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Abstract: This paper investigates the existence and uniqueness of solutions for several two-point
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1. Introduction

Bailey, Shampine and Waltman analyzed the following classical two-point boundary value problems
(BVPs) [1]: y′′(t) + f (t, y(t)) = 0, t ∈ (a, b),

y(a) = A, y(b) = B, and
(1.1)y′′(t) + f (t, y(t), y′(t)) = 0, t ∈ (a, b),

y(a) = A, y(b) = B,
(1.2)

where A, B ∈ R. The authors presented the following results.

Theorem 1.1. [1] Let f (t, y) be continuous on [a, b]×R and satisfy Lipschitz condition with Lipschitz
constant K,

| f (t, y) − f (t, x)| ≤ K,
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for all (t, y), (t, x) ∈ [a, b] × R. Then BVP (1.1) has a unique solution whenever

b − a <
2
√

2
√

K
. (1.3)

Theorem 1.2. [1] Let f (t, y, y′) be continuous on [a, b] × R2 and satisfy Lipschitz condition with
Lipschitz constants K and L,

| f (t, y, y′) − f (t, x, x′)| ≤ K|y − x| + L|y′ − x′|,

for all (t, y, y′), (t, x, x′) ∈ [a, b] × R2. Then BVP (1.2) has a unique solution if

K(b − a)2

8
+

L(b − a)
2

< 1. (1.4)

Fractional calculus has risen in many fields of science and engineering over the past few decades.
Numerous problems in physics, chemistry, biology, economics, signal and image processing, fluid dy-
namics, economics and control theory can be modeled in the form of fractional models, especially
to describe processes with memory effects [2–6]. Consequently, solving fractional BVPs has always
received considerable attention, and various interesting results dealing with the existence and unique-
ness results for fractional differential equations involving a variety of boundary conditions have been
established [7–11].

Recently, several scholars have proposed to extend the result of Theorem 1.1 by considering a
fractional derivative. Additionally, based on different definitions of the fractional derivative, inequality
(1.3) has been generalized to various forms. Examples include the Riemann-Liouville derivative [12],
the Caputo fractional derivative [13], the Conformable fractional derivative [14], and the Hadamard
fractional derivative [15]. For example, Ferreira [12] extended the result of Theorem 1.1 by using the
Riemann-Liouville fractional derivative, that is, the following two-point fractional BVP was studied:{

Dαa+y(t) + f (t, y(t)) = 0, a < t < b,
y(a) = 0, y(b) = B,

(1.5)

where 1 < α ≤ 2, Dαa+ is the Riemann-Liouville fractional derivative of order α. The following result
was obtained.

Theorem 1.3. [12] Let f : [a, b]×R→ R be continuous and satisfy the Lipschitz condition on [a, b]×R
with Lipschitz constant K,

| f (t, x) − f (t, y)| ≤ K|x − y|,

for all (t, x), (t, y) ∈ [a, b] × R. Then BVP (1.5) has a unique solution if

b − a < (Γ(α))1/α α(α+1)/α

K1/α(α − 1)(α−1)/α .

Laadjal, Abdeljawad and Jarad [14] extended the result of Theorem 1.1 involving a conformable
fractional derivative. The author investigated the following two-point fractional BVP:T a

βu(t) + f (t, u(t)) = 0, t ∈ (a, b),

u(a) = A, u(b) = B, A, B ∈ R,
(1.6)
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where 1 < β ≤ 2 and T a
β is the conformable fractional derivative of order β. The following result was

obtained.

Theorem 1.4. [14] Let f : [a, b]×R→ R be continuous and satisfy the Lipschitz condition on [a, b]×R
with Lipschitz constant K,

| f (t, x) − f (t, y)| ≤ K|x − y|,

for all (t, x), (t, y) ∈ [a, b] × R. Then BVP (1.6) has a unique solution if

b − a <
β(2β−1)/β(β−1)

K1/β .

However, no result exists in the literature that extends Theorem 1.2 to fractional differential equa-
tions. The main objective of this study is to bridge this gap. To this end, inspired by the above literature,
the following fractional BVPs are considered.

Motivated by the above-mentioned works, the sharp estimate for the unique solution of the following
two-point hybrid fractional BVP is investigated:Dαa+

[
x(t)

f (t, x(t))

]
+ g(t, x(t)) = 0, t ∈ (a, b),

x(a) = 0, x(b) = B,
(1.7)

where 1 < α ≤ 2, Dαa+ is the Riemann-Liouville fractional derivative of order α, B ∈ R is a constant,
f : [a, b] × R→ R\{0} and g : [a, b] × R→ R are two continuous functions.

As a second problem, inspired by the above ideas and by [1], this paper aims to extend Theorem
1.2 by considering a fractional derivative. The sharp estimate for the unique solution of the following
two-point fractional BVPs were studied with a non-linear term depending on the fractional derivative
given by Dαa+y(t) + f(t, (t − a)2−αy(t),Dα−1

a+ y(t)) = 0, t ∈ (a, b),
lim
t→a+

(t − a)2−αy(t) = A, y(b) = B, (1.8)

and the sequential fractional BVPDβa+
CDγa+z(t) + g(t, z(t), (t − a)1−βCDγa+z(t)) = 0, t ∈ (a, b),

z(a) = A, z(b) = B,
(1.9)

where 1 < α ≤ 2, 0 < γ, β ≤ 1, 1 < γ + β ≤ 2, Dκa+ is the Riemann-Liouville fractional derivative
of order κ = α, β, CDγa+ is the Caputo fractional derivative of order γ; A, B ∈ R are two constants, and
f, g : [a, b] × R2 → R are two continuous functions.

