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Abstract: Identification of network vulnerability is one of the important means of cyberspace 
operation, management and security. As a typical case of network vulnerability, network cascading 
failures are often found in infrastructure networks such as the power grid system, communication 
network and road traffic, where the failure of a few nodes may cause devastating disasters to the whole 
complex system. Therefore, it is very important to identify the critical nodes in the network cascading 
failure and understand the internal laws of cascading failure in complex systems so as to fully grasp 
the vulnerability of complex systems and develop a network management strategy. The existing models 
for cascading failure analysis mainly evaluate the criticality of nodes by quantifying their importance 
in the network structure. However, they ignore the important load, node capacity and other attributes 
in the cascading failure model. In order to address those limitations, this paper proposes a novel critical 
node identification method in the load network from the perspective of a network adversarial attack. 
On the basis of obtaining a relatively complete topology, first, the network attack can be modeled as a 
cascading failure problem for the load network. Then, the concept of load percolation is proposed 
according to the percolation theory, which is used to construct the load percolation model in the 
cascading failure problem. After that, the identification method of critical nodes is developed based on 
the load percolation, which accurately identifies the vulnerable nodes. The experimental results show 
that the load percolation parameter can discover the affected nodes more accurately, and the final effect 
is better than those of the existing methods. 

Keywords: network vulnerability identification; network cascading failure; critical node identification; 
percolation theory; network management 
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1. Introduction 

Identification of the network vulnerability is an important part of cyberspace confrontation. As 
one of the applications of the network topology awareness, network vulnerability identification takes 
the network structure, nodes and link attributes as inputs, and it identifies the critical nodes or links to 
support network attacks as the outputs. The network cascading failure is a typical network 
vulnerability [1]. In a complex network, the failure of one or several node(s) leads to the redistribution 
of the network load, which in turn leads to the overload of other nodes that makes them also fail, thus 
causing a chain reaction and, finally, cascading failure [2]. The cascading failure is often found in 
infrastructure networks such as the power grids, communications, road traffic, etc. The failure of a few 
nodes may cause devastating damage to the entire complex system. Therefore, studying the 
identification of critical nodes in cascading failure, along with obtaining an understanding of its 
internal rules of cascading failure in complex systems, is very important in fully mastering the 
vulnerability of complex systems, and it is one of the research highlights that has been addressed by 
academic and industrial circles at home and abroad in recent years. 

The existing cascading failure models of complex network structures mainly evaluate the 
criticality of nodes by quantifying the importance of the nodes in the models. The research on such 
node importance measurement is mainly divided into two categories [3]. The first category directly 
calculates the node importance through node centrality, which is directly calculated according to 
parameters of the network structure, such as the degree, betweenness, PageRank value, Hits value, etc. 
The second category deletes the critical nodes through optimization strategies, and it evaluates the 
impact of cascading failure caused by node deletion to measure their importance. The former method 
based on node centrality often only considers the importance of nodes of the network structure and 
ignores important attribute factors such as the load and node capacity in the cascading failure model. 
Thus, the evaluation performance in real networks often has achieved a poor effect. The latter method 
can enumerate all of the results and find the most influential nodes by means of simulation. However, 
for medium-sized networks, the time complexity of this second method is very high due to the large 
number of nodes and complex relationships, which increases the difficulty of identifying critical nodes 
in the cascading failure model. 

In order to resolve the above drawbacks, this paper proposes a novel method for identifying 
critical nodes based on load percolation. The percolation theory is an innovative method for identifying 
influential nodes in large-scale complex networks. Different from heuristic methods, such as those 
using centrality to measure the importance of nodes, the percolation theory simulates the percolation 
process of the fluid in the network and takes the optimal percolation as the goal to find the minimum 
number of critical nodes that may damage the network. Therefore, in the proposed cascading failure 
model, the percolation theory is taken as the structural basis, in combination with the specific attributes 
of cascading failure, so as to avoid the problem of poor performance of the heuristic centrality 
algorithm, and to find the most optimal nodes of cascading failure in medium-sized networks in a 
better way. 

This paper first gives a basic overview of network cascading failure, and then it introduces the 
method for measuring node influence based on the percolation theory. After that, this paper proposes 
the concept of load percolation, which combines the common influence of the network structure and 
properties to yield a load percolation model for the cascading failure problem. Finally, based on the 
load percolation, a method is proposed for the mining of optimal nodes via identification of the critical 
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nodes that may cause network cascading failures. The obtained experimental results show that the 
proposed method is superior to the existing methods in terms of the accuracy of node identification 
and the impact of cascading failure. 

