure and 
flight status as input and output, respectively, such as [17]. 

Using the studies mentioned in Table 1, note that the above studies clearly demonstrate variables 
for studying airport operating efficiency, but the following critical issues deserve further investigation. 

Although some studies involved the three output variables of flight departure punctuality, non-
cancellations and landing bridge rates, they are rarely taken as a whole to evaluate the comprehensive 
efficiency of airport operation [6,7]. 

The considered input factors mainly involved airport infrastructure, surrounding airspace, route 
layout, flight volume, weather, etc. Most studies have focused on the part of these input factors that 
influence airport operating efficiency, but they neglected all factor-specific contributions to it [4,5]. 

To the best of the authors’ knowledge, a few studies have examined the effects of the supply and 
demand conditions of the airport on its operating efficiency. Specially, no quantitative analysis on the 
impact of these input factors on the output result has been reported yet. It is very important for 
authorities to make the best strategy at the right time and place [11]. 

3. Data description 

 

Figure 1. Twenty-eight airports with passenger flow in 2016 in China. 

For this study, there were three output variables and nine input variables under four aspects. 
Table 2 details the meanings of all input and output variables. The output was measured via three 
variables, namely, the departure punctuality (DEEF), flight non-cancellation rate (SEEF) and flight 
landing bridge rate (CEEF). The nine input variables included the flight zone rating (FZR), number of 
runways (NOR), number of terminals (TB), connectivity index (CI), weather type (WT), duration of 
impact (DOI), average daily inbound and outbound flights (ADF), average number of overnight 
aircraft per day (AAD) and peak hour sorties (PHS). All input variables could be classified into four 
aspects, i.e., airport infrastructure, surrounding airspace, route layout, flight volume and weather. 
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These three output variables are different perspectives of airport operating efficiency. Hence, it is 
necessary to measure the comprehensive airport operating efficiency by using a combination of them 
(i.e., referred to as TEEF), considering all available inputs. We are the first to quantify the impacts of 
all input variables from these four aspects on the comprehensive airport operating efficiency (i.e., 
TEEF) by considering a combination of DEEF, SEEF and CEEF. 

As shown in Figure 1, the operating efficiency of 28 10 million airports in China in 2016 was 
estimated and analyzed to prove our applicability. The data source was VariFlight, which is one of the 
most well-known flight service apps in China. Table 3 details values of the input and output variables 
for 28 airports in 2016. For the flight zone rating input variable, according to the airport flight area 
classification standards, we set 4E = 9 and 4F = 10. For weather type, depending on the extent to which 
weather affects aircraft flight, we set thunderstorm = 3, rain and snow = 2 and fog and haze = 1. 

Table 2. Selected input-output variables and their meanings for the 28 airports. 

Variables Variable selection 

direction 

Specific variable expressions Abbreviations Units

Outputs/Dependent 

variables  

Flight delays Departure punctuality rate DEEF 100%

Flight termination Flight non-cancellation rate SEEF 100%

Flight carrying capacity 

of the airport 

Flight landing bridge rate CEEF 100%

Inputs/ Independent 

variables  

Airport infrastructure Flight zone rating FZR — 

Number of runways NOR Uno 

Airport service conditions Number of terminals  TB Uno 

Connectivity index CI Uno 

Severe weather conditions Weather type WT — 

Duration of impact DOI Hour

Flight operation 

conditions 

Average daily inbound and outbound flights ADF Uno 

Average number of overnight aircraft per day AAD Uno 

Peak hour sorties PHS Uno 

Table 3. Original data of inputs and outputs for 28 airports in 2016. 