The following assumptions were considered throughout the present analysis:

(A1) There exist Lipschitz constants L1, L2, such that, for all (t, xi) ∈ [a, b] × R, (i = 1, 2),

| f (t, x1) − f (t, x2)| ≤ L1|x1 − x2|, |g(t, x1) − g(t, x2)| ≤ L2|x1 − x2|.

(A2) There exist Lipschitz constants K, L, such that, for any (t, ui, vi) ∈ [a, b] × R2, (i = 1, 2),

|f(t, u1, v1) − f(t, u2, v2)| ≤ K|u1 − u2| + L|v1 − v2|.
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(A3) There exist Lipschitz constants P,Q, such that, for any (t,wi, zi) ∈ [a, b] × R2, (i = 1, 2),

|g(t,w1, z1) − g(t,w2, z2)| ≤ P|w1 − w2| + Q|z1 − z2|.

Based on the above interpretation, the contribution of this work is summarized as follows:

• A new condition in terms of the end points of the given interval is presented, which ensures the
uniqueness of the solution for a two-point hybrid fractional BVP and generalizes the result of
Theorem 1.3.
• The sharp estimate for the unique solution of the two-point fractional BVPs with a non-linear

term depending on a lower fractional order derivative is established, which extends the classical
integer order results of Theorem 1.2.
• The sequential two-point fractional BVP is considered, providing a means to solve the open prob-

lem (30) proposed in [14].

The rest of the paper is organized as follows. In Section 2, some basic results related to the fractional
calculus are given. In Section 3, by using the Banach contraction mapping theorem the estimate for
the uniqueness results of the two-point fractional BVPs (1.7)–(1.9) are investigated. In Section 4, we
present some examples which illustrate the efficiency of the main results. Finally, Section 5 addresses
the conclusion of the work.

2. Preliminaries

In this section, we recall some basic definitions and lemmas on fractional calculus, we refer the
reader to [2].

Definition 2.1. [2] The Riemann-Liouville fractional integral of order α > 0 for a function u : [a, b]→
R is defined as

Iαa+u(t) =
1
Γ(α)

∫ t

a
(t − s)α−1u(s)ds, t ∈ [a, b].

Definition 2.2. [2] The Riemann-Liouville fractional derivative of order α > 0 for a function u :
[a, b]→ R is defined as

Dαa+u(t) =
1

Γ(n − α)

(
d
dt

)n ∫ t

a
(t − s)n−α−1u(s)ds, t ∈ [a, b], n − 1 < α < n, n = [α]+1,

where [α] denotes the integer part of the real number α.

Definition 2.3. [2] The Caputo fractional derivative of order α > 0 for a (n − 1)-times absolutely
continuous function u : [a, b]→R is defined as

CDαa+u(t)=
1

Γ(n − α)

∫ t

a
(t − s)n−α−1u(n)(s)ds, t ∈ [a, b], n − 1 < α < n, n = [α]+1,

where [α] denotes the integer part of the real number α.
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Lemma 2.1. [2,7] Let α > 0. If u ∈ C(a, b) ∩ L1(a, b), then

Iαa+Dαa+u(t) = u(t) − c1(t − a)α−1 − c2(t − a)α−2 − · · · − cn(t − a)α−n,

for some constants ci ∈ R, i = 1, 2, · · ·, n, and n = [α] + 1.

Lemma 2.2. [2] Let α > 0. If x, CDαa+x ∈ L([a, b],R), then

Iαa+
CDαa+x(t) = x(t) − c0 − c1(t − a) − · · · − cn−1(t − a)n−1,

for some constants ci ∈ R, i = 0, 1, · · ·, n − 1, and n = [α]+1.

Lemma 2.3. [2,7] Let α, β > 0, n = [α] + 1. Then,

Iαa+(t − a)β−1 =
Γ(β)
Γ(β + α)

(t − a)α+β−1, t > a; (2.1)

Dαa+(t − a)β−1 =
Γ(β)
Γ(β − α)

(t − a)β−α−1, t > a; (2.2)

Dαa+(t − a)α− j = 0, t > a, j = 1, 2, · · ·, n; (2.3)

CDαa+(t − a)β−1 =
Γ(β)
Γ(β − α)

(t − a)β−α−1, t > a; (2.4)

CDαa+(t − a)k = 0, t > a, k = 0, 1, 2, · · ·, n − 1, and CDαa+1 = 0. (2.5)

Lemma 2.4. [2] Let α > β > 0, u(t) ∈ C(a, b). Then,

Iαa+Iβa+u(t) = Iα+βa+ u(t), Dαa+Iαa+x(t) = u(t) = CDαa+Iαa+u(t), (2.6)

Dβa+Iαa+u(t) = Iα−βa+ u(t). (2.7)

3. Main results

Define Banach space X of continuous functions on [a, b] with the norm ||x||∞ = max
t∈[a,b]
|x(t)|. Let