The rest of this paper is arranged as follows. Section 2 introduces the related work; Section 3 
introduces the basic problems of the network cascading failure. Section 4 gives the critical node 
identification parameter set algorithm for the load network. In Section 5, experiments with a real 
network are described to verify the effectiveness of the algorithm. Finally, Section 6 summarizes the 
work of this paper and discusses the future research scopes. 

2. Related work 

In order to obtain a relatively complete and accurate network structure, we can further analyze 
the network structure for obtaining valuable information, including the types of identified nodes, 
predicted connection relationship and types of identified networks, as well as perform structural 
vulnerability analysis, etc. The structural vulnerability analysis usually uses the complex network theory 
to identify vulnerable node sets in complex systems, explain the internal mechanism of complex system 
collapse and study preventive and controlling measures. The structural vulnerability analysis is closely 
related to network attacks, involving the network robustness, critical node identification and other 
related concepts. This paper focuses on the identification of nodes that may destroy the overall function 
of the network. 

For a single node, the centrality of the node is an effective indicator to measure its vulnerability. 
Accordingly, removing the top-k nodes from the top to bottom by using the centrality indicator is a 
way to destroy the network function in a scenario [4]. Studies conducted so far have proposed a variety 
of node centrality, including the degree centrality, betweenness, coreness, closeness, etc. In literature [3,5], 
Lü et al. and Costa et al. systematically introduced the node centrality. Since the mutual relationship 
between nodes is not considered, the centrality of nodes suffers from poor performance in finding 
vulnerable nodes [3]. Thus, a new method for locating vulnerable nodes has emerged. Finding the 
vulnerable nodes is usually modeled as the influence maximization problem (IMP). Corley and Sha [6] 
studied the IMP in the maximum flow of the network, and they also studied the IMP related to the 
shortest path distance. Since then, a variety of heuristic methods have been proposed [7–10]. It is worth 
noting that Morone and Makse [11] linked the IMP with network percolation and pointed out that the 
IMP can be solved through the use of network percolation. 

Using the above-mentioned method to analyze the node vulnerability of complex networks, 
researchers have focused on practical networks such as power grids and transportation networks. 
Panigrahi and Maity [12] used weighted networks to model the power grid network and evaluated the 
critical nodes and links; Beyza et al. [13] proposed a method for evaluating cascading faults in power 
grids; Fang et al. [14] proposed a method for identifying the critical links in the power grids based on 
the maximum network flow; Zhang et al. [15] compared and analyzed the railway networks of China, 
the United States of America and Japan to identify the vulnerable stations in the system from the 
perspective of complex networks, and they proposed some effective defense strategies. 

In addition to the above-mentioned vulnerability analysis methods for static networks, researchers 
have paid attention to the vulnerability of dynamic networks. Cascading failure is a typical dynamic 
network vulnerability, and it refers to the process of failure of a single node that causes failure of other 
nodes in the network. In the case of modeling, Motter and Lai [2] proposed a classical cascading failure 
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model fault propagation model by studying the relationship between the node capacity and load. Wu 
et al. [16] improved the fault propagation model for urban traffic problems. Wang et al. [17] analyzed 
the behavior of the fault propagation model in scale-free networks. In terms of the vulnerable nodes, 
they evaluated three removal strategies, pointing out that the attacking effects of different removal 
strategies on networks are greatly different. Yang et al. [18] identified the nodes vulnerable to 
cascading failure in a North American power grid, and they pointed out that the set of the identified 
nodes was composed of a small number of nodes with high topological centrality. From the perspective 
of network evolution, Holme and colleagues [19,20] studied the cascading failures induced by BA 
scale-free network edge overload and node overload caused by network growth. Based on the sand 
pile model, Huang et al. [21] studied the robustness of scale-free networks embedded with weighted 
grids and found that, in scale-free networks with regional limitations, tight local connections are more 
likely to cause global network collapse. Dobson et al. proposed the classic OPA model [22] and 
CASCADE model [23] to solve the cascading failure happening in power grids.  

3. Overview of the basic problems of network cascading failure 

Real complex systems for analysis can be modeled as complex networks, such as the Internet, 
power grid systems, aviation networks, transportation networks and social networks. Complex 
networks are not only a form of data representation, but also a means of scientific research, providing 
a theoretical basis for understanding the behavioral models of complex systems. Research on complex 
networks has currently received extensive attention and research. 