Airport FZR NOR TB CI WT DOI ADF AAD PHS DEEF SEEF CEEF 

Beijing 
Capital/PEK 

4F 3 3 694 
Fog\Thun
derstorm

481 1587 240 112 0.543 0.039 0.693 

Shanghai 
Pudong/PV

G 
4F 4 2 507 

Thunderst
orm 

271 1211 124 92 0.494 0.049 0.6 

Guangzhou 
Baiyun/CA

N 
4F 3 1 597 

Thunderst
orm 

361 1170 150 85 0.665 0.04 0.687 

Chengdu 
Shuangliu/C

TU 
4F 2 2 379 Fog 345 868 144 64 0.734 0.038 0.747 

Kunming 
Changshui/

KMG 
4F 2 1 495 

Fog\Thun
derstorm

274 940 129 72 0.715 0.05 0.869 

Shenzhen 
Baoan/SZX 

4F 2 3 381 
Thunderst

orm 
234 819 120 62 0.676 0.058 0.787 

Continued on next page
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Airport FZR NOR TB CI WT DOI ADF AAD PHS DEEF SEEF CEEF 

Shanghai 
Hongqiao/S

HA 
4E 2 2 437 

Thunderst
orm 

271 711 106 59 0.533 0.051 0.712 

Xian 
Xianyang/X

IY 
4F 2 3 425 Fog\Snow 188 828 83 64 0.806 0.051 0.856 

Chongqing 
Jiangbei/CK

G 
4E 2 2 377 

Fog\Thun
derstorm

138 772 98 75 0.795 0.05 0.656 

Hangzhou 
Xiaoshan/H

GH 
4F 2 3 288 Fog 635 648 79 52 0.562 0.052 0.793 

Xiamen 
Gaoqi/XMN 

4E 1 2 203 
Thunderst

orm 
219 491 57 40 0.561 0.068 0.704 

Nanjing 
Lukou/NKG 

4F 2 2 283 Fog 694 488 33 44 0.542 0.053 0.743 

Changsha 
Huanghua/C

SX 
4F 2 2 205 Fog 304 453 31 39 0.701 0.053 0.772 

Wuhan 
Tianhe/WU

H 
4F 2 3 225 

Fog\Thun
derstorm

279 478 31 45 0.727 0.052 0.707 

Zhengzhou 
Xinzheng 

/CGO 
4F 2 1 272 Fog\Haze 493 482 33 49 0.728 0.08 0.941 

Qingdao 
Liuting 
/TAO 

4E 1 2 180 Fog 276 455 46 38 0.724 0.064 0.5 

Urumqi 
Diwobao 

/URC 
4E 1 3 206 Fog\Snow 751 445 76 38 0.71 0.076 0.77 

Haikou 
Meilan/HA

K 
4E 1 1 199 

Thunderst
orm 

148 375 56 38 0.741 0.065 0.792 

Sanya 
Phoenit 
/SYX 

4E 1 3 131 
Thunderst

orm 
24 311 42 28 0.702 0.05 0.489 

Tianjin 
Binhai 
/TSN 

4F 2 2 103 Fog\Haze 709 379 52 40 0.674 0.092 0.842 

Harbin 
Taiping 
/HRB 

4E 1 2 115 Snow\Fog 253 342 42 34 0.751 0.069 0.571 

Dalian/DLC 4E 1 1 104 Fog 205 353 43 36 0.779 0.079 0.767 
Guiyang 

Longdongba
o /KWE 

4E 1 2 153 
Fog\Thun
derstorm

134 397 32 49 0.711 0.07 0.76 

Shenyang 
Taoxian/SH

E 
4E 1 3 121 Snow\Fog 191 324 43 34 0.706 0.072 0.795 

Jinan 
Yaoqiang/T

NA 
4E 1 1 133 Fog 338 268 17 35 0.762 0.075 0.958 

Fuzhou 
Changle/FO

C 
4E 1 1 73 

Fog\Thun
derstorm

157 246 42 31 0.675 0.114 0.791 

Nanning 
Wuxu/NNG 

4F 2 1 91 
Fog\Thun
derstorm

103 262 28 28 0.688 0.098 0.954 

Lanzhou 
Zhongchuan

/LHW 
4E 1 2 121 

Thunderst
orm 

36 254 12 31 0.801 0.074 0.826 
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4. Methodology 

The aims of this study were to evaluate how an airport’s related input variables affect the 
comprehensive operational efficiency of its output variables, and to find the quantitative relationship 
between them. Hence, a two-stage DEA approach was used to measure the TEEF, DEEF, SEEF and 
CEEF of airports by using the DEA-BCC model in the first stage, and to perform an empirical 
quantitative analysis between inputs and outputs by applying the Tobit model in the second stage. 