α, β, γ ∈ R, 1 < α ≤ 2, 0 < γ, β ≤ 1, 1 < γ + β ≤ 2 be fixed and I = [a, b]. For any y : (a, b] → R and
z : [a, b]→ R, we define functions yα : I → R and żβ : I → R by

yα(t)=

(t − a)2−αy(t), if t ∈ (a, b],
lim
t→a+

(t − a)2−αy(t), if t = a,

żβ(t) =

(t − a)1−βCDγa+z(t), if t ∈ (a, b],
lim
t→a+

(t − a)1−βCDγa+z(t), if t = a,

given that the right-hand limits are exist. Define spaces

Y := {y : (a, b]→ R|yα,Dα−1
a+ y ∈ C[a, b]},

Z := {z : [a, b]→ R|z, żβ(t) ∈ C[a, b]}.
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It is not difficult to show that Y and Z are two Banach spaces equipped with the norms

||y||α = max
t∈[a,b]

(K|yα| + L|Dα−1
a+ y|), ||z||β = max

t∈[a,b]
(P|z| + Q|żβ|),

respectively.

Lemma 3.1. Assume that f and g are continuous functions. Then, a function x ∈ C[a, b] is a solution
of Eq (1.7) if and only if x(t) satisfies

x(t) = f (t, x(t))
∫ b

a
G(t, s)g(s, x(s))ds +

B(t − a)α−1 f (t, x(t))
(b − a)α−1 f (b, x(b))

, (3.1)

where

G(t, s) =
1
Γ(α)


(t − a)α−1

(b − a)α−1 (b − s)α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b,

(t − a)α−1

(b − a)α−1 (b − s)α−1, a ≤ t ≤ s ≤ b.
(3.2)

Proof. According to Lemma 2.1, applying operator Iαa+ on both sides of Eq (1.7) yields

x(t)
f (t, x(t))

= −Iαa+g(t, x(t)) + c1(t − a)α−1 + c2(t − a)α−2,

where c1, c2 ∈ R are arbitrary constants. Therefore,

x(t) = f (t, x(t))
[
−Iαa+g(t, x(t)) + c1(t − a)α−1 + c2(t − a)α−2

]
.

Using boundary condition x(a) = 0, we get c2 = 0. Then,

x(t) = f (t, x(t))
[
−Iαa+g(t, x(t)) + c1(t − a)α−1

]
. (3.3)

From boundary condition x(b) = B, it follows that

B
f (b, x(b))

= −Iαa+g(t, x(t))|t=b + c1(b − a)α−1,

that is,

c1 =
B

(b − a)α−1 f (b, x(b))
+

Iαa+g(t, x(t))|t=b

(b − a)α−1 .

Substituting the value of c1 in Eq (3.3) yields

x(t) = f (t, x(t))
(
−

1
Γ(α)

∫ t

a
(t − s)α−1g(s, x(s))ds

+
(t − a)α−1

Γ(α)(b − a)α−1

∫ b

a
(b − s)α−1g(s, x(s))ds

)
+

B(t − a)α−1 f (t, x(t))
(b − a)α−1 f (b, x(b))

= f (t, x(t))
∫ b

a
G(t, s)g(s, x(s))ds +

B(t − a)α−1 f (t, x(t))
(b − a)α−1 f (b, x(b))

.
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Conversely, by direct computation, it can be established that (3.1) satisfies problem (1.7). This com-
pletes the proof.

Lemma 3.2. Assume that f is a continuous function. Then, a function y ∈ Y is a solution of Eq (1.8) if
and only if y(t) satisfies the integral equations

y(t)=
∫ b

a
G(t, s)f(s, (s−a)2−αy(s),Dα−1

a+ y(s))ds +
(t−a)α−1

(b−a)α−1 [B−A(b−a)α−2]+A(t−a)α−2, (3.4)

and

Dα−1
a+ y(t) =

Γ(α)[B − A(b − a)α−2]
(b − a)α−1 +

∫ b

a
H(t, s)f(s, (s − a)2−αy(s),Dα−1

a+ y(s))ds, (3.5)

where G(t, s) defined the same as in (3.2),

G(t, s) =
1
Γ(α)


(t − a)α−1

(b − a)α−1 (b − s)α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b,

(t − a)α−1

(b − a)α−1 (b − s)α−1, a ≤ t ≤ s ≤ b,

and

H(t, s) =
1

(b − a)α−1

(b − s)α−1 − (b − a)α−1, a ≤ s ≤ t ≤ b,

(b − s)α−1, a ≤ t ≤ s ≤ b.
(3.6)

Proof. In view of Lemma 2.1, a general solution of the fractional equation in (1.8) is given by

y(t) = −Iαa+f(t, (t − a)2−αy(t),Dα−1
a+ y(t)) + c0(t − a)α−1 + c1(t − a)α−2, (3.7)

where c0, c1 ∈ R are arbitrary constants. From the first boundary condition lim
t→a+

(t − a)2−αy(t) = A, we
obtain c1 = A, which yields

y(t) = −Iαa+f(t, (t − a)2−αy(t),Dα−1
a+ y(t)) + c0(t − a)α−1 + A(t − a)α−2. (3.8)

From y(b) = B and by using (3.8), we derive

c0 =
1

(b − a)α−1

[
Iαa+ f (t, (t − a)2−αy(t),Dα−1

a+ y(t))|t=b + B − A(b − a)α−2
]
.