In reality, the activity of each node in the network is related to the activities of neighboring nodes. 
In a complex system, the process in which the failure of one or several component(s) causes the failure 
of other components is called the cascading failure [24]. When one part of the system fails, other parts 
need to be reallocated to compensate for the failed part, which in turn may overload those nodes to 
induce failure, causing more nodes to fail successively [2,25]. The whole reallocation process would 
be repeated until there are no invalid nodes exist. 

Cascading failures may occur in many types of complex systems, including the power grid system, 
computer network, finance system, transportation system, human body and ecosystems [24]. In the 
Internet, the disconnection of critical routing nodes due to hardware or software failure may severely 
damage or stop most of the network communication. After the routing nodes go down, the routing 
protocol needs to re-plan the traffic through another alternative path. Thus, the failure of one router 
will increase the traffic on other routers, which may cause the alternative path to become overloaded, 
resulting in cascading failures. In a large-scale power grid network, when one of the components fails 
completely or partially and transfers its load to nearby components, it may cause those components to 
exceed their capacity and get overloaded, causing a wider range of overloading that eventually 
paralyzes the power grid in a short time [26]. For instance, on August 10, 1996, a 1300 MW power 
line in Oregon was broken, and the current it carried was automatically diverted to two other 
transmission lines with slightly lower voltages, causing it to become overloaded and fail; the excess 
current caused 13 generators to fail, which resulted in massive power cuts in 11 states of the USA and 
two provinces in Canada. Therefore, it is of great significance to study the inherent characteristics of 
cascading failure to mitigate the effects of network cascading failure and improve the robustness 
against cascading failure. 

Real cascading failure has three common characteristics: first, the initial failure has a very limited 
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impact on the network structure; second, the initial failure does not stay local, as it spreads along the 
connection of the network, causing more faults; finally, the propagation of faults makes many nodes 
unable to function properly. This paper will first explore the patterns of the cascading failure from an 
empirical perspective and then model it mathematically. 

3.1. Cascading failure models 

In the recent literature, many models of network cascading failure are proposed based on the 
initial conditions of a single isolated network. Among these models, at the initial moment, each node 
is given an initial load and maximum load handling capacity (also known as load capacity); then, the 
load of the failed node would be redistributed according to the corresponding theoretical model. 
Through the preliminary analysis of the cascading failure model, it can be found that there are three 
main factors which have influence on the result of a cascading failure, including the initial load of the 
node, the capacity of the node and the load allocation strategy.  

As mentioned in the related work, although there are many researchers who have done more in-
depth research, the reasonable modeling of those three factors is the key initiatives in the exploration 
of a cascading failure. For example, Wang et al. [27] redefined the initial load of the node based on the 
degree of the node itself and the degree of the neighbor node, considering the influence of the degree 
of the neighbor node on the node load. Their method not only avoids the complexity associated with 
obtaining the node’s betweenness centrality, but it also improves the practicability based on the node’s 
own degree. Through the study of multiple real networks, Kim et al. [28] found that there was no linear 
relationship between capacity and load. And, this conclusion stimulates the consideration of the load-
capacity relationship. 

Load redistribution is the most important way to alleviate network cascading failure after nodes 
are attacked or randomly fail, and it is also the last barrier to ensure the normal operation of the network. 
A reasonable load redistribution strategy can greatly reduce the failure scale of network nodes. The 
existing load redistribution strategies mainly include the average distribution strategy, random 
distribution, global distribution strategy based on the shortest path, local optimal distribution and 
adjustable load redistribution. Obviously, the average distribution and random distribution do not 
perform load redistribution since they consider little about the specific conditions of the network. So, 
it is easy to cause further expansion of cascading failures. However, the global allocation strategy 
based on the shortest path can redistribute the load to the remaining nodes according to the processing 
capacity of the nodes, but this allocation strategy requires each node to manage the global information, 
which is difficult to apply to large-scale networks. The local optimal redistribution strategy 
redistributes the load of the failed node locally according to the load ratio of its neighboring nodes, 
and it does not require global information, so it can be used in large-scale networks. 