4.1. DEA-BCC model 

In this study, airport operating efficiency was measured by using the DEA approach to calculate 
the efficiency frontier based on the output level, as related to TEEF, DEEF, SEEF and CEEF, and in 
consideration of all available inputs from four aspects of airport management and development. The 
aim of this study was to match output and input. The DEA model contains the BCC model and the 
CCR model, compared with the CCR (A. Charnes, W. W. Cooper and E. Rhodes, which is the model 
used in the DEA method to evaluate relative effectiveness) model, the BCC model eliminates the 
influence of scale factors and evaluates the management and decision levels of DMUs (which 
represents the set of selected study objects) more accurately. Although SFA [19] considers the influence 
of random factors on the evaluation results, it could only deal with one output variable with a given 
production function form, as compared with the BCC model. Therefore, we chose the input-oriented 
DEA-BCC model [8], as shown in Eq (1): 

𝑚𝑖𝑛 𝜃 𝜀 �̂�𝑆 𝑒 𝑆  

𝑠. 𝑡.

⎩
⎪
⎨

⎪
⎧

∑ 𝑋 𝜆 𝑆 𝜃𝑋
∑ 𝑌 𝜆 𝑆 𝑌

∑ 𝜆 1 , 𝑗 1,2, … , 𝑛

𝜆 0, 𝑆 0, 𝑆 0

                                                  (1) 

Each airport was regarded as a DMU when the efficiency was calculated, and there were 𝑛 
airports, denoted as 𝐷𝑀𝑈 𝑗 1,2, ⋯ 𝑛 . The input vector and output vector of the DMUs are expressed 
as 𝑋 𝑥 , 𝑥 , ⋯ 𝑥   and 𝑌 𝑦 , 𝑦 , ⋯ 𝑦  . 𝜃  denotes the efficiency value of the DMU, and 𝜀 
denotes the non-Archimedean, which is less than any positive number but greater than zero. 𝑆  and 𝑆  
represent the slack variables of inputs and outputs, respectively. 𝜆  represents the weight coefficient of 
the inputs and outputs. 

4.2. Tobit model 

The Tobit regression model, also known as the truncated regression model, was proposed by 
Tobin [20] to study dependent variables that satisfy certain constraints. Since the present paper uses 
the DEA result between 0 and 1 as the dependent variable, it is a truncated regression problem. The 
Tobit regression model based on the principle of maximum likelihood estimation can handle data with 
the above dependent variable and effectively avoid problems such as inconsistency and bias in 
parameter estimation [9]. Therefore, the Tobit regression model that follows the maximum likelihood 
estimation was used for regression analysis. The specific form of the model is as follows: 



1550 

Electronic Research Archive  Volume 31, Issue 3, 1543–1555. 

i

2

y

0 1

(0, ), 1, 2,

i i

i i

i

x

x

i

 
 

 

  


  
  : L

                                                     (2) 

where iy   is the dependent variable, corresponding to the airport efficiency; ix   is the independent 

variable, corresponding to each influencing factor;   refers to the correlation coefficient vector; i  is 

an independent normal error term that satisfies the normal distribution. 

5. Empirical analysis 

5.1. Airport operational efficiency analysis 

In this section, DEAP 2.1 was used to execute the DEA-BCC model in the first stage to evaluate 
operational efficiency. Table 4 and Figure 2 details the results for the TEEF, DEEF, SEEF and CEEF 
of 28 Chinese airports in 2016. As shown in Table 2, DEEF denotes flight departure punctuality, SEEF 
denotes non-cancellations and CEEF denotes the landing bridge rate, while TEEF is the combination 
of flight departure punctuality, non-cancellations and the landing bridge rate. The results showed the 
following: 

(1) The TEEF of all airports had a high average of 0.982, which indicates that all 28 airports are 
at a high level of operating efficiency, but some of them still need to improve in certain areas. Sixteen 
airports, such as CAN, CTU, KMG, SHA and CKG, had a TEEF value of 1, achieving an effective 
DEA. 