Substituting the value of c0 in (3.8) yields solution (3.4),

y(t) = − Iαa+f(t, (t − a)2−αy(t),Dα−1
a+ y(t)) + A(t − a)α−2

+
(t − a)α−1

(b − a)α−1

[
Iαa+ f (t, (t − a)2−αy(t),Dα−1

a+ y(t))|t=b + B − A(b − a)α−2
]

=

∫ b

a
G(t, s)f(s, (s − a)2−αy(s),Dα−1

a+ y(s))ds +
(t − a)α−1

(b − a)α−1 [B − A(b − a)α−2] + A(t − a)α−2.
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The converse follows by direct computation. On the other hand, according to (2.2), (2.3) and (2.7),
taking the (α−1)-th Riemann-Liouville fractional derivative on the both sides of (3.4) yields (3.5),

Dα−1
a+ y(t) = − Dα−1

a+ Iαa+f(t, (t − a)2−αy(t),Dα−1
a+ y(t)) + A[Dα−1

a+ (t − a)α−2]

+
Dα−1

a+ (t − a)α−1

(b − a)α−1

[
Iαa+ f (t, (t − a)2−αy(t),Dα−1

a+ y(t))|t=b + B − A(b − a)α−2
]

= −

∫ t

a
f(s, (s − a)2−αy(s),Dα−1

a+ y(s))ds +
Γ(α)

(b − a)α−1 [B − A(b − a)α−2]

+
1

(b − a)α−1

[∫ b

a
(b − s)α−1 f (s, (s − a)2−αy(s),Dα−1

a+ y(s))ds
]

=
Γ(α)[B − A(b − a)α−2]

(b − a)α−1 +

∫ b

a
H(t, s)f(s, (s − a)2−αy(s),Dα−1

a+ y(s))ds.

This proves the lemma.

Lemma 3.3. Assume that g is a continuous function. Then, a function z ∈ Y is a solution of equation
(1.9) if and only if z(t) satisfies the integral equations

z(t) =
∫ b

a
G(t, s)g(s, z(s), (s − a)1−βCDγa+z(s))ds +

(t − a)γ+β−1

(b − a)γ+β−1 (B − A) + A, (3.9)

and

CDγa+z(t) =
(B − A)Γ(γ + β)
(b − a)γ+β−1Γ(β)

(t − a)β−1 +

∫ b

a
H(t, s)g(s, z(s), (s − a)1−βCDγa+z(s))ds, (3.10)

where kernel functions G(t, s) and H(t, s) are defined as

G(t, s) =
1

Γ(γ + β)


(t − a)γ+β−1

(b − a)γ+β−1 (b − s)γ+β−1 − (t − s)γ+β−1, a ≤ s ≤ t ≤ b,

(t − a)γ+β−1

(b − a)γ+β−1 (b − s)γ+β−1, a ≤ t ≤ s ≤ b,
(3.11)

and

H(t, s) =
1
Γ(β)


(t − a)β−1

(b − a)γ+β−1 (b − s)γ+β−1 − (t − s)β−1, a ≤ s ≤ t ≤ b,

(t − a)β−1

(b − a)γ+β−1 (b − s)γ+β−1, a ≤ t ≤ s ≤ b.
(3.12)

Proof. Applying operators Iβa+ and Iγa+ on the fractional equation in (1.9) and then using Lemmas
2.1–2.4 yields

z(t) = −Iγ+βa+ g(t, z(t), (t − a)1−βCDγa+z(t)) +
Γ(β)
Γ(γ + β)

c0(t − a)γ+β−1 + c1, (3.13)
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where c0, c1 ∈ R are arbitrary constants. Applying the boundary conditions z(a) = A, z(b) = B in
(3.13) yields

c1 = A, c0 =
Γ(γ + β)

(b − a)γ+β−1Γ(β)

[
B − A + Iγ+βa+ g(t, z(t), (t − a)1−βCDγa+z(t))|t=b

]
.

Substituting the above values into (3.13), the solution given by (3.9) is obtained. The converse of
the lemma can be obtained by direct computation. On the other hand, by Lemma 2.3 and Lemma 2.4,
taking the γ-th Caputo fractional derivative on both sides of (3.9) yields (3.10). The proof is completed.

Lemma 3.4. The Green’s functions G(t, s), H(t, s), G(t, s) and H(t, s) given by Lemmas 3.1–3.3,
respectively, satisfy the following properties:

(i) G(t, s), H(t, s), G(t, s) and H(t, s) are continuous functions in [a, b]×[a, b];
(ii) G(t, s) and G(t, s) are two nonnegative functions in [a, b]×[a, b];

(iii)
∫ b

a
G(t, s)ds ≤

(α − 1)α−1

Γ(α)αα+1 (b − a)α, for any t ∈ [a, b];

(iv)
∫ b

a
(t − a)2−αG(t, s)ds ≤

(b − a)2

4Γ(α + 1)
, for any t ∈ [a, b];

(v)
∫ b

a
|H(t, s)|ds ≤

1
α

(b − a), for any t ∈ [a, b];

(vi)
∫ b

a
G(t, s)ds ≤

(γ + β − 1)γ+β−1

Γ(γ + β)(γ + β)γ+β+1 (b − a)γ+β, for any t ∈ [a, b];

(vii)
∫ b

a
(t − a)1−β|H(t, s)|ds ≤ max{β, γ}

(b − a)
(γ + β)Γ(β + 1)

, for any t ∈ [a, b].

Proof. It is obvious that (i) is true. For (ii), in view of the definition of G(t, s), let

G1(t, s) =
1
Γ(α)

(t − a)α−1

(b − a)α−1 (b − s)α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b,

G2(t, s) =
1
Γ(α)

(t − a)α−1

(b − a)α−1 (b − s)α−1, a ≤ t ≤ s ≤ b.