3.2. Critical node identification based on the percolation theory 

The percolation theory studies the behavior of networks in complex systems after the nodes or 
edges are removed, which is one of the fundamental theories of network phase transition in complex 
systems [29], becoming a major concern in network science. Recently, with the development of the 
theory, the percolation theory not merely focuses on the single-type network, but it also sets the 
multilayer network in the research category [30–34]. In this paper, we mainly consider the single-type 
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network in which the existing modeling methods ignore the important load, node capacity and other 
attributes. The effect of node or edge removal is usually measured in terms of the number of nodes in 
the largest connected branch. We set 𝑝௖ as the critical percolation probability of the network and 𝑝 as 
the proportion of nodes removed in a network. When 𝑝௖ is large, the overall robustness of the network 
is considered better; otherwise, it is worse. In the case of 𝑝 > 𝑝௖, the largest connected branch of the 
network disappears and splits into several small connected branches, resulting in network function 
failure. Moreover, the percolation theory finds that scale-free networks are robust against the removal 
of random nodes, but they are fragile if high-degree nodes are removed.  

The cascading failure model is a typical independent percolation process [11], and it can be solved 
by the percolation theory. Therefore, this paper transforms the problem of finding the critical nodes, 
which is responsible for network cascading failures, into a problem of identifying the critical nodes in 
the network percolation, and it proposes an effective critical node identification method in the current 
percolation theory. 

In a network, we set the optimal set U∗ of the critical nodes as the minimum set that leads to the 
network function failure after removal. However, solving the problem of U∗ is an N-body problem that 
needs to consider the topological interactions between nodes, which makes it an NP-hard problem [3]. 
It is common to conduct heuristic methods through the centrality of a single node, such as the node 
degree, betweenness, etc. However, since the centrality of individual nodes is a fuzzy definition of the 
influence of the nodes, which treats the nodes as isolated entities and ignores the interactions between 
them, it often achieves poor performance in the solution. 

In order to obtain the optimal percolation solution in a large-scale network, Morone and Makse [11] 
proposed an approximate collective influence (CI) algorithm, which is the most efficient method for 
solving U∗. The CI value of a node is defined as 

 𝐶𝐼௟(𝑖) = (𝑘௜ − 1) ∑ ൫𝑘௝ − 1൯௝∈డ஻௔௟௟(௜,௟)  (1) 

where 𝑘௜ represents the degree of the node 𝑖 in a network; 𝐵𝑎𝑙𝑙(𝑖, 𝑙) represents all nodes within the 
shortest path distance 𝑙 from node 𝑖; 𝜕𝐵𝑎𝑙𝑙(𝑖, 𝑙) represents the nodes with the shortest path distance 𝑙 
from node 𝑖. 

Compared with the node centrality, the CI values contain much more topological information by 
gathering more information about the neighboring nodes. In this model, the CI value of node 𝑖 gives 
the weight value 𝑘௝ − 1 to each neighbor in 𝜕𝐵𝑎𝑙𝑙(𝑖, 𝑙), which means that, even if 𝑘௜ of the node is 
small, the CI value could be large. Therefore, we can discover the objective nodes in the network 
through the CI values. For example, in a network with multiple core areas (connected dense area), the 
node with the largest degree is the most important node from the perspective of a single area, but it 
will be found from the perspective of the whole network that, although some nodes are not connected 
much, they are still located in the hub area of several core areas. When these nodes are destroyed, the 
network will shatter faster. 

Thus, the optimal set of nodes U∗, under the influence of the network percolation, can be obtained 
approximately based on the CI values. The algorithm process can be described as follows: 

1) First, we can greedily choose the node with the largest CI value from the remaining nodes of 

the set as u ← CI୪(v)୴஫୚\୙∗ୟ୰୥ ୫ୟ୶ ;  

2) Second, this node is added to U∗ and removed from the network; 
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3) Third, the CI values of the remaining nodes are recalculated; 
4) Finally, the above steps are repeated until the maximum connected branch is destroyed. 

4. Identification of critical nodes of a cascading failure in the load network 

In a load network, network cascading failures are associated with node load [2]. In an actual 
network, each node bears a certain amount of traffic. When a node fails, its load will be shared by the 
surrounding nodes, for which they must have additional load capacity to handle the load of the faulty 
node. If the shared additional load makes the total load exceed the capacity of node, this node will also 
fail and continue to redistribute the load to the surrounding nodes, resulting in the cascading failure of 
the load network. The existing methods for identifying critical nodes do not focus on the actual load 
failure. In this section, the cascading failure model of the load network is presented first. On that basis, 
the CI values are improved and the measurement of node importance based on the load percolation 
is proposed. 