(2) For most airports, the TEEF was greater than their DEEF, SEEF and CEEF, and the value of 
TEEF for each airport was very close to that of SEEF. It led to the conclusion that SEEF played a great 
role in TEEF, as compared with DEEF and CEEF. 

(3) There may be differences among TEEF, DEEF, SEEF and CEEF between any two airports. 
These four efficiency values for only five airports, such as HAK, TNA, FOC, NNG and LHW, were 
equal to 1. Their top five worst rankings were PVG, PEK, SZX, XIY and WUH. 

 

Figure 2. Overall situation operational efficiency of 28 airports. 
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Table 4. Results of operational efficiency for 28 airports. 

Airport TEEF DEEF SEEF CEEF 

PEK 0.911  0.610  0.910  0.651  

PVG 0.907  0.558  0.907  0.587  

CAN 1.000  0.854  1.000  0.717  

CTU 1.000  0.942  1.000  0.780  

KMG 1.000  0.918  1.000  0.908  

SZX 0.903  0.763  0.895  0.781  

SHA 1.000  0.665  1.000  0.765  

XIY 0.919  0.909  0.901  0.867  

CKG 1.000  0.993  1.000  0.748  

HGH 0.998  0.721  0.994  0.828  

XMN 0.992  0.700  0.989  0.777  

NKG 1.000  0.702  1.000  0.776  

CSX 1.000  0.909  1.000  0.849  

WUH 0.910  0.817  0.909  0.690  

CGO 0.992  0.942  0.990  0.982  

TAO 1.000  0.929  1.000  0.575  

URC 0.988  0.886  0.973  0.804  

HAK 1.000  1.000  1.000  1.000  

SYX 1.000  1.000  1.000  0.888  

TSN 0.989  0.831  0.921  0.988  

HRB 0.999  0.947  0.998  0.637  

DLC 1.000  1.000  1.000  1.000  

KWE 0.996  0.888  0.992  0.875  

SHE 1.000  0.881  0.988  0.900  

TNA 1.000  1.000  1.000  1.000  

FOC 1.000  1.000  1.000  1.000  

NNG 1.000  1.000  1.000  1.000  

LHW 1.000  1.000  1.000  1.000  

MEAN 0.982  0.870  0.977  0.835  

5.2. Results of factors affecting the airport operating efficiency 

In this section, Stata 17 was used to measure the impacts of input factors on the four indicators of 
airport operating efficiency. Table 5 shows the results of the Tobit regression test for 28 airports in 
China. It can be seen in Table 5 that the log likelihood values of TEEF, DEEF, SEEF and CEEF were 
24.72995, 18.46908, 25.06807 and 15.95073, respectively, which were all greater than 1, and the Prob. 
values in the Table 5, which is the probability that the t-test is greater than the observed value, were all 
0.0000. This indicates that the Tobit model construction is practically relevant, and that the selected 
variables can be used to analyze the regression relationships that exist. 

Table 5. Results of Tobit regression test. 

 TEEF DEEF SEEF CEEF 

Log likelihood 24.72995 18.46908 25.06807 15.95073 

Prob > F 0.0000 0.0000 0.0000 0.0000 
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The regression results for the Tobit model are shown in Table 5. Taking the TEEF in the first 
column as an instance, the impact of the estimated coefficients of the input variables on the TEEF is 
described by Eq (3). It can be seen that the parameters FZR, TB, WT, DOI and ADF harmed the TEEF, 
in contrast to other input variables. Furthermore, FZR, TB, WT, ADF, AAD and Constant had a 
significant effect on TEEF. 