Then, we can easily obtain that

G2(t, s) ≥ 0, (t, s) ∈ [a, b] × [a, b].

Differentiating G1(t, s) with respect to s for every fixed t ∈ [a, b],

∂G1(t, s)
∂s

=
α − 1
Γ(α)

[
−

(t − a)α−1

(b − a)α−1 (b − s)α−2 + (t − s)α−2
]

=
α − 1
Γ(α)

(t − s)α−2
[
1 −

( t − a
b − a

)α−1( t − s
b − s

)2−α]
≥ 0,

that is, G1(t, s) is increasing with respect to s ∈ [a, t] for any fixed t ∈ [a, b]. Therefore,

G1(t, s) ≥ G1(t, a) = 0, t ∈ [a, b].
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Thus, we have derived that G(t, s) ia nonnegative in [a, b]×[a, b]. Let α = β + γ, then we can also get
G(t, s) is nonnegative in [a, b]×[a, b]. For (iii) and (iv), by the expression for the function G(t, s), we
obtain ∫ b

a
G(t, s)ds =

1
Γ(α)

{∫ t

a

[ (t − a)α−1

(b − a)α−1 (b − s)α−1
− (t − s)α−1

]
ds

+

∫ b

t

(t − a)α−1

(b − a)α−1 (b − s)α−1ds
}

=
1
Γ(α)

{1
α

[
−

(t − a)α−1

(b − a)α−1 (b − s)α + (t − s)α
]∣∣∣∣s=t

s=a

−
1
α

(t − a)α−1

(b − a)α−1 (b − s)α
∣∣∣∣s=b

s=t

}
=

1
αΓ(α)

(t − a)α−1(b − t).

It follows that ∫ b

a
(t − a)2−αG(t, s)ds = (t − a)2−α

∫ b

a
G(t, s)ds =

1
αΓ(α)

(t − a)(b − t).

Define
g(t) = (t − a)(b − t), t ∈ [a, b],

and
g̃(t) = (t − a)α−1(b − t), t ∈ [a, b].

Differentiating the functions g(t) and g̃(t) on (a, b), we immediately find that g(t) and g̃(t) are achieved
their maximum at the following points, respectively,

t∗ =
a + b

2
, t̃ =

1
α

[a + (α − 1)b].

This yields,

max
t∈[a,b]

g(t) =
1
4

(b − a)2, max
t∈[a,b]

g̃(t) =
(α − 1)α−1(b − a)α

αα
,

which completes the proof of (iii) and (iv). Let α = β + γ, then property (vi) can be obtained directly
from (iii). We will now show that properties (v) and (vii) are true. First, for (v), in view of the definition
of H(t, s), we have ∫ b

a
|H(t, s)|ds

=
1

(b − a)α−1

[∫ t

a
((b − a)α−1

− (b − s)α−1)ds +
∫ b

t
(b − s)α−1ds

]
=

1
(b − a)α−1

[
(b − a)α−1(t − a) +

2
α

(b − t)α −
1
α

(b − a)α
]
.

Define
h(t) = (b − a)α−1(t − a) +

2
α

(b − t)α −
1
α

(b − a)α, t ∈ [a, b].
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Then,

h(a) =
1
α

(b − a)α ≥ h(b) = (b − a)α −
1
α

(b − a)α > 0.

Taking the second-order derivative of function h(t) on (a, b), we obtain

h′′(t) = 2(α − 1)(b − t)α−2 ≥ 0, t ∈ [a, b].

Therefore, h(t) is convex on (a, b). Hence,

max
t∈[a,b]

h(t) = max
t∈[a,b]
{h(a), h(b)} = h(a) =

1
α

(b − a)α.

This completes the proof of (v). Finally, for (vii), for a ≤ s ≤ t ≤ b, we can derive that

(b − s)γ+β−1(t − a)β−1 − (b − a)γ+β−1(t − s)β−1

= (b − a)γ+β−1(t − s)β−1
[(b − s

b − a

)γ+β−1( t − s
t − a

)1−β
− 1

]
≤ 0.

Hence, it follows from the definition of H(t, s) that∫ b

a
|H(t, s)|ds

=
1
Γ(β)

∫ t

a

[
(t − s)β−1 −

(t − a)β−1

(b − a)γ+β−1 (b − s)γ+β−1
]
ds +

1
Γ(β)

∫ b

t

(t − a)β−1

(b − a)γ+β−1 (b − s)γ+β−1ds

=
1

(γ + β)Γ(β)
(t − a)β−1

(b − a)γ+β−1

[
2(b − t)γ+β − (b − a)γ+β

]
+

1
Γ(β + 1)

(t − a)β.

Consequently, ∫ b

a
(t − a)1−β|H(t, s)|ds =

2(b − t)γ+β − (b − a)γ+β

(b − a)γ+β−1(γ + β)Γ(β)
+

(t − a)
Γ(β + 1)

.

Define

h(t) =
2(b − t)γ+β − (b − a)γ+β

(b − a)γ+β−1(γ + β)Γ(β)
+

(t − a)
Γ(β + 1)

, t ∈ [a, b].

Then,

h(a) =
β(b − a)

(γ + β)Γ(β + 1)
> 0, h(b) =

γ(b − a)
(γ + β)Γ(β + 1)

> 0.