4.1. Load network cascading failure model 

In Section 3.1, we introduced the existing analysis model for a cascading failure and three main 
factors of a capacity-overload model, including load initialization, node capacity and load 
redistribution strategy. The following describes the specific settings of these three factors. 

4.1.1. Load initialization 

First, the important step is to set the initial load of the edges and nodes in the network 𝐺(𝐸, 𝑉). 
In other related literature, the load of nodes is often defined as the betweenness of nodes, the 
computational complexity of which tends to be relatively high. Moreover, the load of edges is often 
shown as the bandwidth of communication links and the capacity of roads in real scenes. In a network, 
the load of a node should be related to the load of its connected edges. Therefore, the load of a node is 
defined in this paper as the sum of the load of its connected edge, mathematically, 

 𝐹௜ = ∑ 𝐿௜௡௡∈ே  (2) 

where 𝐹௜ represents the load of node i, 𝑁 represents the set of neighboring nodes of i and 𝐿௜௡ represents 
the load of an edge. 

4.1.2. Node capacity 

There is usually a margin that defines the extent of the load that a node can bear in the initial 
design of a load network. Therefore, the capacity is usually used to describe the maximum load that a 
node can bear. In this case, common capacity definitions are adopted. For each node i, 

 𝐶௜ = (1 + 𝛽)𝐹௜ (3) 

where 𝛽  is the margin factor and, usually, 𝛽 > 0 . When the current load 𝐿௜  of node 𝑖  exceeds its 
capacity 𝐶௜, the node would fail. 
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4.1.3. Load redistribution policy 

This paper proposes a local shortest path load redistribution strategy. When a node is destroyed, 
the load flowing through the node will be redistributed to the local related nodes according to the 
shortest path principle. Compared with the local optimal redistribution strategy, the redistribution 
strategy in this paper introduces the shortest path search, which improves the simulated level of the 
real scene. Compared with the global allocation strategy based on the shortest path, the shortest path 
search of the reallocation strategy in this study is only carried out between the neighboring nodes of 
the destroyed node, thus avoiding excessive computational complexity. 

Then, considering the load redistribution mode, after removing node t, the specific calculation 
method for load distribution is as follows: 

 ∆𝑙 = ௅೔೟ା௅ೕ೟ௗ೔ೕ(௞೟ିଵ)    ∀𝑙 ∈ 𝐸𝑆(𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝛬௧ (4) 

where l represents an edge on the shortest path; ∆𝑙௜ represents the load variation on the edge l; 𝛬௧ 
represents the neighbor-node pair of t that remains connected after removing node t, and 𝐸𝑆(𝑖, 𝑗) 
represents the edge set of the shortest path between nodes. 𝐿௜௧ represents the current load of edge i-t; 𝑑௜௝ represents the shortest path length between nodes i and j; 𝑘௜ represents the degree of node t. 

For example, as shown in Figure 1(a), if node G is removed, 𝑘ீ = 4; then, the set of neighbor-

node pairs that remain connected to node G, 𝛬ீ = {(𝐴, 𝐸), (𝐹, 𝐻)}, is traversed, and the load flowing 

through node G will be allocated to the shortest path of these connected node pairs. Otherwise, for 
node pairs (𝐴, 𝐸), after G is removed, the load on edge AG and edge EG would be redistributed to the 
shortest path A-B-E between (𝐴, 𝐸), which results in 𝐸𝑆(𝐴, 𝐸) = {𝑙(஺,஻), 𝐿(஻,ா)}, 𝑑஺ா = 2. It is noted 
that not all of the load on 𝑙(஺,ீ)  and 𝑙(ா,஻)  is redistributed to 𝐸𝑆(𝐴, 𝐸) . We believe that this is 
because node G is the common hub of nodes A, E, F and H. Thus, the load on 𝑙(஺,ீ) not only carries 
the traffic between (𝐴, 𝐸), but it also carries the traffic between (𝐴, 𝐹) and (𝐴, 𝐻), which is why the 

denominator (𝑘௧ − 1) in Eq (4) exists. After that, ∆𝑙(஺,஻) = ଺ା଺ଶ∗(ସିଵ) = 2, while ∆𝑙(஻,ா) = ଺ା଺ଶ∗(ସିଵ) = 2 

and ∆𝑙(ி,ு) = ଷାଷ(ସିଵ) = 2. As shown in Figure 1(b), after node G has been removed, the load could be 

reallocated according to Eq (4). 
After redistribution of the load as above, the overall load of the network is partially lost, which 

first affects the load of the shortest path of the node pair. This distribution method is reasonable and 
more consistent with the change in load in the real network. 