TEEF 0.0531FZR 0.0255NOR 0.0313TB 0.000413CI 0.0255WT
0.0000483DOI 0.000537ADF 0.00146AAD 0.00113PHS 1.658        (3) 

Besides, it can also be seen in Table 6 that the same factors had different impacts and significance 
on airport operational efficiency. As an example, CI had a significant positive effect on SEEF and a 
non-significant negative effect on DEEF. Meanwhile, the same factor showed consistency in 
operational efficiency for different airports. For example, FZR and TB each had a significant impact 
on the operational efficiency of all four types of efficiencies of airports, while the opposite was true 
for NOR and PHS. In addition, TB, DOI and ADF each had a negative impact on airport operational 
efficiency, while AAD and PHS had the opposite effect. 

Table 6. Regression results for factors influencing the efficiency of airport operations. 

Factors TEEF DEEF SEEF CEEF 

FZR –0.0531**(0.0226) 0.122** (0.0606) –0.0697**(0.0271) 0.173**(0.0688) 

NOR 0.0255(0.0248) –0.103 (0.0628) 0.0304(0.0294) -0.0377(0.0711) 

TB –0.0313***(0.00888) –0.0693** (0.0278) –0.0367***(0.0108) –0.0710**(0.0305) 

CI 0.000413(0.000213) –0.0000757 (0.000435) 0.000617**(0.000258) 0.000177(0.000485) 

WT –0.0255***(0.00839) –0.0122 (0.0216) –0.0266**(0.00938) 0.00262(0.0240) 

DOI –0.0000483(0.0000386) –0.000332** (0.000116) –0.0000761*(0.0000435) –0.000159(0.000129) 

ADF –0.000537**(0.000244) –0.00078 (0.000522) –0.000527*(0.000281) –0.00140**(0.000591) 

AAD 0.00146**(0.000567) 0.00219 (0.00135) 0.00132**(0.000641) 0.00335**(0.00152) 

PHS 0.00113(0.00168) 0.00591 (0.00519) 0.0000555(0.00199) 0.00844(0.00584) 

Constant 1.658***(0.206) 0.202(0.552) 1.831***(0.247) –0.434(0.622) 

6. Conclusions and discussion 

We employed a two-stage DEA-Tobit method to accurately measure the comprehensive operating 
efficiency of 28 airports in China in 2016, and we have discussed the influence of the input variables 
on operating efficiency. This study featured the following: (1) The input variables involve nine 
variables from four aspects, which describe the infrastructure, demand and external environment in a 
comprehensive way; (2) The output variables with a combination of DEEF, SEEF and CEEF could 
comprehensively evaluate the airport operation level from multiple perspectives. 

The main findings are as follows: (1) There may be differences among TEEF, DEEF, SEEF and 
CEEF for the same airport or any two airports. For five airports, these four efficiency measures had 
achieved an effective DEA at the same time; for 14 airports, none had achieved an effective DEA, and, 
of the remaining airports, some measures had achieved an effective DEA. Besides, the TEEF and SEEF 
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of most airports were greater than their DEEF and CEEF. (2) The action mechanism behind different 
influencing factors for TEEF, DEEF, SEEF and CEEF were significantly different. Some parameters 
harmed them, while other parameters had a significant effect on TEEF. The calculation results are in 
accordance with the visual analysis. 

Some policy implications and suggestions for helping the airport to achieve nearly 100% 
efficiency include the following: (1) When the outputs of an airport do not match its inputs, the inputs 
of each city should be adjusted to make the best use of the outputs; (2) Increased output of airports 
with an efficiency of less than 100% (e.g., PEK and PVG), as well as reduced output of airports with 
an efficiency of more than 100%, should be achieved to realize nearly 100% efficiency; (3) When the 
efficiency of an airport is less 100%, decreased positive inputs (e.g., PHS and AAD) and increased 
negative inputs (e.g., TB and DOI) should be achieved to realize the adjustment goal. 

However, this study had some shortcomings. On the one hand, one year of restricted data could 
not reflect the dynamic change law of airport efficiencies and their influencing factors very accurately. 
On the other hand, these influencing factors were incomplete. For example, the economic factors were 
missing. Therefore, dynamic airport efficiencies with consideration of more comprehensive factors 
will be our future research. 
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