Taking the second derivative of function h(t) on (a, b) leads to

h
′′(t) = (γ + β − 1)

2(b − t)γ+β−2

(b − a)γ+β−1Γ(β)
≥ 0, t ∈ (a, b).

This implies that h(t) is convex on (a, b). Therefore,

max
t∈[a,b]
h(t) = max{h(a), h(b)} = max{β, γ}

(b − a)
(γ + β)Γ(β + 1)

.

The proof is completed.
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Based on Lemmas 3.1 to 3.3, operators T1 : X→X, T2 : Y→Y and T3 : Z→Z are defined as

T1x(t)= f (t, x(t))
∫ b

a
G(t, s)g(s, x(s))ds +

B(t − a)α−1 f (t, x(t))
(b − a)α−1 f (b, x(b))

, x(t)∈X,

T2y(t)=
∫ b

a
G(t, s)f(s, (s−a)2−αy(s),Dα−1

a+ y(s))ds +
(t−a)α−1

(b−a)α−1 [B−A(b−a)α−2]+A(t−a)α−2, y(t)∈Y,

T3z(t) =
∫ b

a
G(t, s)g(s, z(s), (s − a)1−βCDγa+z(s))ds +

(t − a)γ+β−1

(b − a)γ+β−1 (B − A) + A, z(t)∈Z.

Theorem 3.1. Assume that f , g : [a, b] × R → R are continuous functions and satisfy condition (A1).
Let

M1 = sup
t∈[a,b]
| f (t, x(t))|, m1 = inf

t∈[a,b]
| f (t, x(t))|, M2 = sup

t∈[a,b]
|g(t, x(t))|.

If

b − a <

αα+1[m2
1 − BL1(m1 + M1)]Γ(α)

m2
1(M2L1 + M1L2)(α − 1)α−1


1/α

, (3.14)

then problem (1.7) has a unique solution.

Proof. For x1(t), x2(t)∈X, using condition (A1), Lemma 3.4 (iii) and together with (3.1), yields

|T x1(t) − T x2(t)| ≤
∣∣∣∣B(t − a)α−1 f (t, x1(t))
(b − a)α−1 f (b, x1(b))

−
B(t − a)α−1 f (t, x2(t))
(b − a)α−1 f (b, x2(b))

∣∣∣∣
+

∣∣∣∣ f (t, x1(t))
∫ b

a
G(t, s)g(s, x1(s))ds− f (t, x2(t))

∫ b

a
G(t, s)g(s, x2(s))ds

∣∣∣∣
≤

B(t − a)α−1

(b − a)α−1

(∣∣∣∣ f (t, x1(t))
f (b, x1(b))

−
f (t, x2(t))
f (b, x1(b))

∣∣∣∣ + ∣∣∣∣ f (t, x2(t))
f (b, x1(b))

−
f (t, x2(t))
f (b, x2(b))

∣∣∣∣)
+

∣∣∣∣ f (t, x1(t))
∫ b

a
G(t, s)g(s, x1(s))ds − f (t, x2(t))

∫ b

a
G(t, s)g(s, x1(s))ds

∣∣∣∣
+

∣∣∣∣ f (t, x2(t))
∫ b

a
G(t, s)g(s, x1(s))ds − f (t, x2(t))

∫ b

a
G(t, s)g(s, x2(s))ds

∣∣∣∣
≤

B(t − a)α−1

(b − a)α−1
| f (b, x1(b))|

| f (t, x1(t)) − f (t, x2(t))|

+
B(t − a)α−1| f (t, x2(t))|

(b − a)α−1
| f (b, x1(b))|| f (b, x2(b))|

| f (b, x2(b)) − f (b, x1(b))|

+ | f (t, x1(t)) − f (t, x2(t))|
∫ b

a
G(t, s)|g(s, x1(s))|ds

+

∫ b

a
G(t, s)|g(s, x1(s)) − g(s, x2(s))|ds| f (t, x2(t))|

≤
( B
m1
+

BM1

m2
1

)
L1|x1 − x2| + (M2L1 + M1L2)

(α − 1)α−1(b − a)α

Γ(α)αα+1 |x1 − x2|
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≤
[BL1(m1 + M1)

m2
1

+ (M2L1 + M1L2)
(α − 1)α−1(b − a)α

Γ(α)αα+1

]
||x1 − x2||∞.

Therefore, we conclude from (3.14) that operator T1 is a contraction mapping. Hence problem (1.7)
has a unique solution.

As special cases of Theorem 3.1, we have the following corollary:

Corollary 3.1. Let g(t, x) be continuous on [a, b] × R and satisfy Lipschitz condition

|g(t, x1) − g(t, x2)| ≤ K|x1 − x2|, for any x1, x2 ∈ R, K > 0.

Then the BVP Dαa+x(t) + g(t, x(t)) = 0, t ∈ (a, b), 1 < α ≤ 2,
x(a) = 0, x(b) = B, B ∈ R,

has a unique solution whenever

b − a <
[
Γ(α)αα+1

K(α − 1)α−1

]1/α

. (3.15)

Proof. By Theorem 3.1, let f (t, x) ≡ 1, (t, x) ∈ [a, b] × R, and L2 = K. Then,

M1 = sup
t∈[a,b]
| f (t, x(t))| = inf

t∈[a,b]
| f (t, x(t))| = m1 = 1, L1 = 0.