Through the overload model, different node attacking strategies have been evaluated, as shown 
in Algorithm 1, where 𝑉ி represents the set of failed nodes; and, Steps (3)–(5) constitute a cycle round 
in which several operations are performed, such as the removal of nodes, redistribution of the load and 
identification of failure nodes. The cascading failure parameter is generally a function of the network 
after the cascading failure and the original network. 

Unlike the CI algorithm, which iteratively selects the node with the highest CI value to attack, 
Algorithm 1 attacks several nodes at the same time. This type of attack method is consistent with the 
actual network scenario.  
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(a)                                                   (b) 

Figure 1. Flow reassignment; (a) initial network, and (b) result of redistribution after node G removal. 

Algorithm 1. Algorithm for evaluating the attack strategy based on an overload model. 

Input: network 𝐺(𝑉, 𝐸), initial load on the edges, list 𝐴 of attacked nodes 
Output: cascading failure indicator 
(1) Initialize node load 𝑉𝐹 ← 𝐴, 𝐹௜ = ∑ 𝐹௜௝(௜,௝)∈ா ; 
(2) 𝐰𝐡𝐢𝐥𝐞 𝐴 ് ∅ 𝐝𝐨 
(3)   Remove all nodes from 𝐴 and redistribute their load by using Eq (4); 
(4)   𝐴 ← {𝑗|𝐿𝑗 ൒ 𝐶𝑗, 𝑗 ∈ 𝑉\𝑉𝐹}; 
(5)   𝑉𝐹 ← 𝑉𝐹 ∪ 𝐴; 
(6) 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 
(7) 𝐫𝐞𝐭𝐮𝐫𝐧 cascading failure indicator; 

In an actual network, especially in the core attack targets, such as power grid systems, attacks 
need to be completed in a short time. Thus, the multi-point attack at the same time is mainly due to 
three considerations. First, the defense mechanism of the target network may prevent further attacks 
from non-partners. After an attack on the network has been detected, network managers would 
generally take measures to cut off the external connections, change the authentication methods and 
enhance the intrusion detection, which makes the iterative attacks difficult to conduct. Second, the 
overall benefit of a single-point attack is limited, and it is unable to initiate failure in the target network 
in a short time. Although a single-point attack has a larger failure gain at each time, its overall effect 
is still not as good as that of multi-point attacks, leaving most of the functions of the target network 
still available. Therefore, the attack effect is not as ideal as expected. Third, the structure and load 
sensing process after the attacking process is more time-consuming. As a network manager, although 
it is possible to collect information about the target network after an attack, the data analysis and 
processing, structure prediction and other steps also need a certain amount of time, which could make 
it hard to effectively respond to the rapid changes of a network attack and defense. 

4.2. Identification of critical nodes based on load percolation 

As mentioned above, the problem of finding the maximum influence in the network node set can 
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be well solved by using the percolation theory; and, the CI value approximately solves the optimal 
percolation problem, so we can efficiently find the node sets with strong influence in the network 
according to the CI value. However, from the formula for the CI value, we can also see that the CI 
value can identify the hub nodes between multiple core regions, but the density of the core degree of 
the core region is approximately measured by the size of the node degree. Therefore, when considering 
the core area, the CI value only considers the structural features in the network, and it does not take 
the load of nodes into consideration. 

The CI value based on the percolation theory can make the network break at the fastest speed, but 
in a cascade failure of the load network, the load of the node is defined as the sum of the side loads 
connected to it. The redistribution of the load of a failed node makes the load of the remaining nodes 
constantly change dynamically, and the CI value does not consider the change of the load, so there is 
room for improvement in the solution of the cascade failure of the load network. 