Substituting the above values into (3.14), the desired result (3.15) is obtained. As such, our results
match the results of Theorem 2.3 in [12].

Theorem 3.2. Let f(t, (t − a)2−αy(t),Dα−1
a+ y(t)) be continuous on [a, b] × R2 and satisfy condition (A2).

If

K(b − a)2

4Γ(α + 1)
+

L
α

(b − a) < 1, (3.16)

then problem (1.8) has a unique solution.

Proof. To see when T2 is contracting, we again from

(t − a)2−α|T2y1(t) − T2y2(t)|

≤

∫ b

a
(t − a)2−αG(t, s)|f(s, (s − a)2−αy1(s),Dα−1

a+ y1(s)) − f(s, (s − a)2−αy2(s),Dα−1
a+ y2(s))|ds,

and from (3.5)

|Dα−1
a+ T2y1(t) − Dα−1

a+ T2y2(t)|

≤

∫ b

a
|H(t, s)||f(s, (s − a)2−αy1(s),Dα−1

a+ y1(s)) − f(s, (s − a)2−αy2(s),Dα−1
a+ y2(s))|ds.
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Using Lipschitz condition (A2) and Lemma 3.4 (iv), (v),

(t − a)2−α|T2y1(t) − T2y2(t)|

≤

∫ b

a
(t − a)2−αG(t, s)(K(s − a)2−α|y1(s) − y2(s)| + L|Dα−1

a+ y1(s) − Dα−1
a+ y2(s)|)ds

≤ ||y1 − y2||α

∫ b

a
(t − a)2−αG(t, s)ds ≤

(b − a)2

4Γ(α + 1)
||y1 − y2||α,

and
|Dα−1

a+ T2y1(t) − Dα−1
a+ T2y2(t)|

≤

∫ b

a
|H(t, s)|(K(s − a)2−α|y1(s) − y2(s)| + L|Dα−1

a+ y1(s) − Dα−1
a+ y2(s)|)ds

≤ ||y1 − y2||α

∫ b

a
|H(t, s)|ds ≤

1
α

(b − a)||y1 − y2||α.

Together these imply

||T2y1 − T2y2||α ≤
[K(b − a)2

4Γ(α + 1)
+

L
α

(b − a)
]
||y1 − y2||α.

It follows from (3.16) that operator T2 is a contraction mapping. Hence, problem (1.8) has a unique
solution.

Remark 3.1. Let α→ 2. Then, Theorem 3.2 can be reduced to Theorem 1.2.

Theorem 3.3. Let g(t, z(t), (t − a)1−βCDγa+z(t)) be continuous on [a, b] × R2 and satisfy condition (A3).
If

P(γ + β − 1)γ+β−1(b − a)γ+β

Γ(γ + β)(γ + β)γ+β+1 +
Q max{β, γ}(b − a)

(γ + β)Γ(β + 1)
< 1, (3.17)

then problem (1.9) has a unique solution.

Proof. This result will follow from the Banach contraction mapping theorem if we can show that
operator T3 is a contraction mapping. In fact, for any z1(t), z2(t) ∈ Z, we have

|T3z1(t) − T3z2(t)|

≤

∫ b

a
G(t, s)|g(s, z1(s), (s − a)1−βCDγa+z1(s)) − g(s, z2(s), (s − a)1−βCDγa+z2(s))|ds,

and in view of (3.10),

|(t−a)1−βCDγa+T3z1(t)−(t − a)1−βCDγa+T3z2(t)|

≤

∫ b

a
(t−a)1−β|H(t, s)||g(s, z1(s), (s−a)1−βCDγa+z1(s))−g(s, z2(s), (s−a)1−βCDγa+z2(s))|ds.
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Using Lipschitz condition (A3) and Lemma 3.4 (vi), (vii),

|T3z1(t) − T3z2(t)|

≤

∫ b

a
G(t, s)P|z1(s) − z2(s)| + Q(s − a)1−β|CDγa+z1(s) − CDγa+z2(s)|ds

≤ ||z1 − z2||β

∫ b

a
G(t, s)ds ≤

(γ + β − 1)γ+β−1(b − a)γ+β

Γ(γ + β)(γ + β)γ+β+1 ||z1 − z2||β,

and
(t − a)1−β|CDγa+T3z1(t) − CDγa+T3z2(t)|

≤

∫ b

a
(t − a)1−β|H(t, s)|P|z1(s) − z2(s)| + Q(s − a)1−β|CDγa+z1(s) − CDγa+z2(s)|ds

≤ ||z1 − z2||β

∫ b

a
(t − a)1−β|H(t, s)|ds ≤

max{β, γ}(b − a)
(γ + β)Γ(β + 1)

||z1 − z2||β,

which, by taking the norm for t ∈ [a, b], implies that

||T3z1 − T3z2||β ≤
[P(γ + β − 1)γ+β−1(b − a)γ+β

Γ(γ + β)(γ + β)γ+β+1 +
Qmax{β, γ}(b − a)

(γ + β)Γ(β + 1)

]
||z1 − z2||β.

From (3.17) we conclude that operator T3 is a contraction mapping. Thus, problem (1.9) has a unique
solution.

Remark 3.2. Let γ, β→ 1. Then Theorem 3.3 can be reduced to Theorem 1.2.