For the identification of the critical nodes in a cascade failure of load networks, with reference to 
the CI value, this paper describes the importance of network nodes through the load attributes of the 
nodes and the network structure; and, it puts forward a load percolation parameter, as shown in Eq (5): 

 𝐶𝐼௟஺(𝑖) = (𝑘௜ − 1) ∑ 𝐿௝௝∈డ஻௔௟௟(௜,௟)  (5) 

where 𝐿௝ represents the load of node 𝑗, 𝐵𝑎𝑙𝑙(𝑖, 𝑙) represents all nodes within the shortest path distance 𝑙  from node 𝑖  and 𝜕𝐵𝑎𝑙𝑙(𝑖, 𝑙)  represents the nodes with the shortest path distance 𝑙  from node 𝑖 . 
Similar to the CI-based optimal influence node set solution problem, the approximate solution for the 
load percolation optimal influence node set can be obtained by greedily choosing the maximum 𝐶𝐼௟஺ value. 

Through the load percolation method, we regard the core area of the network as the high load 
area, because the high load means that, if a node fails, a large amount of traffic will be distributed to 
the surrounding nodes, causing a large change in the load of the surrounding nodes and increasing 
vulnerability to the avalanche effect. 

Therefore, through our improvement based on the original CI value, the load percolation method 
can overcome the limitation of local field of view and find the hub nodes between the high-load core 
areas in the global network from a larger range. These hub nodes themselves do not have many 
connections; but, if they are attacked first, with their failure, multiple high-load core areas will be 
“activated”, causing a larger scale of cascading failures. That is to say, we can find those critical nodes 
in the load network that only have a moderate or less degree, or those that have a load that is small but 
play a hub role in the load network; the removal will cause a larger range and greater degree of traffic 
shock. Compared with the maximum degree and maximum load attack strategies, attacking these 
critical nodes of load percolation will cause a larger scale of cascading failures. 

5. Experiment and analysis 

5.1. Data set 

In order to evaluate the validity of the load percolation parameter, we performed experiments with 
two practical networks. One of the considered networks was the IEEE 118-bus network [35]. This 
network represents the topology and traffic information about the power grid system in the Midwest 
in December 1962, which included 118 nodes and 179 edges, as shown in Figure 2. The other network 
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is a simulated routing traffic network, which was built by using the open source network simulation 
tool NS2. And, this network contains 300 nodes and 403 edges, as shown in Figure 3. 

 

(a) 

 

(b) 

Figure 2. IEEE 118-bus power network. (a) Original network [36]; (b) network topology. 
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Figure 3. Simulated routing network. 

5.2. Experimental setting 

5.2.1. Existing attack strategies 

This section compares the four key indicators of existing cascading failure and load percolation 
indicators 𝐶𝐼௟஺ , including the degree centrality, the CI value, the load centrality and the current 
betweenness centrality [37]. For these indicators, the load centrality does not consider the structural 
characteristics, and it can directly use the load values of nodes as the evaluation criterion of node 
importance. However, the current betweenness centrality replaces the shortest path in the betweenness 
centrality with the current propagation path, as follows: 

 𝐶஼஻(𝑖) = ଶே(ேିଵ) ∑ 𝐼௜௦௧௦ஷ௧∈ீ  (6) 

where 𝐼௜௦௧ represents the current value that starts at 𝑠 and ends at 𝑡, and it passes through 𝑖; N represents 
the number of nodes in the network G. It is closer to the conditions of real-world load networks since 
the current betweenness centrality takes the load variation into account.  

5.2.2. Evaluation indicator 

Here, the attack effect is measured by the indicators of the node failure rate, the residual network 
load, the network global efficiency [38] and the size of the giant component. The network failure rate 
is defined as the proportion of failed nodes in the total number of nodes, mathematically, 

 𝑟ி = |𝑉ி| |𝑉|⁄  (7) 

where 𝑉ி represents the set of failed nodes obtained based on Algorithm 1.  
And, the residual network load is defined as the ratio of the total load of each node in the network 

to the total load of the original network structure after the cascading failure occurs, mathematically, 
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 r୅ = ∑ 𝐿௜௜∈௏\௏ಷ / ∑ 𝐹௜௜∈௏  (8) 

where 𝐿௜ represents the load of the nodes in the network after the cascading failure and 𝐹௜ represents 
the load of the nodes when the network is in its initial state. 

Moreover, the network global efficiency is used to measure the efficiency of network information 
exchange, mathematically, 

 𝐸ீ = ଵே(ேିଵ) ∑ ଵௗ೔ೕ௜ஷ௝∈ீ  (9) 

where 𝑑௜௝ represents the shortest path length from node i to node j. 
The size of the giant component indicates the connection proportion of the network after 

disturbance, which can symbolize the system efficiency in a traffic or communications network. 

5.3. Effectiveness evaluation for load percolation indicator 

Comparisons of the attack effect about the load percolation indicator 𝐶𝐼௟஺  and the other four 
indicators on two datasets are shown in Figures 4 and 5, in which the 𝐶𝐼௟஺ and 𝐶𝐼 values are uniformly 
taken as 𝑙 = 3 and the tolerance parameter 𝛽 = 0.3. 

As shown in Figures 4(e),(g) and 5(e),(g), from the perspective of the network global efficiency, 
the load percolation is inferior to degree centrality and current betweenness in both datasets, but it is 
slightly better than load centrality. However, from the perspective of the size of the maximum 
connected slice of the network, for the IEEE 118-bus network, the degree centrality and the current 
betweenness work best, as shown in Figure 4(f),(h). But, for the simulated routed network, the CI 
value-based method achieved the best effect at the beginning, since the simulated routed network 
presents a multi-core network structure compared with the IEEE 118-bus network. Thus, the CI value-
based method could exactly find out the hub node connected with the multi-core area. 

In terms of the coverage rate of failed nodes, in the case of the IEEE 118-bus network, the nodes 
selected according to the load percolation parameter achieved the best attack effect, as shown in 
Figure 4(a),(c), followed by the current betweenness and the degree centrality, load centrality and CI 
value. This is because the degree centrality and CI value only consider the network topology 
characteristics, while the load centrality only considers the attribute characteristics, so they did not 
perform well. The current betweenness simulates the transmission of current in the network and 
incorporates the traffic transmission characteristics of the network. So, it achieves an excellent attack 
effect in the load network. The load percolation parameter proposed in our method considers the 
network topological characteristics and load condition of the nodes comprehensively, finds the global 
hub of nodes connecting multiple high-load core areas in the load network and, finally, maximizes the 
number of failed nodes. 

Furthermore, from the perspective of causing the decline of the network load, as shown in 
Figures 4(b),(d) and 5(b),(d), it was found that the load percolation can also achieve the best attack 
effect. Moreover, from the perspective of changes in the load of the network, as shown in Figure 5(b), 
the selection of the node with the largest load for attacking can make the overall network load decline 
rapidly in a short time. But, the speed would slow down and be overtaken by the load percolation. This 
further confirms that the local attack strategy, which only considers the degree or load of nodes, does 
not readily achieve the best attack effect globally. 
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(a) (b) 

               

(c) (d) 

                

(e) (f) 

               

(g) (h) 

Figure 4. Comparison of attack effects on the IEEE 118-bus power network. 
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(a) (b) 

                

(c) (d) 

                  

(e) (f) 

                

(g) (h) 

Figure 5. Comparison of attack effects on the simulated routing network. 
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The global efficiency and the maximum connected component size of the network are two 
indicators that only describe changes of the network structure characteristics, and do not consider the 
load. Therefore, the advantage of the load percolation method proposed in this paper, as compared with 
other methods, is that it can maximize the number of failed nodes in the load network after the 
cascading failure and maximize the overall load reduction of the network. 

6. Conclusions and future work 

Under the premise of clarifying the network topology, aiming to overcome the difficulty of 
identifying critical nodes due to the characteristics of numerous nodes and complex relationships in 
the target load network, this paper proposes a method for identifying the critical nodes of network 
cascading failures based on load percolation. First, we studied the mode and modeling method of the 
cascading failure in the network. Then, based on the percolation theory, the concept of load percolation 
has been proposed for the cascading failure problem in the load network. After that, we combined the 
common influences of the network structure with the load and built the load percolation model in the 
cascading failure scene. Finally, we proposed a novel critical node identifying method for network 
cascading failure; it can discover the optimal node set for a network cascading failure problem. The 
experimental results show that the load percolation parameter proposed in this paper is able to more 
accurately select the set of nodes, and that its final cascading failure effect is better than those of the 
existing methods. 

In the future, research may be carried out from the perspectives of two main aspects. One aspect 
is to combine specific routing strategies, such as the backup feasible routes in EIGRP, so as to further 
optimize the load redistribution strategy and improve the accuracy of the overload model. The other 
aspect is to theoretically study the load percolation parameter in depth. The current parameter has 
strong intuition, and it is necessary to give theoretical derivation on the basis of the existing percolation 
theory to further improve the effectiveness of the parameter. 
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