4. Example

Example 4.1. Consider the following two-point fractional BVPD4/3
1+

[
x(t)

(6t/5) + (cos x(t))/10

]
+

ln t
5

sin x(t) = 0, t ∈ (1, 2),

x(1) = 0, x(2) = 1.
(4.1)

Corresponding to BVP (1.7), here

α = 4/3, a = B = 1, b = 2,

f (t, x(t)) = 6t/5 + cos x(t)/10, g(t, x(t)) = ((ln t)/5) sin x(t).

Obviously, we have

| f (t, x) − f (t, y)| ≤ (1/10)| cos x − cos y| ≤ (1/10)|x − y|, for x, y ∈ R,

|g(t, x) − g(t, y)| ≤ ((ln t)/5)| sin x − sin y| ≤ ((ln 2)/5)|x − y|, for x, y ∈ R.

It is easy to find that L1 = 1/10, L2 = M2 = (ln 2)/5,M1 = 2.5,m1 = 1.1. Thus,

BL1(m1 + M1)
m2

1

+ (M2L1 + M1L2)
(α − 1)α−1(b − a)α

Γ(α)αα+1 ≈ 0.4405 < 1.
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Clearly, all assumptions of Theorem 3.1 are satisfied. Therefore, BVP (4.1) has a unique solution on
[1, 2].

Example 4.2. Consider the following two-point fractional BVP
D3/2

0+ y(t) +
3
4
√
π sin t1/2y(t) +

3
4

sin D1/2
0+ y(t) +

5
2
= 0, t ∈ (0, 1),

lim
t→0+

t1/2y(t) = y(1) = 0,
(4.2)

Corresponding to BVP (1.8), here

α =
3
2
, a = A = B = 0, b = 1,

f(t, (t − a)2−αy(t),Dα−1
a+ y(t)) =

3
4
√
π sin t1/2y(t) +

3
4

sin D1/2
0+ y(t) +

5
2
,

Clearly,
|f(t, (t − a)2−αy1(t),Dα−1

a+ y1(t)) − f(t, (t − a)2−αy2(t),Dα−1
a+ y2(t))|

≤
3
4
√
πt1/2|y1(t) − y2(t)| +

3
4
|Dα−1

a+ y1(t) − Dα−1
a+ y2(t)|.

Choosing K = 3
4

√
π, L = 3

4 and consequently, we obtain

K(b − a)2

4Γ(α + 1)
+

L
α

(b − a) =
3
√
π

16Γ(5/2)
+

1
2
=

3
4
< 1.

Thus, all the conditions of Theorem 3.2 are satisfied. Hence, BVP (4.2) has a unique solution on [0, 1].

Example 4.3. Consider the following two-point fractional BVP
D1/2

0+
CD3/4

0+ z(t) +
et

1 + t
+

3
10

sin z(t) +
2
5
·
|t1/2CD3/4

0+ z(t)|

1 + |t1/2CD3/4
0+ z(t)|

= 0, t ∈ (0, 2),

z(0) = z(2) = 0,

(4.3)

Corresponding to BVP (1.9), here

β =
1
2
, γ =

3
4
, a = A = B = 0, b = 2,

g(t, z(t), (t − a)1−βCDγa+z(t)) =
et

1 + t
+

3
10

sin z(t) +
2
5
·
|t1/2CD3/4

0+ z(t)|

1 + |t1/2CD3/4
0+ z(t)|

.

Clearly,
|g(t, z1(t), (t − a)1−βCDγa+z1(t)) − g(t, z2(t), (t − a)1−βCDγa+z2(t))|

≤
3

10
|z1(t) − z2(t)| +

2
5

t1/2|CD3/4
0+ z1(t) − CD3/4

0+ z2(t)|.
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Taking P = 3
10 , Q = 2

5 , we can find that

P(γ + β − 1)γ+β−1(b − a)γ+β

Γ(γ + β)(γ + β)γ+β+1 +
Q max{β, γ}(b − a)

(γ + β)Γ(β + 1)

=
3
10
·

(1/4)1/425/4

(5/4)9/4Γ(5/4)
+

2
5
·

3/2
(5/4)Γ(3/2)

≈ 0.9628 < 1.

Thus, the hypotheses of Theorem 3.3 are satisfied. Therefore, the BVP (4.3) has a unique solution on
[0, 2].

5. Conclusions

In this article, we discussed the uniqueness results for several two-point fractional BVPs. By using
the Banach contraction mapping theorem, we obtained the sharp conditions in terms of the end-points
of the given interval which ensures the uniqueness of solutions for these fractional BVPs. This seems to
have something in common with studying of the Lyapunov inequality for BVPs. In terms of methods,
both of them are converted the BVPs into the equivalent integral equations with corresponding Green’s
functions. By estimating the upper bound of Green’s function, the existence of solutions to BVPs is
finally characterized. The difference is that Lyapunov inequality directly estimates the upper bound of
the Green’s function G(t, s) on the interval [a, b] × [a, b], while this paper estimates the upper bound
of

∫ b

a
G(t, s)ds for any t ∈ [a, b]. Our work is an extension of the classical results of Theorem 1.1 and

Theorem 1.2. It is also an extension and supplement to some recent work [10–14]. Compared with
the paper [10–14], we discuss the BVP where the nonlinear term of the differential equation has the
fractional derivative of unknown function, and obtain new interesting results. Based on the this study,
in the forthcoming paper, we will investigate the sharp estimate for the unique solution of the two-point
Ψ-Hilfer fractional hybird-Sturm-Liouville equations.
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